

Smarter. Greener. Together.

Industrial Automation Headquarters

Taiwan: Delta Electronics, Inc.

Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan District, Taoyuan City 33068, Taiwan TEL: +886-3-362-6301 / FAX: +886-3-371-6301

Asia

China: Delta Electronics (Shanghai) Co., Ltd.

No.182 Minyu Rd., Pudong Shanghai, P.R.C.

Post code: 201209

TEL: +86-21-6872-3988 / FAX: +86-21-6872-3996

Customer Service: 400-820-9595

Japan: Delta Electronics (Japan), Inc.

Industrial Automation Sales Department 2-1-14 Shibadaimon, Minato-ku

Tokyo, Japan 105-0012

TEL: +81-3-5733-1155 / FAX: +81-3-5733-1255

Korea: Delta Electronics (Korea), Inc.

1511, 219, Gasan Digital 1-Ro., Geumcheon-gu,

Seoul, 08501 South Korea

TEL: +82-2-515-5305 / FAX: +82-2-515-5302

Singapore: Delta Energy Systems (Singapore) Pte Ltd.

4 Kaki Bukit Avenue 1, #05-04, Singapore 417939

TEL: +65-6747-5155 / FAX: +65-6744-9228

India: Delta Electronics (India) Pvt. Ltd.

Plot No.43, Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India

TEL: +91-124-4874900 / FAX: +91-124-4874945

Thailand: Delta Electronics (Thailand) PCL.

909 Soi 9, Moo 4, Bangpoo Industrial Estate (E.P.Z),

Pattana 1 Rd., T.Phraksa, A.Muang, Samutprakarn 10280, Thailand

TEL: +66-2709-2800 / FAX: +66-2709-2827

Australia: Delta Electronics (Australia) Pty Ltd.

Unit 20-21/45 Normanby Rd., Notting Hill Vic 3168, Australia

TEL: +61-3-9543-3720

Americas

USA: Delta Electronics (Americas) Ltd.

5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A.

TEL: +1-919-767-3813 / FAX: +1-919-767-3969

Brazil: Delta Electronics Brazil

Rua Itapeva, 26 - 3°, andar Edificio Itapeva, One - Bela Vista 01332-000 - São Paulo - SP - Brazil

TEL: +55-12-3932-2300 / FAX: +55-12-3932-237

Mexico: Delta Electronics International Mexico S.A. de C.V.

Gustavo Baz No. 309 Edificio E PB 103 Colonia La Loma, CP 54060

Tlalnepantla, Estado de México

TEL: +52-55-3603-9200

EMEA

EMEA Headquarters: Delta Electronics (Netherlands) B.V.

Sales: Sales.IA.EMEA@deltaww.com

Marketing: Marketing.IA.EMEA@deltaww.com

Technical Support: iatechnicalsupport@deltaww.com Customer Support: Customer-Support@deltaww.com

Service: Service.IA.emea@deltaww.com

TEL: +31(0)40 800 3900

BENELUX: Delta Electronics (Netherlands) B.V.

Automotive Campus 260, 5708 JZ Helmond, The Netherlands Mail: Sales IA. Benelux@deltaww.com

TEL: +31(0)40 800 3900

DACH: Delta Electronics (Netherlands) B.V.

Coesterweg 45, D-59494 Soest, Germany

Mail: Sales.IA.DACH@deltaww.com

TEL: +49(0)2921 987 0

France: Delta Electronics (France) S.A.

ZI du bois Challand 2,15 rue des Pyrénées,

Lisses, 91090 Evry Cedex, France

Mail: Sales.IA.FR@deltaww.com TEL: +33(0)1 69 77 82 60

Iberia: Delta Electronics Solutions (Spain) S.L.U

Ctra. De Villaverde a Vallecas, 265 1º Dcha Ed. Hormigueras – P.I. de Vallecas 28031 Madrid

TEL: +34(0)91 223 74 20

Carrer Llacuna 166, 08018 Barcelona, Spain

Mail: Sales.IA.Iberia@deltaww.com

Italy: Delta Electronics (Italy) S.r.l.

Via Meda 2–22060 Novedrate(CO) Piazza Grazioli 18 00186 Roma Italy

Mail: Sales.IA.Italy@deltaww.com

TEL: +39 039 8900365

Russia: Delta Energy System LLC

Vereyskaya Plaza II, office 112 Vereyskaya str. 17 121357 Moscow Russia

Mail: Sales.IA.RU@deltaww.com

TEL: +7 495 644 3240

Turkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey)

Şerifali Mah. Hendem Cad. Kule Sok. No:16-A

34775 Ümraniye – İstanbul

Mail: Sales.IA.Turkey@deltaww.com

TEL: + 90 216 499 9910

MEA: Eltek Dubai (Eltek MEA DMCC)

OFFICE 2504, 25th Floor, Saba Tower 1, Jumeirah Lakes Towers, Dubai, UAE

Mail: Sales.IA.MEA@deltaww.com

TEL: +971(0)4 2690148

Delta High Performance Compact Drive MH300-L Series (for Lift Application) User Manual

Copyright Notice

©Delta Electronics, Inc. All rights reserved.

All information contained in this user manual is the exclusive property of Delta Electronics Inc. (hereinafter referred to as "Delta") and is protected by copyright law and all other laws. Delta retains the exclusive rights of this user manual in accordance with the copyright law and all other laws. No parts in this manual may be reproduced, transmitted, transcribed, translated or used in any other ways without the prior consent of Delta.

Limitation of Liability

The contents of this user manual are only for the use of the AC motor drives manufactured by Delta. Except as defined in special mandatory laws, Delta provides this user manual "as is" and does not offer any kind of warranty through this user manual for using the product, either express or implied, including but not limited to the following: (i) this product will meet your needs or expectations; (ii) the information contained in the product is current and correct; (iii) the product does not infringe any rights of any other person. You shall bear your own risk to use this product.

In no event shall Delta, its subsidiaries, affiliates, managers, employees, agents, partners and licensors be liable for any direct, incidental, special, derivative or consequential damages (including but not limited to the damages for loss of profits, goodwill, use or other intangible losses) unless the laws contains special mandatory provisions to the contrary.

Delta reserves the right to make changes to the user manual and the products described in the user manual without prior notice and afterwards.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

- ☑ Disconnect AC input power before connecting any wiring to AC motor drive.
- ☑ Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Do NOT touch the internal circuits and components.
- ☑ There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Take anti-static measure before touching these components or the circuit boards.
- ☑ Never modify the internal components or wiring.
- ☑ Ground the AC motor drive by using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
- ☑ Do NOT install the AC motor drive in a location with high temperature, direct sunlight or inflammable materials or gases.

- ☑ Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
- After finishing the wiring of the AC motor drive, check if U/T1, V/T2, and W/T3 are short-circuited to ground with a multimeter. Do NOT power the drive if short circuits occur. Eliminate the short circuits before the drive is powered.
- ☑ The rated voltage of power system to install motor drives is listed below. Ensure that the installation voltage is in the correct range when installing a motor drive.
 - 1. For 230V models, the range is between 170–264V.
 - 2. For 460V models, the range is between 323-528V.
- ☑ Refer to the table below for short circuit rating:

Model (Power)	Short circuit rating
230V	5 kA
460V	5 kA

- ☑ Only qualified persons are allowed to install, wire and maintain the AC motor drives.
- ☑ Even if the three-phase AC motor is stopped, a charge with hazardous voltages may still remain in the main circuit terminals of the AC motor drive.
- ☑ The performance of electrolytic capacitor will degrade if it is not charged for a long time. It is recommended to charge the drive which is stored in no charge condition every 2 years for 3–4 hours to restore the performance of electrolytic capacitor in the motor drive. Note: When power up the motor drive, use adjustable AC power source (e.g. AC autotransformer) to charge the drive at 70%–80% of rated voltage for 30 minutes (do not run the motor drive). Then charge the drive at 100% of rated voltage for an hour (do not run the motor drive). By doing these, restore the performance of electrolytic capacitor before starting to run the motor drive. Do NOT run the motor drive at 100% rated voltage right away.
- ☑ Pay attention to the following precautions when transporting and installing this package (including wooden crate and wood stave)
 - 1. If you need to deworm the wooden crate, do NOT use fumigation or you will damage the drive. Any damage to the drive caused by using fumigation voids the warranty.
 - 2. Use other methods, such as heat treatment or any other non-fumigation treatment, to deworm the wood packaging material.
 - 3. If you use heat treatment to deworm, leave the packaging materials in an environment of over 56°C for a minimum of thirty minutes.
- ☑ Connect the drive to a three-phase three-wire or three-phase four-wire Wye system to comply with UL standards.

☑ If the motor drive generates leakage current over AC 3.5 mA or over DC 10 mA on a grounding conductor, compliance with local grounding regulations or IEC61800-5-1 standard is the minimum requirement for grounding.

The content of this manual may be revised without prior notice. Please consult our distributors or download the latest version at http://www.deltaww.com/iadownload_acmotordrive

Table of Contents

CHAPTER 1 INTRODUCTION	1-1
1-1 Nameplate Information	1-2
1-2 Model Name	1-3
1-3 Serial Number	1-3
1-4 Apply After Service by Mobile Device	1-4
1-5 RFI Jumper	1-5
CHAPTER 2 DIMENSIONS	2-1
Frame C	2-1
Frame D	2-2
Frame E	2-3
Frame F	2-4
Digital Keypad	2-5
CHAPTER 3 INSTALLATION	3-1
CHAPTER 4 WIRING	4-1
4-1 System Wiring Diagram	4-3
4-2 Wiring	
CHAPTER 5 MAIN CIRCUIT TERMINALS	5-1
5-1 Main Circuit Diagram	5-4
5-2 Main Circuit Terminals	5-5
Frame C	5-6
Frame D	5-7
Frame E	5-8
Frame F	5-9
CHPATER 6 CONTROL TERMINALS	6-1
CHAPTER 7 OPTIONAL ACCESSORIES	7-1
7-1 All Brake Resistors and Brake Units Used in AC Motor Drives	7-2
7-2 Non-fuse Circuit Breaker	7-4
7-3 Fuse Specification Chart	7-5
7-4 AC / DC Reactor	7-6
7-5 Zero Phase Reactors	7-14
7-6 EMC Filter	7-17
7-7 EMC Shield Plate	7-21
7-8 Capacitive Filter	7-24
7-9 NEMA Kit	7-26
7-10 Din-Rail Mounting	7-31

CHAPTER 8 OPTION CARDS	8-1
8-1 Option Card Installation	8-2
8-2 EMM-D3R2CA Three-point Digital Input / Relay Output Extension (Two-point N.C. Output Terminal)	8-5
8-3 CANopen Communication Cable / Digital Keypad RJ45 Extension Cable	8-6
CHAPTER 9 SPECIFICATIONS	9-1
9-1 230V Series	9-2
9-2 460V Series	9-3
9-3 Environment for Operation, Storage and Transportation	9-5
9-4 Derating for Ambient Temperature and Altitude	9-6
CHAPTER 10 DIGITAL KEYPAD	10-1
CHAPTER 11 SUMMARY OF PARAMETER SETTINGS	11-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS	12-00-1
00 Drive Parameters	12-00-1
01 Basic Parameters	
02 Digital Input / Output Parameters	12-02-1
03 Analog Input / Output Parameters	12-03-1
04 Multi-step Speed Parameters	12-04-1
05 Motor Parameters	12-05-1
06 Protection Parameters	
07 Special Parameters	12-07-1
09 Communication Parameters	12-09-1
11 Advanced Parameters	12-11-1
CHAPTER 13 WARNING CODES	13-1
CHAPTER 14 ERROR CODES	14-1
CHAPTER 15 AUTO-TUNING PROCESS	15-1
CHAPTER 16 CANopen OVERVIEW	16-1
16-1 CANopen Overview	16-3
16-2 Wiring for CANopen	16-6
16-3 CANopen Communication Interface Descriptions	16-7
16-4 CANopen Supporting Index	16-14
16-5 CANopen Fault Codes	16-17
16-6 CANopen LED Function	16-25
CHAPTER 17 PLC FUNCTION APPLICATIONS	
17-1 PLC Summary	
17-2 Notes Before Using a PLC	17-3
17-3 Turn on	17-5

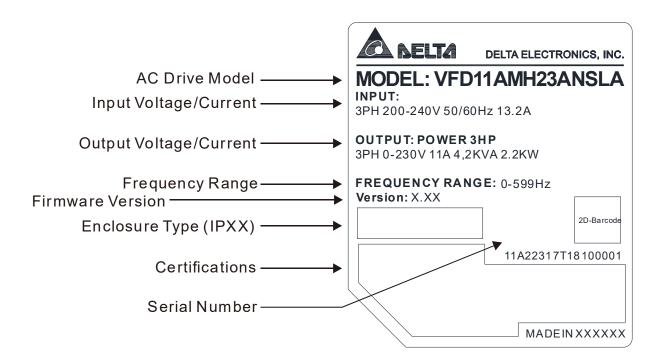
17-4 Basic Principles of PLC Ladder Diagrams	17-16
17-5 Various PLC Device Functions	17-27
17-6 Introduction to the Command Window	17-36
17-7 Error Display and Handling	17-99
17-8 Explanation of Each PLC Mode Control	17-100
17-9 Count Function Using Pulse Input	17-102
CHAPTER 18 SAFE TORQUE OFF FUNCTION	18-1
18-1 Basic Function Description	18-2
18-2 Safe Torque Off Terminal Function Description	18-3
18-3 Wiring Diagram	18-4
18-4 Failure Rate of the Drive Safety Function	18-5
18-5 Reset the Parameter Settings	18-5
18-6 Timing Diagram Description	18-6
18-7 Error Code and Troubleshooting Instructions	18-8
18-8 Test and Fault Confirmation	18-10
APPENDIX A. Revision History	A-1

Issued Edition: 01

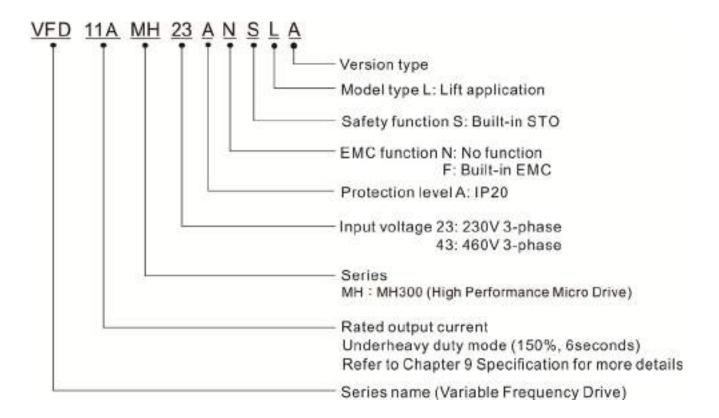
Firmware Version: V1.02

(Refer to Parameter 00-06 on the product to get the firmware version.)
Issued Date: May, 2021

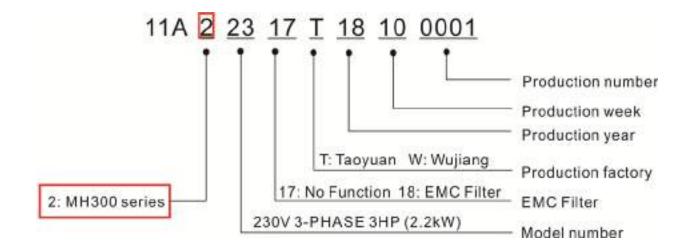
Chapter 1 Introduction


- 1-1 Nameplate Information
- 1-2 Model Name
- 1-3 Serial Number
- 1-4 Apply After Service by Mobile Device
- 1-5 RFI Jumper

Chapter 1 Introduction | MH300-L

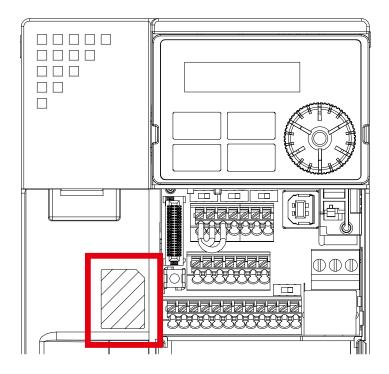

After receiving the AC motor drive, check for the following. Inspect the unit after unpacking to ensure that it was not damaged during shipment. Make sure that the part number printed on the package matches the part number indicated on the nameplate.

- 1. Make sure that the mains voltage is within the range indicated on the nameplate. Install the AC motor drive according to the instructions in this manual.
- 2. Before applying power, make sure that all devices, including mains power, motor, control board, and digital keypad are connected correctly.
- 3. When wiring the AC motor drive, make sure that the wiring for the input terminals "R/L1, S/L2, T/L3", and the output terminals "U/T1, V/T2, W/T3" are correct to prevent damage to the drive.
- 4. When power is applied, use the digital keypad (KPMH-LC01) to select the language and set parameters. When executing a trial run, begin with a low speed and then gradually increase the speed to the desired speed.

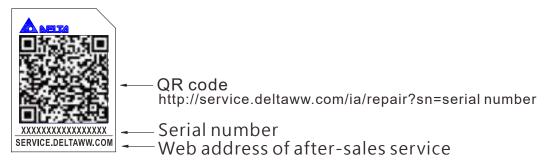

1-1 Nameplate Information

1-2 Model Name

1-3 Serial Number



1-4 Apply After Service by Mobile Device


1-4-1 Location of Service Link Label

Frame C-F

Service link label (Service Label) will be pasted on the area as below drawing shown.

1-4-2 Service Link Label

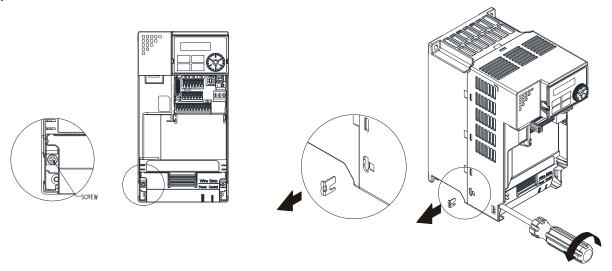
Scan QR Code to apply

- 1. Find out the QR code sticker (as above shown).
- 2. Use a Smartphone to run a QR Code reader APP.
- 3. Point your camera to the QR Code. Hold your camera steady so that the QR code comes into focus.
- 4. Access the Delta After Service website.
- 5. Fill your information into the column marked with an orange star.
- 6. Enter the CAPTCHA and click "Submit" to complete the application.

Cannot find QR Code?

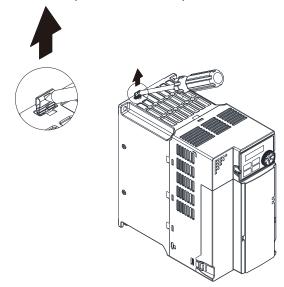
- 1. Open a web browser on your computer or smart phone.
- 2. Key in https://service.deltaww.com/ia/repair in address bar and press enter.
- 3. Fill your information into the columns marked with an orange star.
- 4. Enter the CAPTCHA and click "Submit" to complete the application.

1-5 RFI Jumper


The drive contains Varistors/MOVs that are connected from phase to phase and from phase to ground to protect the drive against mains surges or voltage spikes.

Because the Varistors/MOVs from phase to ground are connected to ground with the RFI jumper, removing the RFI jumper disables the protection.

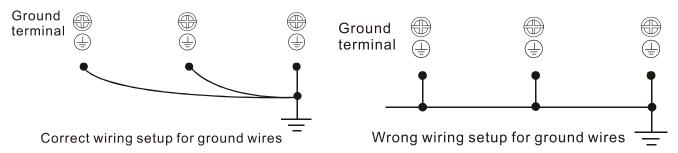
- (1) In models with a built-in EMC filter, the RFI jumper connects the filter capacitors to ground to form a return path for high frequency noise in order to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the built-in EMC filter.
- (2) Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filters can trigger the RCD. Removing the RFI jumper can help, but the EMC performance of each drive is no longer guaranteed.


Frame C–F Screw Torque: 4–6 kg-cm / [3.5–5.2 lb-in.] / [0.39–0.59 Nm]

Loosen the screw and remove the RFI jumper (as shown below). Fasten the screw again after you remove the RFI jumper.

Frame C-F (model with built-in EMC filter)

Remove the RFI jumper with a screwdriver (as shown below).



Isolating main power from ground:

When the power distribution system of the drive is a floating ground system (IT Systems) or an asymmetric ground system (Corner Grounded TN Systems), you must remove the RFI jumper. Removing the RFI jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

Important points regarding ground connection

- ☑ To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, you must properly ground the drive during installation.
- ☑ The diameter of the cables must comply with the local safety regulations.
- ☑ The shield of shielded cables must be connected to the ground of the drive to meet safety regulations.
- ☑ The shield of shielded power cables can only be used as the ground for equipment when the aforementioned points are met.
- When installing more drives, do not connect the grounds of the drives in series but connect each drive to ground. The following pictures show the correct and wrong ways to connect the grounds.

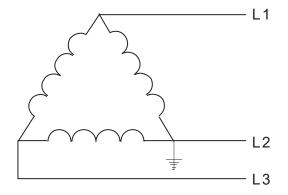
Pay particular attention to the following points:

- ☑ Do not remove the RFI jumper while the power is on.
- ☑ Removing the RFI jumper also disconnects the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
- ☑ Do not remove the RFI jumper if the mains power is a symmetrical grounded power system in order to maintain the efficiency for EMC circuit.
- ☑ Do not remove the RFI jumper while conducting high voltage tests. When conducting a high voltage test to the entire facility, you must disconnect the mains power and the motor if the leakage current is too high.

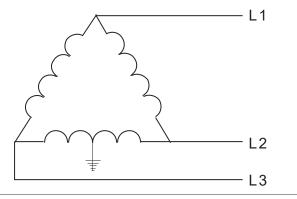
Floating Ground System (IT Systems)

A floating ground system is also called an IT system, an ungrounded system, or a high impedance/resistance (greater than 30 Ω) grounded system.

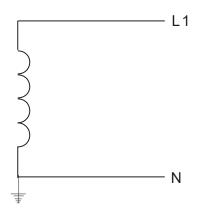
- ☑ Disconnect the RFI jumper.
- ☑ Check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits.
- ☑ In some situations, the transformer and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase suppression.
- ☑ Do not install an external EMC filter. The EMC filter is connected to ground through the filter capacitors, thus connecting the power input to ground. This is very dangerous and can easily damage the drive.

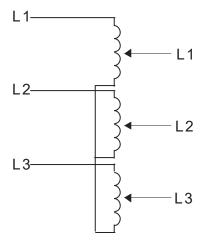

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not remove the RFI jumper while there is power to the input terminal of the drive.

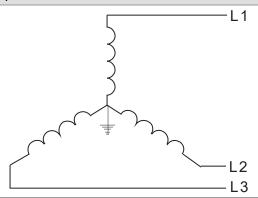

In the following four situations, you must remove the RFI jumper. This is to prevent the system from grounding through the RFI and filter capacitors and damaging the drive.

You must remove the RFI jumper


1. Grounding at a corner in a triangle configuration


2. Grounding at a midpoint in a polygonal configuration

3. Grounding at one end in a single-phase configuration

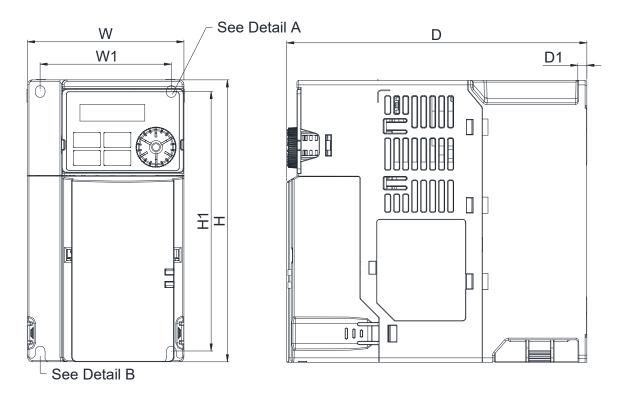


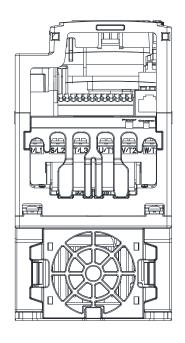
4. No stable neutral grounding in a three-phase autotransformer configuration

You can use the RFI jumper

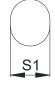
Internal grounding through RFI capacitors, which reduces electromagnetic radiation. In a symmetrically grounding power system with higher EMC requirements, you can install an EMC filter. As a reference, the diagram on the right is a symmetrical grounding power system.

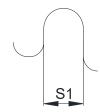
[This page intentionally left blank]

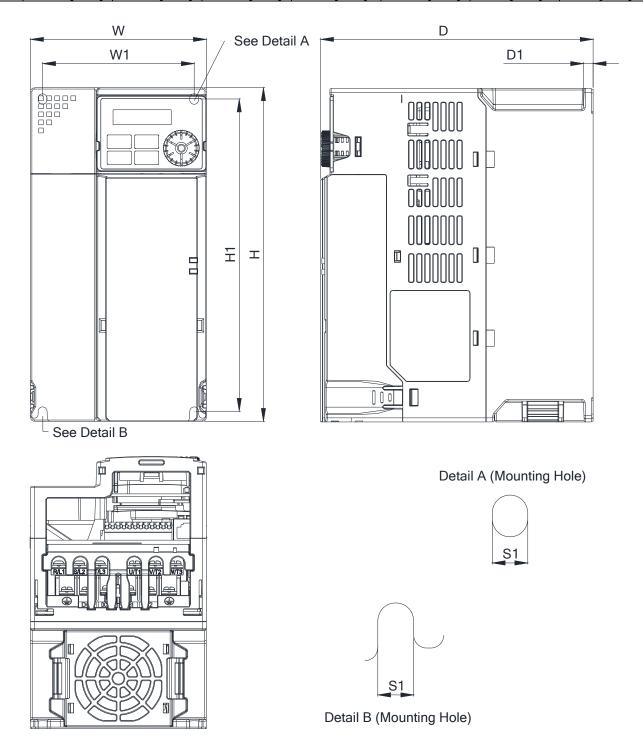

Chapter 2 Dimension


Frame C

C1: VFD11AMH23ANSLA; VFD17AMH23ANSLA; VFD9A0MH43ANSLA;


C2: VFD9A0MH43AFSLA;


Frame	W	Н	D	W1	H1	D1	S1
C1	87.0 [3.43]	157.0 [6.18]	167.0 [6.57]	73.0 [2.87]	144.5 [5.69]	5.0 [0.20]	5.5 [0.22]
C2	87.0 [3.43]	157.0 [6.18]	194.0 [7.64]	73.0 [2.87]	144.5 [5.69]	5.0 [0.20]	5.5 [0.22]

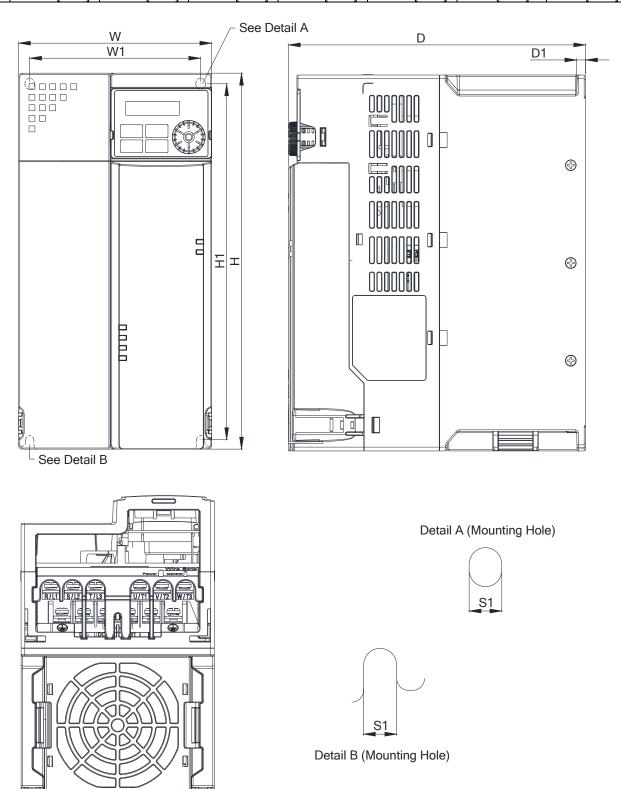

Detail B (Mounting Hole)

Frame D

D1: VFD25AMH23ANSLA; VFD13AMH43ANSLA; VFD17AMH43ANSLA;

D2: VFD13AMH43AFSLA; VFD17AMH43AFSLA;

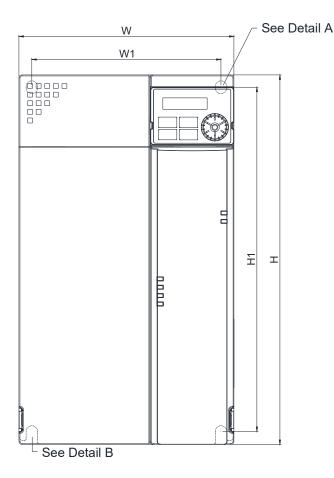
Frame	W	Н	D	W1	H1	D1	S1
D1	109.0 [4.29]	207.0 [8.15]	169.0 [6.65]	94.0 [3.70]	193.8 [7.63]	6.0 [0.24]	5.5 [0.22]
D2	109.0 [4.29]	207.0 [8.15]	202.0 [7.95]	94.0 [3.70]	193.8 [7.63]	6.0 [0.24]	5.5 [0.22]

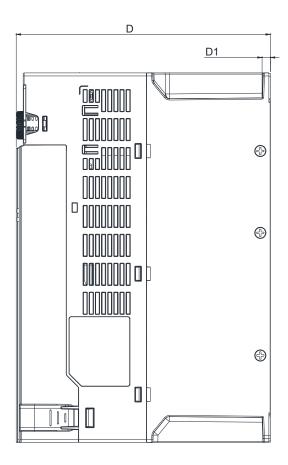


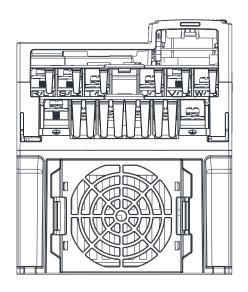
Frame E

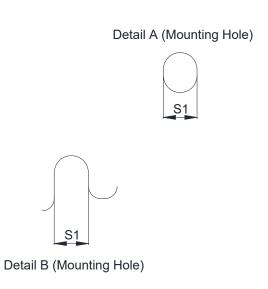
E1: VFD33AMH23ANSLA; VFD49AMH23ANSLA; VFD25AMH43ANSLA; VFD32AMH43ANSLA;

E2: VFD25AMH43AFSLA; VFD32AMH43AFSLA;

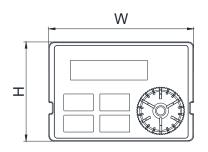

							• • • • • • • • • • • • • • • • • • • •
Frame	W	Н	D	W1	H1	D1	S1
E1	130.0 [5.12]	250.0 [9.84]	200.0 [7.87]	115.0 [4.53]	236.8 [9.32]	6.0 [0.24]	5.5 [0.22]
E2	130.0 [5.12]	250.0 [9.84]	234.0 [9.21]	115.0 [4.53]	236.8 [9.32]	6.0 [0.24]	5.5 [0.22]

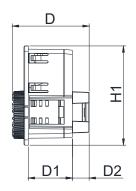


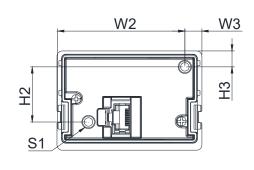

Frame F

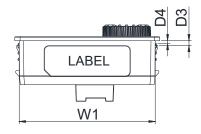

F1: VFD65AMH23ANSLA

Frame	W	Н	D	W1	H1	D1	S1
F1	175.0 [6.89]	300.0 [11.81]	207.0 [8.15]	154.0 [6.06]	279.5 [11.00]	6.5 [0.26]	8.4 [0.33]

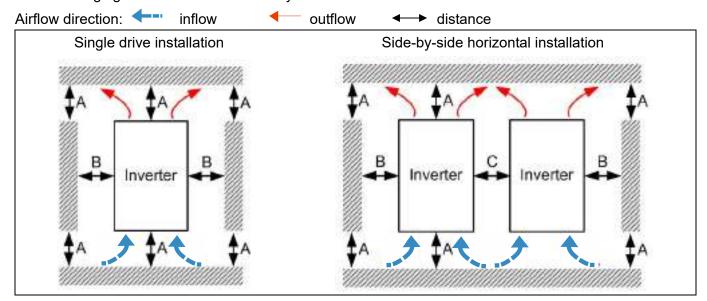



Digital Keypad


KPMH-LC01


W	W1	W2	W3	Н	H1	H2
68.0 [2.67]	63.8 [2.51]	45.2 [1.78]	8.0 [0.31]	46.8 [1.84]	42.0 [1.65]	26.0 [1.02]

H3	D	D1	D2	D3	D4	S1
7.5 [0.30]	36.1 [1.41]	22.7 [0.89]	7.9 [0.30]	2.2 [0.09]	1.3 [0.05]	M3*0.5(2X)


[This page intentionally left blank]

Chapter 3 Installation

Minimum Mounting Clearance and Installation

- Prevent fiber particles, scraps of paper, shredded wood, sawdust, metal particles, etc. from adhering to the heat sink.
- Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separator between the AC motor drives to prevent mutual heating and to prevent the risk of accidental fire.
- ☑ Install the AC motor drive in Pollution Degree 2 environments only: normally only non-conductive pollution occurs and temporary conductivity caused by condensation is expected.
- Mount the drive in an IP54 cabinet in order to maintain the Pollution Degree 2 or in a pollution-controlled environment.

The following figures are for reference only.

Minimum mounting clearance


Installation method	A (mm)	D (mm)	C (mm)	Ambient temperature (°C)		
installation method	A (mm)	B (mm)	C (mm)	Max. (Without derating)	Max. (Derating)	
Single drive installation	50	30	-	50	60	
Side-by-side horizontal installation	50	30	30	50	60	
Zero stack installation	50	30	0	40	50	

The minimum mounting clearances A–C in the table above apply to AC motor drives installation. Failing to follow the minimum mounting clearances may cause the fan to malfunction and cause heat dissipation problems.

Chapter 3 Installation | MH300-L

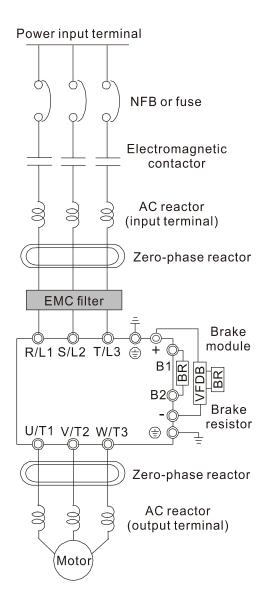
	Airflow rate for cooling			Power Dissipation		
Frame	Model No.	Flow Rate (Unit: cfm)	Flow Rate (Unit: m³/hr)	Loss External (Heat sink, unit: W)	Internal (Unit: W)	Total (Unit: W)
	VFD11AMH23ANSLA	16.0	27.2	76.0	30.7	106.7
С	VFD17AMH23ANSLA			108.2	40.1	148.3
	VFD9A0MH43ANSLA VFD9A0MH43AFSLA			93.1	42	135.1
	VFD25AMH23ANSLA	23.4	39.7	192.8	53.3	246.1
D	VFD13AMH43ANSLA VFD13AMH43AFSLA			132.8	39.5	172.3
	VFD17AMH43ANSLA VFD17AMH43AFSLA			164.7	55.8	220.5
	VFD33AMH23ANSLA	53.7	91.2	244.5	79.6	324.1
	VFD49AMH23ANSLA			374.2	86.2	460.4
Е	VFD25AMH43ANSLA VFD25AMH43AFSLA			234.5	69.8	304.3
	VFD32AMH43ANSLA VFD32AMH43AFSLA			319.8	74.3	394.1
F	VFD65AMH23ANSLA	67.9	115.2	492.0	198.2	690.2

Chapter 4 Wiring

- 4-1 System Wiring Diagram
- 4-2 Wiring

Chapter 4 Wiring | MH300-L

After removing the front cover, verify that the power and control terminals are clearly visible. Read the following precautions to avoid wiring mistakes.



- ☑ It is crucial to cut off the AC motor drive power before doing any wiring. A charge with hazardous voltages may still remain in the DC BUS capacitors even after the power has been turned off for a short time. Measure the remaining voltage with a DC voltmeter on +1/DC+ and DC- before doing any wiring. For your safety, do not start wiring before the voltage drops to a safe level (less than 25 V_{DC}). Installing wiring with a residual voltage may cause injuries, sparks and short-circuits.
- Only qualified personnel familiar with AC motor drives are allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shocks.
- ☑ The terminals R/L1, S/L2, and T/L3 are for mains power input. If mains power is incorrectly connected to other terminals, it may result in damage to the equipment. The voltage and current must be in the range indicated on the nameplate (see Section 1-1).
- All units must be grounded directly to a common ground terminal to prevent electrical shocks or damage from lightning.
- ☑ Tighten the screw of the main circuit terminals to prevent sparks due to loosening of the terminals resulted from vibration.

- ☑ When wiring, choose wires that comply with local regulations for your safety.
- ☑ Check the following items after you finish the wiring:
 - 1. Are all connections correct?
 - 2. Are there any loose wires?
 - 3. Are there any short-circuits between the terminals or to ground?

4-1 System Wiring Diagram

Power input terminal	Please refer to Chapter 9 Specification Table in the user manual for detail.
NFB or fuse	There may be a large inrush current during power on. Refer to Section 7-2 NFB to select a suitable NFB or Section 7-3 Fuse Specification Chart.
Electromagnetic contactor	Switching the power ON/OFF before the magnetic contactor more than one per hour can damage the drive.
AC reactor (input terminal)	When the mains power capacity is > 500kVA or when the drive is preceded by a capacitor bank, the instantaneous peaks voltage and current may destroy the drive. In that case it is recommended to install an AC input reactor that also improves the power factor and harmonics. The cable between reactor and drive should be < 10m. Please refer to Section 7-4.
Zero-phase reactor	Used to reduce radiated emission, especially in environments with audio devices, and reduce input and output side interference. The effective range is AM band to 10MHz. Please refer to Section 7-5.
EMC filter	Can be used to reduce electromagnetic interference. Please refer to Section 7-6.
Brake module & Brake resistor (BR)	Used to shorten the deceleration time of the motor. Please refer to Section 7-1.
AC reactor (output terminal)	The wiring length of the motor affects switching current peaks. It is recommended to install an AC output reactor when the motor wiring length exceeds the value listed in Section 7-4.

4-2 Wiring

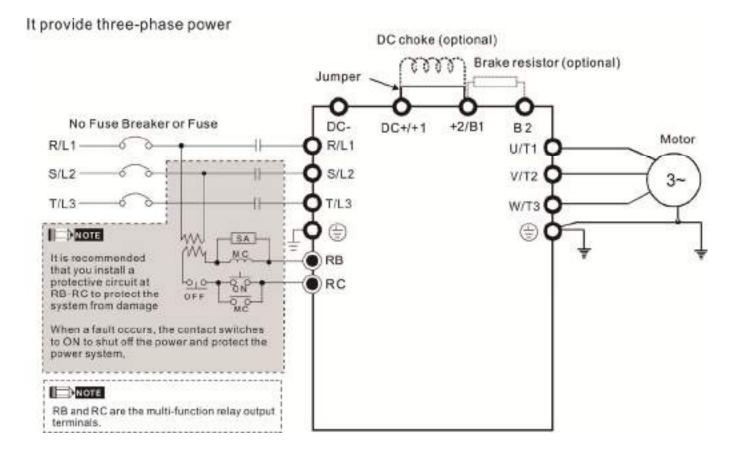


Figure 1

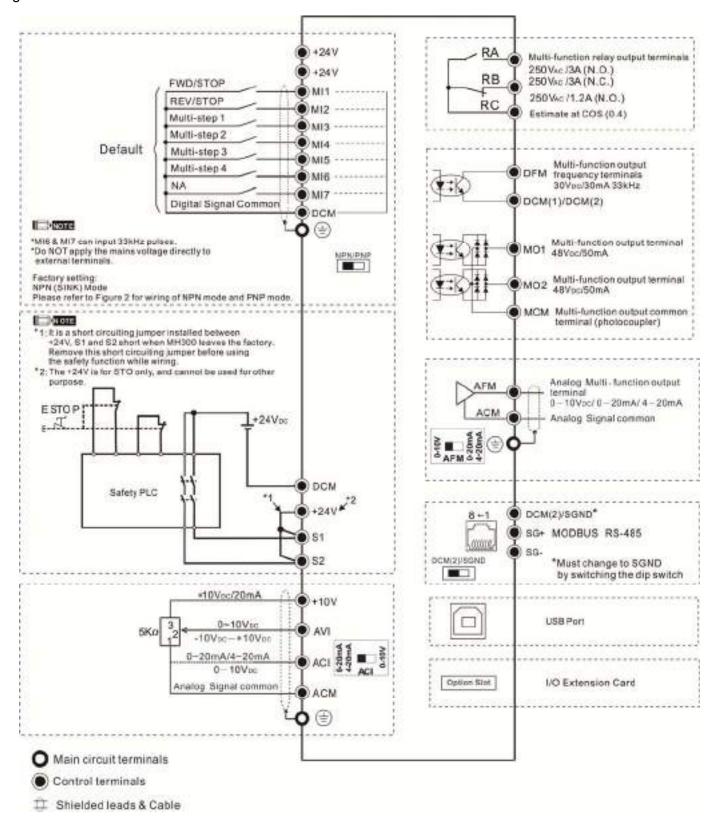


Figure 2 SINK (NPN) / SOURCE (PNP) Mode

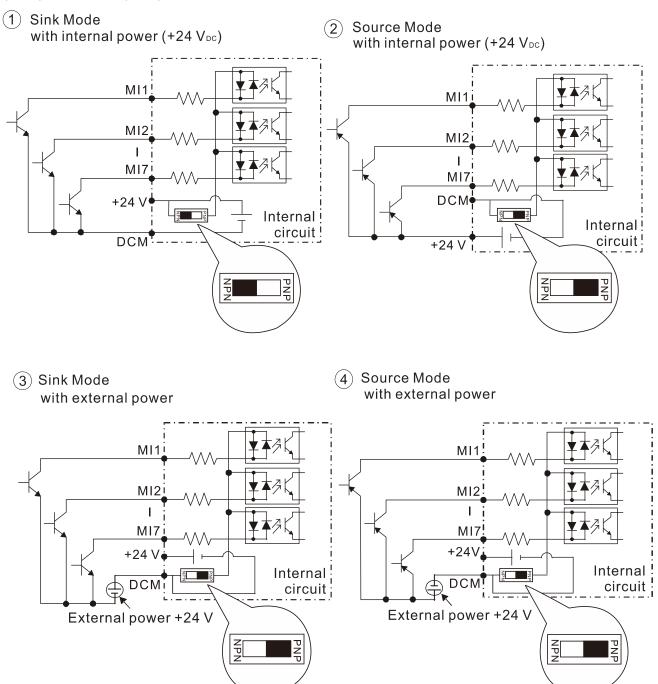
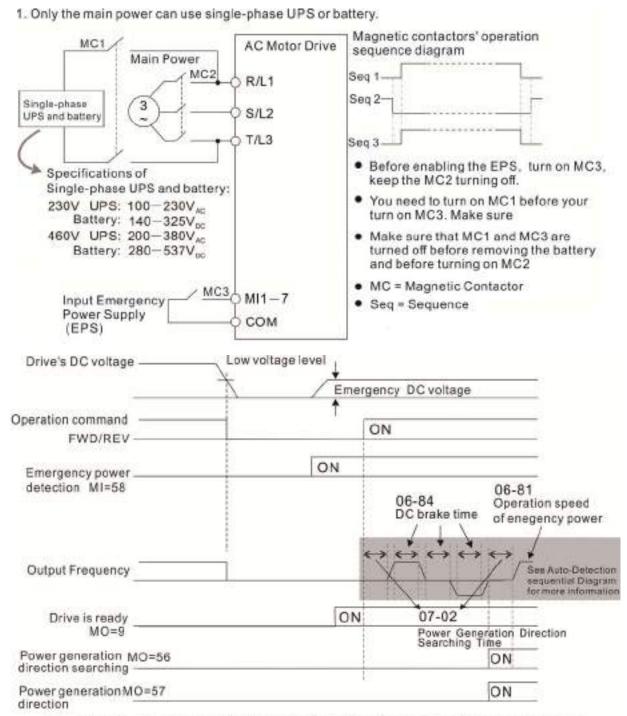



Figure 3
Applicable for frame C, D & E:

Sequential Diagram of Elevator's Emergency Power Supply and Power Generating Direction

Notes on Emergency Power Supply (EPS):

- 1. When the EPS is enabled (MI=58), the cooling fan stop running to prevent voltage decreasing of EPS.
- 2. When the EPS is enabled, the parameter setting cannot be saved. The system will lose its parameter setting after it is repower on.
- 3. When the EPS is enabled, the operating speed follows the setting of Pr.06-81.
- 4. When the EPS is enabled, low voltage protection and phase lose protection are disabled.
- 5. When the EPS is enabled, the DC-Bus voltage follows the setting of Pr.06-80.

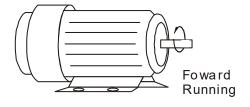
Chapter 4 Wiring | MH300-L

[This page intentionally left blank]

Chapter 5 Main Circuit Terminals

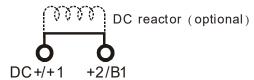
- 5-1 Main Circuit Diagram
- 5-2 Main Circuit Terminals

- ☑ Securely fasten the main circuit terminal screws to prevent sparking caused by loose screws due to vibration.
- When needed, only use an inductive filter at the motor output terminals U/T1, V/T2, W/T3 of the AC motor drive. DO NOT use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
- ☑ DO NOT connect brake resistors directly to +1/DC+ to DC-, +2/B1 to DC- to prevent damage to the drive.
- ☑ Ensure proper insulation of the main circuit wiring in accordance with the relevant safety regulations.

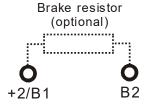


Main power terminals

- R/L1, S/L2 and T/L3 have no phase-sequence requirement; they can be connected in any sequence.
- Add a magnetic contactor (MC) at the power input to quickly cut off power and reduce malfunction when activating the AC motor drive protection function. Both ends of the MC should have an R-C surge absorber.
- ☑ Ensure that voltages and currents are within specification.
- ☑ When using a general GFCI (Ground Fault Circuit Interrupter), select a sensitivity greater than or equal to 200 mA and greater than or equal to 0.1 sec. operation time to avoid nuisance tripping.
- ☑ Use conduits or shielded cables for the power wiring, and ground both ends of the conduit or shielded cables.
- ☑ DO NOT start or stop the drive by turning the power ON or OFF. Start and stop the drive with the RUN/STOP command. If you still need to run or stop the drive by turning the power ON or OFF, it is strongly recommended that you do so no more often than ONCE per hour.
- ☑ To comply with UL standards, connect the drive to a three-phase three-wire or three-phase four-wire Wye system type of mains power system.

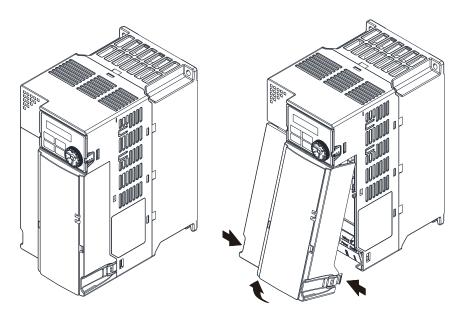

Output terminals for main circuit

- ☑ Use a well-insulated motor that is suitable for operation with an inverter.
- ☑ When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3 respectively, the motor rotates counterclockwise (as viewed from the shaft end of the motor) when it receives a forward operation command. To permanently reverse the direction of rotation, exchange any two motor leads.



Terminals for connecting DC reactor, external brake resistor and DC circuit

- ☑ These are the terminals for connecting the DC reactor to improve the power factor and harmonics. At delivery they are shorted by a jumper. Remove the jumper before connecting the DC reactor.
- ☑ You must tightly fasten the jumper when it does not connect the DC reactor, use DC+/+1, +2/B1 to execute common DC BUS, or connect with a brake resistor; otherwise the drive might lose power or break the terminals.

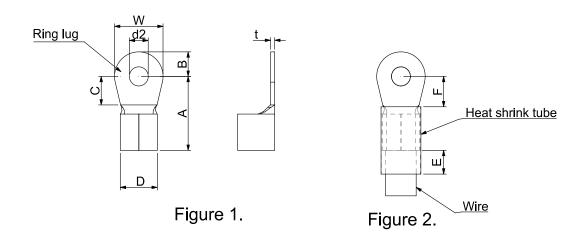

☑ Connect a brake resistor in applications with frequent deceleration, short deceleration time, too low braking torque, or increased braking torque.

- ☑ Connect the external brake resistor to the terminals [+2/B1], [B2] on AC motor drives.
- ☑ DO NOT short-circuit or connect a brake resistor directly to DC+/+1 and DC-, +2/B1 to DC-; otherwise the drive will be damaged.
- ☑ Connect DC+ and DC- in common DC BUS applications. Refer to Section 5-2 (Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.

Remove the front cover

- Remove the front cover before connecting the main circuit terminals and control circuit terminals. Remove the cover according to the figure below.
- The figure below shows the Frame D model for example. Removing the cover on the other frame sizes is similar.

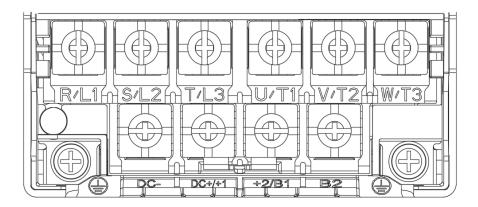
Press the clip on both sides, and take out by rotating.


5-1 Main Circuit Diagram

Terminals	Descriptions		
R/L1, S/L2, T/L3	1, S/L2, T/L3 Mains input terminals three-phase		
U/T1, V/T2, W/T3	Motor output terminals for connecting three-phase IM and PM motors		
+1, +2	Connections for DC reactor to improve the power factor and harmonics. Remove the jumper when using a DC reactor.		
DC+, DC-	Connections for brake unit (VFDB series) Common DC BUS		
B1, B2	Connections for brake resistor (optional)		
	Ground connection, comply with local regulations.		

5-2 Main Circuit Terminals

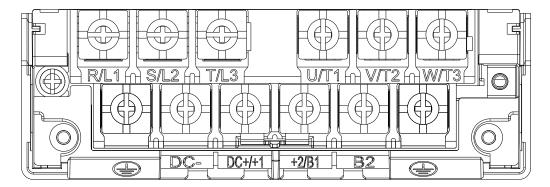
- The following additional terminals are needed when wiring. The additional terminal dimension should comply with Figure 1 below.
- After crimping the wire to the ring lug (must be UL approved), UL and CSA approved R/C (YDPU2), install
 heat shrink tubing rated at a minimum of 600 V_{AC} insulation over the live part. Refer to Figure 2 below.


Dimensions of Ring Lug

The part # of the ring terminals (produced by K.S. Terminals) in the table below are for reference only. You can buy other ring terminals of your choice to match with different frame sizes.

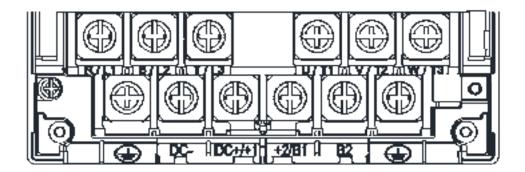
Frame	AWG	Vendor P/N	A (MAX)	B (MAX)	C (MIN)	D (MAX)	d2 (MIN)	E (MIN)	F (MIN)	W (MAX)	t (MAX)
C 10 8	12	RNBS5-4									
	10	RNBS5-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	10.5	1.2
	8	RNBS8-4									
D	10	RNBS5-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	10.5	1.2
	8	RNBS8-4	17.0	5.0	0.1	1.2	4.3	13.0	5.5	10.5	1.2
_	6	RNB14-5	07.4	6.1	10 F	44.5	٠, ٥	40.0	0.5	40.0	4.7
E	4	RNBS22-5	27.1	6.1	10.5	11.5	5.3	13.0	6.5	12.6	1.7
F	2	RNBS38-6	35.0	9.0	13.3	14.0	6.2	13.0	10.0	19.5	1.8

Unit: mm


Frame C

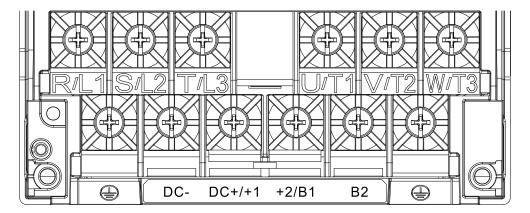
- If you install at Ta 50°C above environment, please select copper wire which have voltage rating 600V and temperature resistant 75°C or 90°C or above.
- If you install at Ta 50°C environment, please select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant 75°C which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	R/L1, S	n circuit termii 6/L2, T/L3, U/T1 DC-, DC+/+1, +	, V/T2,	terminals ⊕				
	Max. Wire	Min. Wire	Torque	Max. Wire	Min. Wire	Torque (1400/)		
	Gauge	Gauge	(±10%)	Gauge	Gauge	Torque (±10%)		
VFD11AMH23ANSLA		6 mm ²		6 mm ²	6 mm ²			
VFD HAWIHZSANSLA		[10 AWG]	M4	[10 AWG]	[10 AWG]	M4		
VFD17AMH23ANSLA	10 mm ²	10 mm ²	20 Kg-cm	10 mm ²	10 mm ²	20 Kg-cm		
VFD17AIVIN23AIN3LA	[8 AWG]	[8 AWG]	[17.4 lb-in.]	[8 AWG]	[8 AWG]	[17.4 lb-in.]		
VFD9A0MH43ANSLA		4 mm ²	[1.96 Nm]	4 mm ²	4 mm ²	[1.96 Nm]		
VFD9A0MH43AFSLA		[12 AWG]		[12 AWG]	[12 AWG]			


Frame D

- If you install at Ta 50°C above environment, please select copper wire which have voltage rating 600V and temperature resistant 75°C or 90°C or above.
- If you install at Ta 50°C environment, please select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- Model VFD25AMH23ANSLA install at Ta 45°C above environment, please select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant 75°C which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.

		ain circuit terr		terminals ⊕			
Models		, DC-, DC+/+1					
	Max. Wire	Min. Wire	Torque (1400/)	Max. Wire	Min. Wire	Torque	
	Gauge	Gauge	Torque (±10%)	Gauge	Gauge	(±10%)	
VFD25AMH23ANSLA		10 mm ²		10 mm ²	10 mm ²		
VFDZ5AMINZ3AMSLA		[8 AWG]	M4	[8 AWG]	[8 AWG]	M4	
VFD13AMH43ANSLA	10 mm ²	6 mm ²	20 Kg-cm	6 mm ²	6 mm ²	20 Kg-cm	
VFD13AMH43AFSLA	[8 AWG]	[10 AWG]	[17.4 lb-in.]	[10 AWG]	[10 AWG]	[17.4 lb-in.]	
VFD17AMH43ANSLA		10 mm ²	[1.96 Nm]	10 mm ²	10 mm ²	[1.96 Nm]	
VFD17AMH43AFSLA		[8 AWG]		[8 AWG]	[8 AWG]		


Frame E

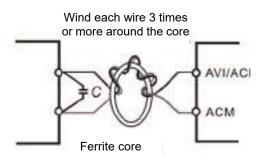
- If you install at Ta 50°C above environment, please select copper wire which have voltage rating 600V and temperature resistant 75°C or 90°C or above.
- If you install at Ta 50°C environment, please select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- Model VFD33AMH23ANSLA install at Ta 40°C environment, please select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- Model VFD49AMH23ANSLA install at Ta 35°C environment, please select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- Model VFD32AMH43ANSLA and VFD32AMH43AFSLA install at Ta 45°C environment, please select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- For UL installation compliant, you have to use copper wires when installing. The wire gauge is based on temperature resistant 75°C which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.
- ** These drives must be wired with the specified ring terminal dimensions.

	Ma	in circuit term	inals		terminals			
	R/L1, \$	S/L2, T/L3, U/T	1, V/T2,					
Models	W/T3, ,	DC-, DC+/+1,	+2/B1, B2					
	Max. Wire	Min. Wire	Torque	Max. Wire	Min. Wire	Torque		
	Gauge	Gauge	(±10%)	Gauge	Gauge	(±10%)		
VFD33AMH23ANSLA	16 mm ²	16 mm ²		16 mm ²				
	[6 AWG]	[6 AWG]		[6 AWG]				
VFD49AMH23ANSLA**	25 mm ²	25 mm ²	M5	25 mm ²		M5		
	[4 AWG]	[4 AWG]	25 Kg-cm	[4 AWG]	16 mm ²	25 Kg-cm		
VFD25AMH43ANSLA			[21.7 lb-in.]		[6 AWG]	[21.7 lb-in.]		
VFD25AMH43AFSLA	16 mm ²	16 mm ²	[2.45 Nm]	16 mm ²		[2.45 Nm]		
VFD32AMH43ANSLA	[6 AWG]	[6 AWG]		[6 AWG]				
VFD32AMH43AFSLA								

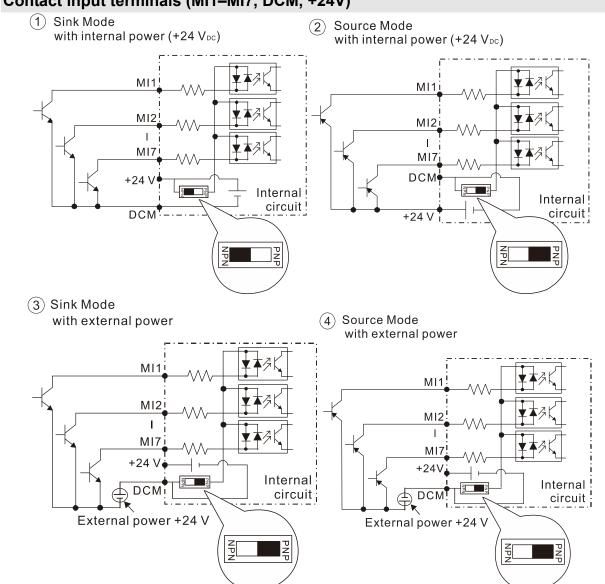
Frame F

- Model VFD65AMH23ANSLA install at Ta 35°C above environment, select copper wire which have voltage rating 600V and temperature resistant 90°C or 90°C.
- For UL installation compliant, you have to use copper wires when installation.
- The wire gauge is based on temperature resistant 75°C which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	R/L1, S	n circuit termi 6/L2, T/L3, U/T ² DC-, DC+/+1, +	1, V/T2,	terminals ⊕			
	Max. Wire	Min. Wire	Torque	Max. Wire	Min. Wire	Torque (±10%)	
	Gauge	Gauge	(±10%)	Gauge	Gauge		
			M6			M6	
VFD65AMH23ANSLA	35 mm ²	35 mm ²	40 Kg-cm	35 mm ²	16 mm ²	40 Kg-cm	
VFD05ANIHZ3ANSLA	[2 AWG]	[2 AWG]	[34.7 lb-in.]	[2 AWG]	[6 AWG]	[34.7 lb-in.]	
			[3.92 Nm]			[3.92 Nm]	

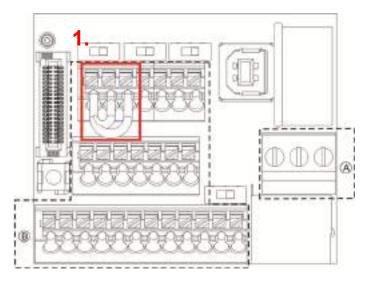

[This page intentionally left blank]

Chapter 6 Control Terminals



Analog input terminals (AVI, ACI, ACM)

- Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (less than 20 m) with proper grounding. If the noise is inductive, connecting the shield to the ACM terminal can reduce interference.
- ☑ Use twisted-pair wire for weak analog signals.
- ☑ If the analog input signals are affected by noise from the drive, connect a capacitor and ferrite core as shown in the following diagram.

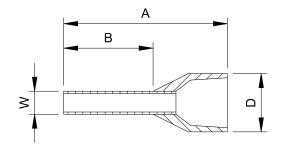

Contact input terminals (MI1-MI7, DCM, +24V)

☑ When the photo coupler is using the internal power supply, the switch connection for Sink and Source modes are as shown in the picture above: MI-DCM: Sink mode, MI-+24 V: Source mode.

Transistor output terminals (MO1, MO2, MCM)

Make sure to connect the digital outputs to the correct polarity. See the wiring diagram when connecting a relay to the digital output, connect a surge absorber across the coil, and check the polarity.

Distribution Diagram of Control Terminal


Location Map of Control Terminal

Wiring precautions:

- The default condition is +24V/S1/S2 shorted by jumper (as shown in figure 1. on upper left side), please refer to Chapter 4 WIRING for more details.
- Power source of the safety function: +24V (as shown in figure 2. on upper left side), STO use only.
- Relay terminals are on a screw clamp terminal block (See section A on the upper left side).
 - 1. Tighten the wiring with slotted screwdriver, which is 3.5 mm (wide) x 0.6mm (thick)
 - 2. The ideal length of stripped wire at the connection side is 6-7mm.
 - 3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.
- Control terminals are on a spring clamp terminal block (See section B on the upper left side).
 - 1. Tighten the wiring with slotted screwdriver, which is 2.5mm (wide) x 0.4mm (thick)
 - 2. The ideal length of stripped wire at the connection side is 9mm.
 - 3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

Control Terminals Wiring Specification

Function name	Control Terminals	Stripping	Max.Wire	Min. Wire	Torque	
runction name	Wiring Specification	Length(mm)	Size	Size	ioique	
Repay	Solid		1.5mm ²	0.2mm ²	5 Kg-cm	
Terminals	Strand	6-7	[16AWG]	[24AWG]	[4.3 lb-in.]	
Terrilliais	Strand		[TOAVVG]	[24AVVG]	[0.49 Nm]	
	Solid	9	0.75mm ²			
Control	Strand	9	[18AWG]	0.25mm ²		
Terminals	Stranded with ferrules	9	0.5mm ²	[24AWG]		
	with plastic sleeve	9	[20AWG]			

Unit: mm

Models and S	Models and Sizes of Non-Insulated Terminals									
AWG	VENDOR	VENDOR VENDOR P/N A(MAX) B(MAX) D(MAX) W(MA								
0.25mm ² [24AWG]	PHOENIX CONTACT	AI 0,25-8 YE	12.5	8	2.6	1.1				
0.34mm ² [22AWG]	PHOENIX CONTACT	AI 0,34- 8 TQ	12.5	8	3.3	1.3				
0.5mm ² [20AWG]	PHOENIX CONTACT	AI 0,5 - 8 WH	14	8	3.5	1.4				

Models and Specifications of Crimping Tools: CRIMPFOX 10S - 1212045, Manufacturer: PHOENIX CONTACT

DNT13-0101, Manufacturer: DINKLE

Terminals	Terminal Function	Description					
+24V	Digital control signal common (Source)	+24V ±10% 100 mA					
		Refer to Pr.02-01–Pr.02-07 to program the multi-function inputs MI1–MI7. Source Mode ON: the activation current is $3.3 \text{ mA} \ge 11 \text{ V}_{DC}$ OFF: cut-off voltage $\le 5 \text{ V}_{DC}$					
MI1 — MI7	Multi-function input 1–7	Sink Mode ON: the activation current is 3.3 mA ≤ 13 V _{DC} OFF: cut-off voltage ≥ 19 V _{DC} ■ When Pr.02-00 = 0, MI1 and MI2 can be programmed. ■ When Pr.02-00 ≠ 0, the function of MI1 and MI2 is acc. to Pr.02-00 setting. ■ When Pr.02-07 = 0, MI7 is pulse input with max. frequency 33kHz.					
DFM	Digital frequency meter OFM OCM(1)/ DCM(2)	DFM is a pulse-signal output; Duty-cycle: 50% Min. load impedance R _L : 1kΩ/100pf Max. current: 30mA Max. capacitive load: 100pF					
DCM (1)	Digital frequency signal common (Sink)	Max. voltage: $30 \text{ V}_{DC} \pm 1 \text{ %}$ (when 30 V_{DC} /30 mA /R _L = 100 pf) Max. output frequency: 33kHz					

Terminals	Terminal Function	Description				
DCM (2)	Digital frequency signal common (Sink), it can switch to SGND	Internal current limiting resistor R: $\geq 1 \text{K}\Omega$ Output load impedance R _L Capacitive load $\leq 100 \text{ pf}$ Resistive load $\geq 1 \text{ k}\Omega$, resistance determine the output voltage value. DFM-DCM voltage = external voltage * (R _L / (R _L +R))				
MO1	Multi-function Output 1 (photo coupler)	Programmable open-collector outputs, see Pr. 02-16 and Pr. 02-17.				
MO2	Multi-function Output 2 (photo coupler)	₩ MO1				
MCM	Multi-function Output Common	Max 48 V _{DC} 50 mA ● MCM				
RA	Multi-function relay output 1 (Relay N.O. a)	Programmable relay output, see Pr. 02-13. Resistive Load 3 A (N.O.) / 3 A (N.C.) 250 V _{AC}				
RB	Multi-function relay output 1 (Relay N.C. b)	5 A (N.O.) / 3 A (N.C.) 30 V _{DC} Inductive Load (COS 0.4)				
RC	Multi-function relay common (Relay)	1.2 A (N.O.)/ 1.2 A (N.C.) 250 V _{AC} 2.0 A (N.O.)/ 1.2 A (N.C.) 30 V _{DC} Various kinds of monitor signals output, e.g.: operation, frequency attained, overload indication etc.				
+10V	Potentiometer power supply	+10.5 ± 0.5 V _{DC} / 20 mA				
AVI	Analog voltage input 10V	Programmable analog input, see Pr.03-00. Impedance: 20kΩ Range 0 – Max. Output Frequency (Pr.01-00): 0– +10V/-10– +10V Range switching by Pr.03-00, Pr.03-28.				
ACI	Analog current input ACI ACI circuit ACM internal circuit	Programmable analog input, see Pr.03-01. Impedance: 250Ω Range 0 – Max. Output Frequency (Pr. 01-00): 0–20mA/4–20mA/0–10V Range switching by Pr.03-01 , Pr.03-29.				

Terminals	Terminal Function	Description							
		Switch:							
		The AFM default is 0–10 V (voltage mode). Use the switch and							
		Pr.03-31 to change to current mode (0–20 mA/4–20 mA). You							
		must follow the indication on the back side of the front cover or							
	NA dei formation and language	page 6-1 of the user manual when using the switch.							
	Multi-function analog voltage	Voltage mode							
	output	Range: 0–10 V (Pr. 03-31=0) corresponding to the max.							
AFM	AFM	operating range of the control object							
	ACM	Max. output current : 2 mA							
	⊕o⊸ັ	Max. Load: 5 kΩ							
		Current mode							
		Range: 0–20 mA (Pr.03-31=1)/4–20 mA (Pr.03-31=2)							
		corresponding to the maximum operating range of the							
		control object							
		Max. load: 500 Ω							
ACM	Analog Signal Common Common for analog terminals								
	Default: S1/S2 shorted for +24 V								
S1,S2	Rated voltage: 24 V _{DC} ±10%; Maximum voltage: 30 V _{DC} ±10%								
01,02	Activation current: 6.67 mA ±10%								
	STO activation mode								
	Input voltage level: S1-DCM >	oltage level: S1-DCM > 0 V _{DC} or S2-DCM < 5 V _{DC}							
	STO response time ≤ 20 ms. S1/S2 operates until the AC motor drive stops outputting current.								
DCM	STO cut-off mode								
DCIVI	Input voltage level: S1-DCM >	11 V _{DC} and S2-DCM < 30 V _{DC}							
	Power removal safety function	according to EN 954-1 and IEC/EN 61508							
	Note: refer to Chapter 17 SAFE TORQUE OFF FUNCTION for more information.								
SG+	Modbus RS-485								
SG-	Note: Please refer to Chapter	12 DESCRIPTION OF PARAMETER SETTINGS for more							
SGND	information.								
	Pin1: CAN_H								
	Pin2: CAN_L								
	Pin3, 7: SGND								
RJ-45	Pin4: SG-								
	Pin5: SG+								
	Pin6: Reserved								
	Pin8: +10 VS								

Chapter 7 Optional Accessories

- 7-1 All Brake Resistors and Brake Units Used in AC Motor Drives
- 7-2 Non-fuse Circuit Breaker
- 7-3 Fuse Specification Chart
- 7-4 AC/DC Reactor
- 7-5 Zero Phase Reactors
- 7-6 EMC Filter
- 7-7 EMC Shield Plate
- 7-8 Capacitive Filter
- 7-9 NEMA Kit
- 7-10 Din-Rail Mounting

Chapter 7 Optional Accessories | MH300-L

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive substantially improves the drive's performance. Select accessories according to your need or contact your local distributor for suggestions.

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives

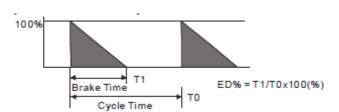
230V three-phase

Model		cable otor		* ¹ 125% E	Braking Torque /	10% ED			N	1ax. Braking To	orque		
	HP	kW	*2 Braking Torque	ing Resistor value		Braking Resistor for each Brake Unit			Min. Resistor	Max. Total Braking	Peak Power		
				(kg-m)	AC motor Drive	*3 Part No.	Amount	Usage	Current (A)	Value (Ω)	Current (A)	(kW)	
VFD11AMH23ANSLA	3	2.2	1.5	300W 70Ω	BR300W070	1	-	5.4	38.0	10	3.8		
VFD17AMH23ANSLA	5	3.7	2.5	400W 40Ω	BR400W040	1	-	9.5	19.0	20	7.6		
VFD25AMH23ANSLA	7.5	5.5	3.7	1000W 20Ω	BR1K0W020	1	-	19	16.5	23	8.7		
VFD33AMH23ANSLA	10	7.5	5.1	1000W 20Ω	BR1K0W020	1	-	19	14.6	26	9.9		
VFD49AMH23ANSLA	15	11	7.4	1500W 13Ω	BR1K5W013	1	-	29	12.6	29	11.0		
VFD65AMH23ANSLA	20	15	10.2	2000W 8.6Ω	BR1K0W4P3	2	2 in series	44	8.3	46	17.5		

460V three-phase

Model		cable otor		* ¹ 125% E	Braking Torque /	10% ED				Max. Braking	Torque		
			*2 Braking	Resistor value		Resistor for rake Unit	or	Braking	Min.	Max. Total	Peak Power		
	HP	kW	Torque (kg-m)	spec. for each AC motor Drive	*3 Part No.	Amount	Usage	Current (A)	Resistor Value (Ω)	or Braking	(kW)		
VFD9A0MH43ANSLA VFD9A0MH43AFSLA	5	3.7	2.5	400W 150Ω	BR400W150	1		5.1	84.4	9	6.8		
VFD13AMH43ANSLA VFD13AMH43AFSLA	7.5	5.5	3.7	1000W 75Ω	BR1K0W075	1		10.2	50.7	15	11.4		
VFD17AMH43ANSLA VFD17AMH43AFSLA	10	7.5	5.1	1000W 75Ω	BR1K0W075	1		10.2	40.0	19	14.4		
VFD25AMH43ANSLA VFD25AMH43AFSLA	15	11	7.4	1500W 43Ω	BR1K5W043	1		17.6	33.0	23	17.5		
VFD32AMH43ANSLA VFD32AMH43AFSLA	20	15	10.2	2000W 32Ω	BR1K0W016	2	2 in series	24	26.2	29	22.0		

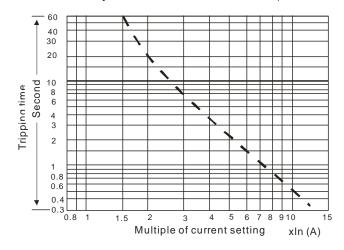
^{*1} Standard braking torque is 125 %. Because of the limited resistor power, the longest operation time for 10% ED is 10sec. (on: 10 sec. / off: 90 sec.).


^{*2} Calculation for braking torque is for a four-pole motor (1800 rpm).

Resistors of 400W or lower should be fixed to the frame and at a surface temperature below 250°C (400°C).

Resistors of 1000W and above should be fixed on a surface with temperature below 600°C. If the temperature is higher than the resistor's temperature limit, it will be required to install heat dissipating system or use a resistor with higher power.

Select the resistance value, power and brake usage (ED %) acc. to Delta rules.
 Definition for Brake Usage ED%



Explanation: ED (%) is defined to allow enough time for the brake unit and brake resistor to dissipate the heat generated by braking.

Recommended cycle time T0 is one minute.

For safety, install a thermal overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) before the drive for additional protection. The thermal overload relay protects the brake resistor from damage due to frequent or continuous braking. Under such circumstances, turn off the power to prevent damage to the brake resistor, brake unit and drive.

- 2. Any damage to the drive or other equipment caused by using brake resistors and brake modules that are not provided by Delta voids the warranty.
- 3. Consider environmental safety factors when installing the brake resistors. If you use the minimum resistance value, consult local dealers for the power calculation.
- 4. When using more than two brake units, the equivalent resistor value of the parallel brake unit cannot be less than the value in the column "Minimum Resistor Value (Ω)". Read the wiring information in the brake unit user manual thoroughly prior to operation. Visit the following links to get the instruction sheets for the wiring in the brake unit:
 - VFDB2015 / 2022 / 4030 / 4045 / 5055 Braking Modules Instruction Sheet
 http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA_IA-MDS_VFDB_I_EN_20070719.pdf
 - VFDB4110 / 4160 / 4185 Braking Modules Instruction Sheet
 http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA_IA-MDS_VFDB4110-4160-4185_I_EN_20_101011.pdf
 - VFDB6055 / 6110 / 6160 / 6200 Braking Modules Instruction Sheet
 http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA_IA-MDS_VFDB6055-6110-6160-6200_I_TSE_20121030.pdf
- 5. Thermal Overload Relay (TOR): Choosing a thermal overload relay is based on whether its overload capacity is appropriate for the MH300. The standard braking capacity of the MH300 is 10% ED (Tripping time=10 s). As shown in the figure below, the thermal overload relay continuously operates for 10 seconds and it can withstand a 260% overload (Host starting). For example, a 460V, 15 kW MH300 has a braking current of 24 A (refer to the tables in this section), so it can use the thermal overload relay with a rated current of 10 A (10*260% = 26A > 24A).

7-2 Non-fuse Circuit Breaker

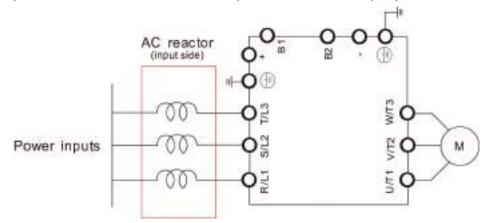
Comply with UL standard: Per UL 508, paragraph 45.8.4, part a.

Model	Voltage / three-phase	Current Input / Output (Max.)	Breaker Rating Input (A)
VFD11AMH23ANSLA		13.2 A / 11.0 A	40
VFD17AMH23ANSLA		20.4 A / 17.0 A	60
VFD25AMH23ANSLA	230V / three-phase	30.0 A / 25.0 A	63
VFD33AMH23ANSLA	230 V / IIII ee-piiase	39.6 A / 33.0 A	90
VFD49AMH23ANSLA		58.8 A / 49.0 A	125
VFD65AMH23ANSLA		78.0 A / 65.0 A	160

Model	Voltage / three-phase	Current Input / Output (Max.)	Breaker Rating Input (A)
VFD9A0MH43ANSLA		9.9 A / 9.0 A	30
VFD9A0MH43AFSLA		5.5 K7 5.6 K	30
VFD13AMH43ANSLA		14.3 A / 13.0 A	32
VFD13AMH43AFSLA		14.5 A / 13.0 A	32
VFD17AMH43ANSLA	460V / three-phase	19.3 A / 17.5 A	45
VFD17AMH43AFSLA	400 v / tillee-pilase	19.5 A / 17.5 A	45
VFD25AMH43ANSLA		27.5 A / 25.0 A	60
VFD25AMH43AFSLA	-	27.5 A / 25.0 A	60
VFD32AMH43ANSLA		35.2 A / 32.0 A	80
VFD32AMH43AFSLA		33.2 A / 32.0 A	80

7-3 Fuse Specification Chart

- ☑ Fuse specifications lower than the table below are allowed.
- ☑ For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. Use UL classified fuses to fulfill this requirement.
- ☑ For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. Use UL classified fuses to fulfill this requirement.


Model	Voltage / three-phase	Current Input / Output (Max.)	Branch Circuit Fuses Output (A)		
VFD11AMH23ANSLA		13.2 A / 11.0 A	50		
VFDTTAIVIHZSANSLA		13.2 A / 11.0 A	Class T JJS-50		
VFD17AMH23ANSLA		20.4 A / 17.0 A	78		
VI DITAWII IZSANSLA		20.4 A / 17.0 A	Class T JJS-80		
VFD25AMH23ANSLA		30.0 A / 25.0 A	59.4		
VI DZSAWI IZSANOLA	230V / three-phase	00.07(720.07(Class T JJS-60		
VFD33AMH23ANSLA	200 V / times prides	39.6 A / 33.0 A	79.2		
V1 2007 (W11 1207 (1 40 E7 (00.0717 00.071	Class T JJS-80		
VFD49AMH23ANSLA		58.8 A / 49.0 A	112.2		
V. B. 167 H.M. 1267 H. 1627 (00.0717 10.071	Class T JJS-110		
VFD65AMH23ANSLA		78.0 A / 65.0 A	151.8		
			Class T JJS-150		
VFD9A0MH43ANSLA		9.9 A / 9.0 A	42		
VFD9A0MH43AFSLA		0.0717 0.071	Class T JJS-45		
VFD13AMH43ANSLA		14.3 A / 13.0 A	31.9		
VFD13AMH43AFSLA		14.5 A / 15.0 A	Class T JJS-30		
VFD17AMH43ANSLA	400) / / 45	40.0 0 / 47.5 0	43.56		
VFD17AMH43AFSLA	460V / three-phase	19.3 A / 17.5 A	Class T JJS-45		
VFD25AMH43ANSLA		27.5.4./25.0.4	61.6		
VFD25AMH43AFSLA		27.5 A / 25.0 A	Class T JJS-60		
VFD32AMH43ANSLA		25.0 4 / 20.0 4	79.2		
VFD32AMH43AFSLA		35.2 A / 32.0 A	Class T JJS-80		

7-4 AC/DC Reactor

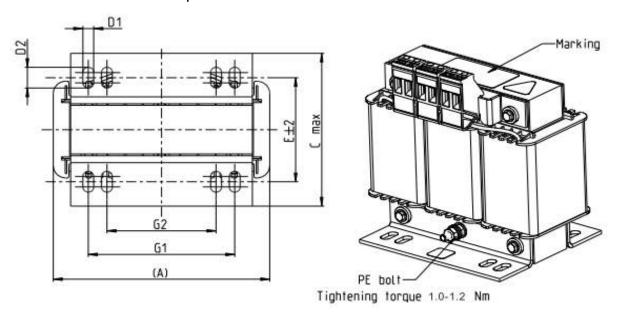
Installing an AC reactor on the input side of an AC motor drive can increase line impedance, improve the power factor, reduce input current, and reduce interference generated from the motor drive. It also reduces momentary voltage surges or abnormal current spikes. For example, when the main power capacity is higher than 500 kVA, or when using a switching capacitor bank, momentary voltage and current spikes may damage the AC motor drive's internal circuit. An AC reactor on the input side of the AC motor drive protects it by suppressing surges.

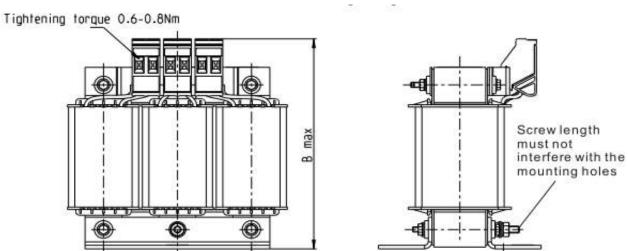
Installation

Install an AC input reactor in series with the main power to the three input phases R S T as shown below:

Connecting an AC input reactor

Inductor

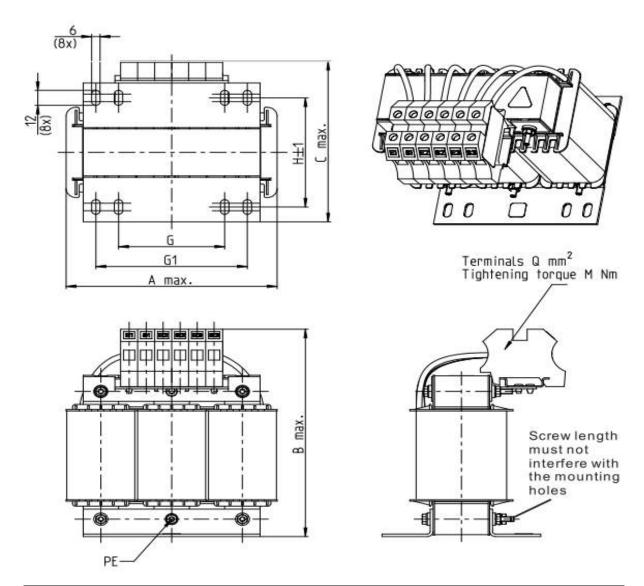

230V, 50-60Hz / Three-Phase


Model	Rated	Saturation	AC Rea		DC	DC Reactor	
	Current (A _{rms})	Current (A _{rms})	Input/ Output Inductor (mH)	Input Reactor Delta Part #	Inductor (mH)	Delta Part #	
VFD11AMH23ANSLA	11.0	22.0	1.152	DR011A0115	2.662	DR011D0266	
VFD17AMH23ANSLA	17.0	34.0	0.746	DR017AP746	1.722	DR017D0172	
VFD25AMH23ANSLA	25.0	50.0	0.507	DR025AP507	1.172	DR025D0117	
VFD33AMH23ANSLA	33.0	66.0	0.32	DR033AP320	0.851	DR033DP851	
VFD49AMH23ANSLA	49.0	98.0	0.216	DR049AP215	0.574	DR049DP574	
VFD65AMH23ANSLA	65.0	130.0	0.163	DR065AP162	0.432	DR065DP432	

460V, 50-60Hz / Three-Phase

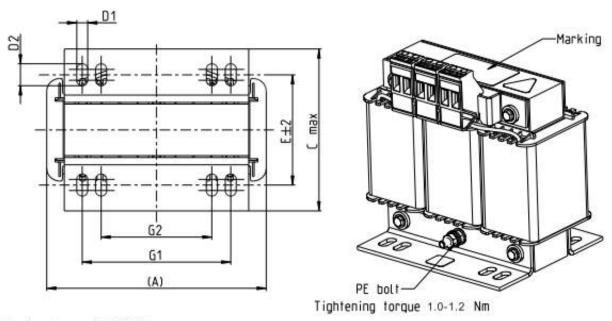
	Rated	Saturation	AC Re	DC Reactor		
Model	Current (A _{rms})	Current (A _{rms})	Input/ Output Inductor (mH)	Input Reactor Delta Part #	Inductor (mH)	Delta Part #
VFD9A0MH43ANSLA VFD9A0MH43AFSLA	9.0	18.0	2.7	DR009A0270	6.236	DR009D0623
VFD13AMH43ANSLA VFD13AMH43AFSLA	13.0	26.0	1.174	DR018A0117	4.677	DR012D0467
VFD17AMH43ANSLA VFD17AMH43AFSLA	17.5	35.0	1.174	DR018A0117	3.119	DR018D0311
VFD25AMH43ANSLA VFD25AMH43AFSLA	25.0	50.0	0.881	DR024AP881	2.338	DR024D0233
VFD32AMH43ANSLA VFD32AMH43AFSLA	32.0	64.0	0.66	DR032AP660	1.754	DR032D0175

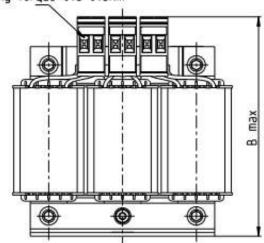
AC input reactor dimension and specification:

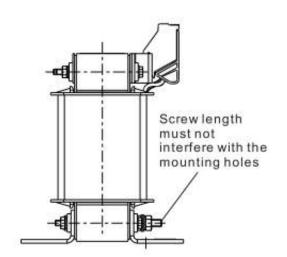


Screw Location	Torque
Terminal	5.32–7.09 kg-cm / [6.12–8.16 lb-in.] / [0.6–0.8 Nm]
PE bolt	8.86-10.63 kg-cm / [10.2-12.24 lb-in.] / [1.0-1.2 Nm]

Input AC reactor Delta part #	Α	В	С	D1*D2	Е	G1	G2	PE D
DR011A0115	120	120	88	6*12	60	80.5	60	M4
DR017AP746	120	120	93	6*12	65	80.5	60	M4
DR025AP507	150	150	112	6*12	88	107	75	M4
DR033AP320	150	150	112	6*12	88	107	75	M4


Unit: mm

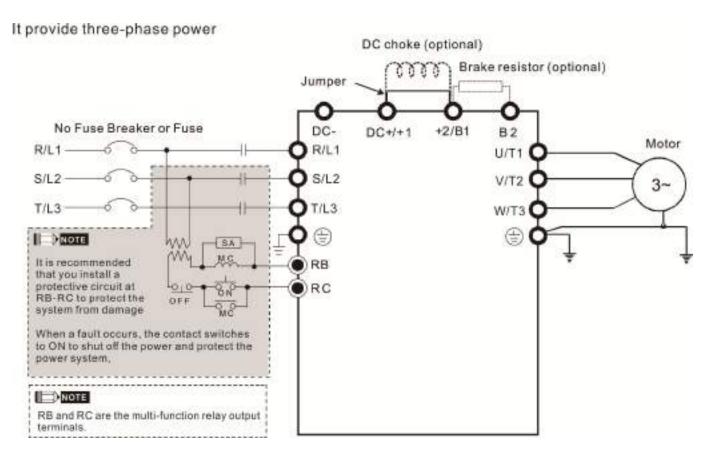

Screw Location	Torque
Terminal	10.63-12.4 kg-cm / [12.24-14.28 lb-in.] / [1.2-1.4 Nm]


Input AC reactor Delta part #	Α	В	С	D1*D2	Н	G	G1	Q	М	PE D
DR049AP215	180	195	160	6*12	115	85	122	16	1.2-1.4	M4
DR065AP163	180	205	160	6*12	115	85	122	35	2.5-3.0	M4

Unit: mm

Tightening torque 0.6-0.8Nm

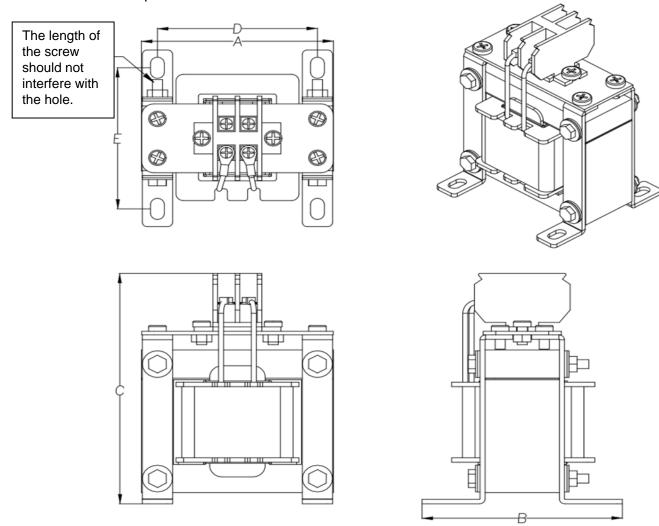
Screw Location	Torque
Terminal	5.32-7.09 kg-cm / [6.12-8.16 lb-in.] / [0.6-0.8 Nm]
PE bolt	8.86–10.63 kg-cm / [10.2–12.24 lb-in.] / [1.0–1.2 Nm]


Input AC reactor Delta part #	А	В	С	D1*D2	E	G1	G2	PE D
DR009A0270	150	150	88	6*12	74	107	75	M4
DR018A0117	150	155	112	6*12	88	107	75	M4
DR024AP881	150	155	112	6*12	88	107	75	M4
DR032AP660	180	175	138	6*12	114	122	85	M6

 $\mathsf{Unit}:\mathsf{mm}$

A DC reactor can also improve the power factor, reduce input current, and reduce interference generated from the motor drive. A DC reactor stabilizes the DC BUS voltage. Compared to an AC input reactor, the advantages are smaller size, lower price, and lower voltage drop (lower power dissipation).

Installation


Install the DC reactor between terminals +1 and +2. Remove the jumper, shown below, before installing the DC reactor.

Wiring of DC reactor

Chapter 7 Optional Accessories | MH300-L

DC reactor dimension and specification:

DC reactor Delta Part #	Rated Current (Arms)	Saturation current (Arms)	DC reactor (mH)	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	Dimension (mm)
DR011D0266	11	18	2.662	79	92	112	64±2	69.5±2	9.5*5.5
DR017D0172	17	28.8	1.722	79	112	112	64±2	89.5±2	9.5*5.5
DR025D0117	25	43.2	1.172	99	105	128	79±2	82.5±2	9.5*5.5
DR033DP851	33	55.8	0.851	117	110	156	95±2	87±2	10*6.5
DR049DP574	49	84.6	0.574	117	120	157	95±2	97±2	10*6.5
DR065DP432	65	111.6	0.432	117	140	157	95±2	116.5±2	10*6.5
DR009D0623	9	14.58	6.236	79	112	112	64±2	89.5±2	9.5*5.5
DR012D0467	12	19.8	4.677	99	105	128	79±2	82.5±2	9.5*5.5
DR018D0311	18	30.6	3.119	117	110	144	95±2	87±2	10*6.5
DR024D0233	24	41.4	2.338	117	120	144	95±2	97±2	10*6.5
DR032D0175	32	54	1.754	117	140	157	95±2	116.5±2	10*6.5

Length of Motor Cable

1. Leakage current affects the motor and remedies

Due to larger parasitic capacitances in longer motor cables, longer cables increase the leakage current. This can activate the over-current protection and display the incorrect current. In the worst case, it can damage the drive.

If more than one motor is connected to the AC motor drive, the total motor cable length is the sum of the cable length from the AC motor drive to each motor.

For 460V series AC motor drives, when an overload relay is installed between the drive and the motor to protect the motor from overheating, the connecting cable must be shorter than 50 m.

However, the overload relay could still malfunction. To prevent this, install an AC output reactor (optional) to the drive and/or lower the carrier frequency setting (Pr.00-17).

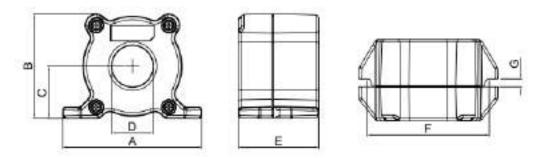
2. Surge voltage affects the motor and remedies

When a PWM signal from an AC motor drive drives the motor, the motor terminals can easily experience surge voltages (dv/dt) due to IGBT switching and cable capacitance. When the motor cable is very long (especially for the 460V series), surge voltages (dv/dt) may reduce motor insulation quality. To prevent this, follow the rules listed below.

- a. Use a motor with enhanced insulation.
- b. Connect an output reactor (optional) to the output terminals of the AC motor drive.
- c. Reduce the motor cable length to the values in the table below.

The suggested motor shielded cable length in the following table complies with IEC 60034-17, which is suitable for motors with a rated voltage \leq 500 V_{AC} and with an insulation level of \geq 1.35 kV_{p-p}

2201/ three phase	Rated current	Without A	C reactor	With AC reactor		
230V three-phase Model	(Arms)	Shielded Cable	Non-shielded	Shielded Cable	Non-shielded cable	
Model	(Allis)	(meter)	cable (meter)	(meter)	(meter)	
VFD11AMH23ANSLA	12.5	50	75	75	115	
VFD17AMH23ANSLA	19.5	50	75	75	115	
VFD25AMH23ANSLA	27.0	50	75	75	115	
VFD33AMH23ANSLA	36.0	100	150	150	225	
VFD49AMH23ANSLA	51.0	100	150	150	225	
VFD65AMH23ANSLA	69.0	100	150	150	225	

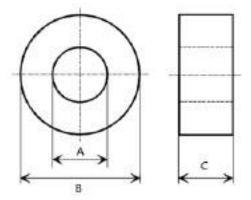

460V three phase	Rated current	Without A	C reactor	With AC reactor		
460V three-phase Model	(Arms)	Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)	
VFD9A0MH43ANSLA VFD9A0MH43AFSLA	10.5	50	75	75	115	
VFD13AMH43ANSLA VFD13AMH43AFSLA	14.5	50	75	75	115	
VFD17AMH43ANSLA VFD17AMH43AFSLA	19.8	100	150	150	225	
VFD25AMH43ANSLA VFD25AMH43AFSLA	28.0	100	150	150	225	
VFD32AMH43ANSLA VFD32AMH43AFSLA	36.0	100	150	150	225	

7-5 Zero Phase Reactors

You can also suppress interference by installing a zero phase reactor at the main input or the motor output of the drive, depending on the location of the interference. Delta provides two types of zero phase reactors to solve interference problems.

A. Casing with mechanical fixed part

This solution is for the main input/motor output side and can withstand higher loading, and be used at higher frequencies. You can get higher impedance by increasing the number of turns.



Unit: mm

Model	Α	В	С	D	Е	F	G(Ø)	To use w/
RF008X00A	99	73	36.5	29	56.5	86	5.5	Motor cable

B. Casing without mechanical fixed part

This solution has higher performance: high initial magnetic permeability, high saturation induction density, low iron loss and perfect temperature characteristic. If the zero phase reactor does not need to be fixed mechanically, use this solution.

Unit: mm

Model	А	В	С
T60006L2040W453	22.5	43.1	18.5
T60006L2050W565	36.3	53.5	23.4

Installation

During installation, pass the cable through at least one zero phase reactor.

Use a suitable cable type (insulation class and wire section) so that the cable passes easily through the zero phase reactor. Do not pass the grounding cable through the zero phase reactor; only pass the motor wire through the zero phase reactor.

With longer motor cables the zero phase reactor can effectively reduce interference at the motor output. Install the zero phase reactor as close to the output of the drive as possible. Figure A shows the installation diagram for a single turn zero phase reactor. If the wire diameter allows several turns, Figure B shows the installation of a multi-turn zero phase reactor. The more turns, the better the noise suppression effect.

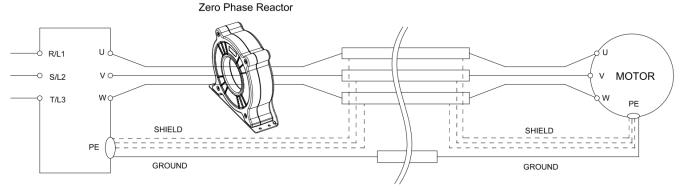


Figure A: Single turn wiring diagram of a shieling wire with a zero phase reactor

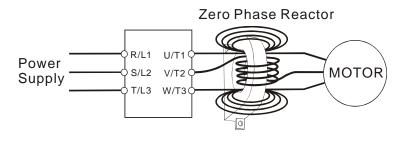
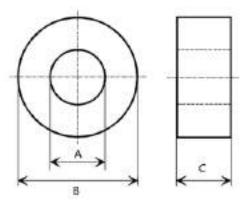


Figure B: Multi-Turn Zero Phase Reactor

Installation notices

Install the zero phase reactor at the output terminal of the frequency converter (U.V.W.).

After the zero phase reactor is installed, it reduces the electromagnetic radiation and load stress emitted by the wiring of the frequency converter. The number of zero phase reactors required for the drive depends on the wiring length and the drive voltage.

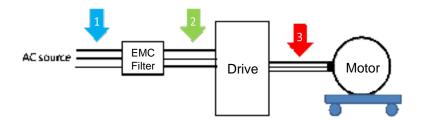

The normal operating temperature of the zero phase reactor should be lower than 85°C (176°F). However, when the zero phase reactor is saturated, its temperature may exceed 85°C (176°F). In this case, increase the number of zero phase reactors to avoid saturation. The following are reasons that might cause saturation of the zero phase reactors: the drive wiring is too long, the drive has several sets of loads, the wiring is in parallel, or the drive uses high capacitance wiring. If the temperature of the zero phase reactor exceeds 85°C (176°F) during the operation of the drive, increase the number of zero phase reactors.

Recommended max. wiring gauge when installing zero phase reactor

Model # of Zero	Max, Wire Gauge or	Max. Wire Gau	ge AWG (1Cx3)	Max. Wire Gauge AWG (1Cx4)		
Phase Reactor	LUG width	75 °C	90 °C	75 °C	90 °C	
RF008X00A	13 mm	3 AWG	1 AWG	3 AWG	1 AWG	
T600006L2040W453	11 mm	9 AWG	4 AWG	6 AWG	6 AWG	
T600006L2050W565	16 mm	1 AWG	2/0 AWG	1 AWG	1/0 AWG	

Zero Phase Reactor for Signal Cable

To solve interference problems between signal cables and electric devices, install a zero phase reactor on signal cable. Install it on the signal cable which is the source of the interference to suppress the noise for a better signal. The model names and dimensions are in the table below.

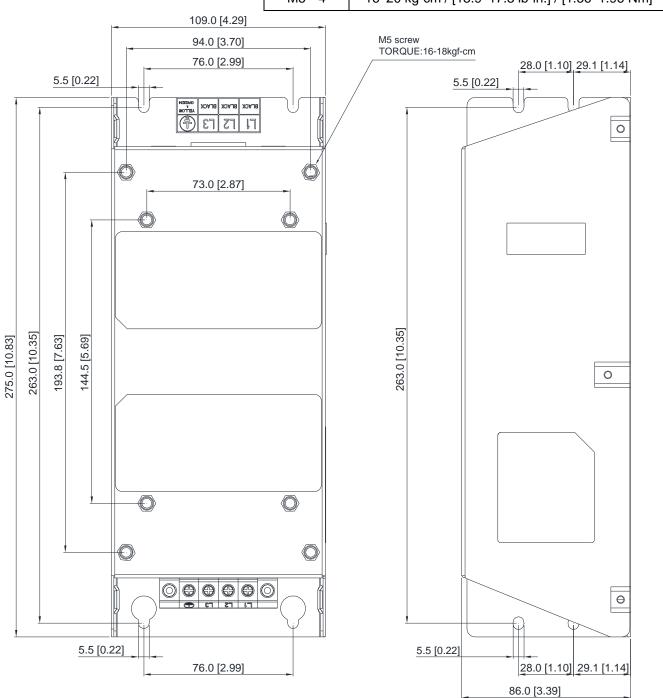


Model	Α	В	С
T60004L2016W620	10.7	17.8	8.0
T60004L2025W622	17.5	27.3	12.3

Unit: mm

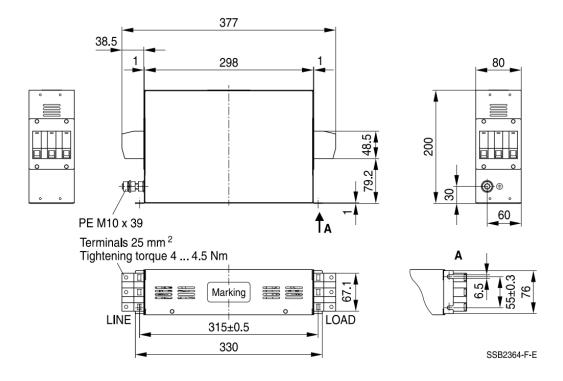
7-6 EMC Filter

	lagua			Recommended model of			Conducted emission maximum motor cable length				Radiated emission maximum motor cable length	
Frame	Model #	Input Current (A)	Filter model #	zero-	zero-phase reactor		C1 30m		C2 100m	~ _		
						Р	osition	to pla	ice zero	phase reactor		
				DELTA	V _{AC}	*1	*2	*3	N/A	*1	*2	*3
С	VFD11AMH23ANSLA	15	EMF24AM23B	RF008X00A	T60006L2040W453		√	√	NA		✓	✓
С	VFD17AMH23ANSLA	23.4	EMF24AM23B	RF008X00A	T60006L2040W453		✓	✓	NA		✓	✓
С	VFD9A0MH43ANSLA	11.6	EMF12AM43B	RF008X00A	T60006L2040W453		√	✓	NA		✓	✓
D	VFD25AMH23ANSLA	32.4	EMF33AM23B	RF008X00A	T60006L2050W565	√	✓		NA	✓	✓	
D	VFD13AMH43ANSLA	16.0	EMF23AM43B	RF008X00A	T60006L2050W565	✓	✓	✓	NA	✓	✓	✓
D	VFD17AMH43ANSLA	21.8	EMF23AM43B	RF008X00A	T60006L2050W565	√	✓	✓	NA	✓	✓	✓
Е	VFD33AMH23ANSLA	43.2	B84143D0050R127	RF008X00A	T60006L2050W565		✓	✓	NA		✓	✓
Е	VFD49AMH23ANSLA	61.2	B84143D0075R127	RF008X00A	T60006L2050W565		✓	✓	NA		✓	✓
Е	VFD25AMH43ANSLA	30.8	B84143D0050R127	RF008X00A	T60006L2050W565		√	√	NA		√	✓
Е	VFD32AMH43ANSLA	39.6	B84143D0050R127	RF008X00A	T60006L2050W565		✓	✓	NA		✓	✓
F	VFD65AMH23ANSLA	82.8	B84143D0090R127	RF008X00A	T60006L2050W565		✓	✓	NA		✓	✓

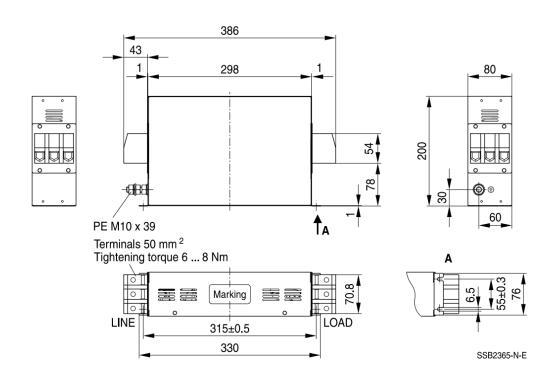


Filter Dimension

EMF24AM23B; EMF33AM23B;


EMF12AM43B; EMF23AM43B;

Screw	Torque
M5 * 4	16-20 kg-cm / [13.9-17.3 lb-in.] / [1.56-1.96 Nm]



Unit: mm [inch]

TDK B84143D0050R127 (50A)

TDK B84143D0075R127 (75A), TDK B84143D0090R127 (90A)

Chapter 7 Optional Accessories | MH300-L

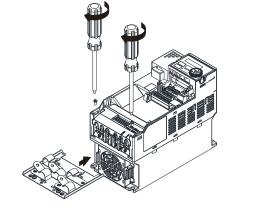
The table below is the maximum shielded cable length for drive models with built-in EMC filters. You can choose the corresponding shielded cable length according to the required noise emission and electromagnetic interference class.

	Drive Models with Built-in Filters	Rated Current	Compliance with EM (IEC 61800-3) Class		Compliance with EMC (IEC 61800-3) Class C2		
Frame	Models	(HD)	Shielded Cable Length	Fc	Shielded Cable Length	Fc	
С	VFD9A0MH43AFSLA	9					
D	VFD13AMH43AFSLA	13					
D	VFD17AMH43AFSLA	17.5	30 m	4 kHz	20 m	4 kHz	
E	VFD25AMH43AFSLA	25					
	VFD32AMH43AFSLA	32					

7-7 EMC Shield Plate

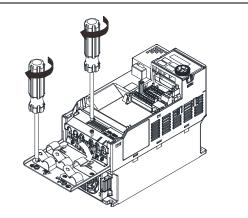
EMC Shield Plate (for use with shielded cable)

Frame	Model of EMC Shield Plate	Reference figure
С	MKM-EPC	
D	MKM-EPD	
E	MKM-EPE	
F	MKM-EPF	


Installation

(Frame D model as an example)

1. As shown on the right figures, fix the iron plate on the AC motor drive.


Torque value:

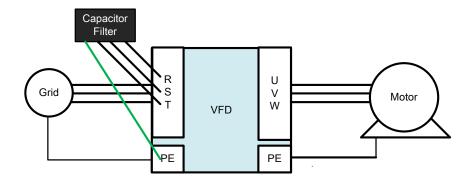
Frame	Screw	Torque
С	M4	6-8 kg-cm / [5.2-6.9 lb-in.] / [0.59-0.78 Nm]
D	М3	4-6 kg-cm / [3.5-5.2 lb-in.] / [0.39-0.59 Nm]
Е	М3	4-6 kg-cm / [3.5-5.2 lb-in.] / [0.39-0.59 Nm]
F	M4	6-8 kg-cm / [5.2-6.9 lb-in.] / [0.59-0.78 Nm]

2. After selecting a suitable R-clip according to the wire gauge used, fix the R-clip on the shield plate.

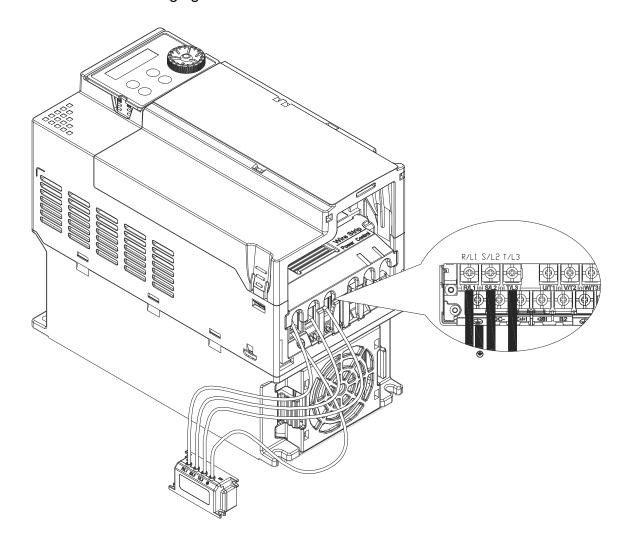
Screw	Torque
M4	6–8 kg-cm / [5.2–6.9 lb-in.] / [0.59–0.78 Nm]

Dimensions of EMC Shield Plate			
	a		
		O	
۵			

	Dimensions of Shield Plate		
Model	mm [inch]		
	а	b	
MKM-EPC	78.0 [3.07]	91.0 [3.58]	
MKM-EPD	103.4 [4.07]	97.0 [3.82]	
MKM-EPE	124.3 [4.89]	77.4 [3.05]	
MKM-EPF	168.0 [6.61]	80.0 [3.15]	


Recommended wire mounting method

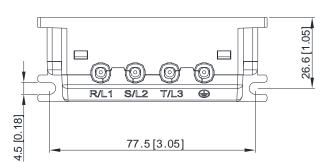
Frame	Model of EMC Shield Plate	Reference figure
С	MKM-EPC	O O O O O O O O O O O O O O O O O O O
D	MKM-EPD	CTL CTL O) OTHER ORST UVW
E	MKM-EPE	RST (O UVW
F	MKM-EPF	CTL CTL RST OTHER UVW O O O O O O O

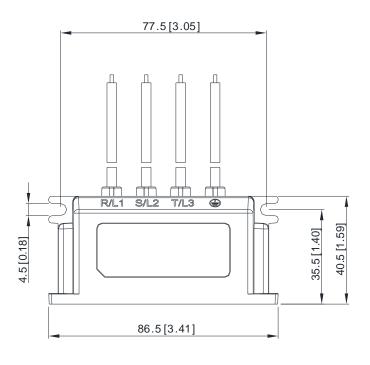

7-8 Capacitive Filter

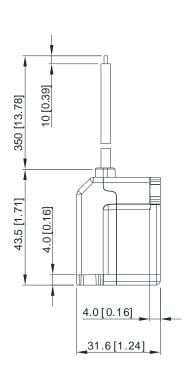
Installation diagram:

The capacitive filter (CXY101-43A) is a simple filter that supports basic filtering and noise interference reduction.

Capacitive filter and drive wiring figure:

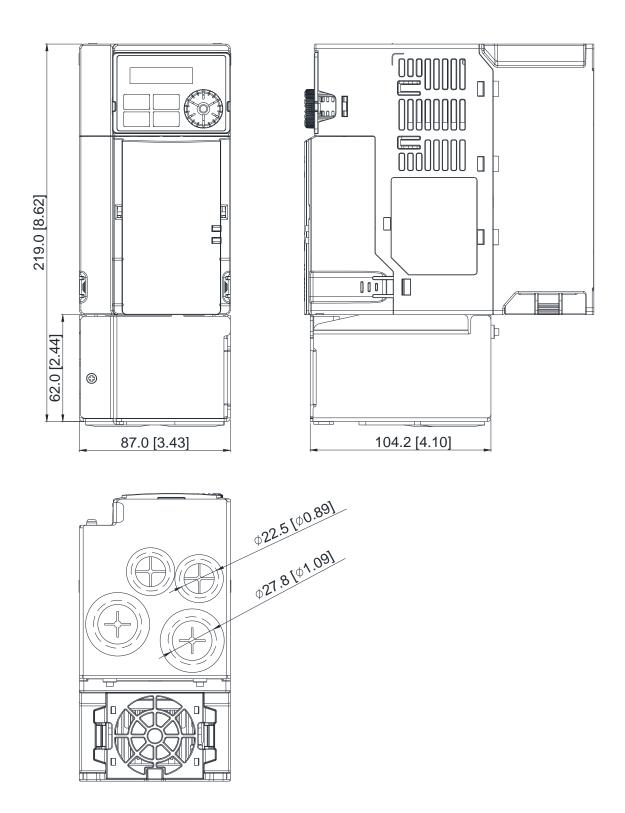

Unit: mm [inch]


Specification:

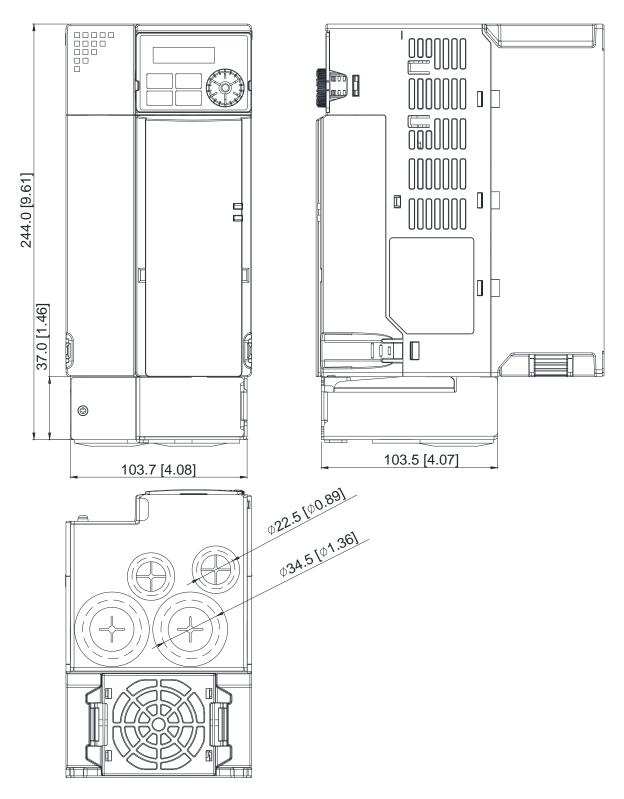

Model	Capacitance	Temperature range
CXY101-43A	Cx:1 µF ± 20 % Cy:0.1 µF ± 20 %	-40-+85°C

Dimensions:

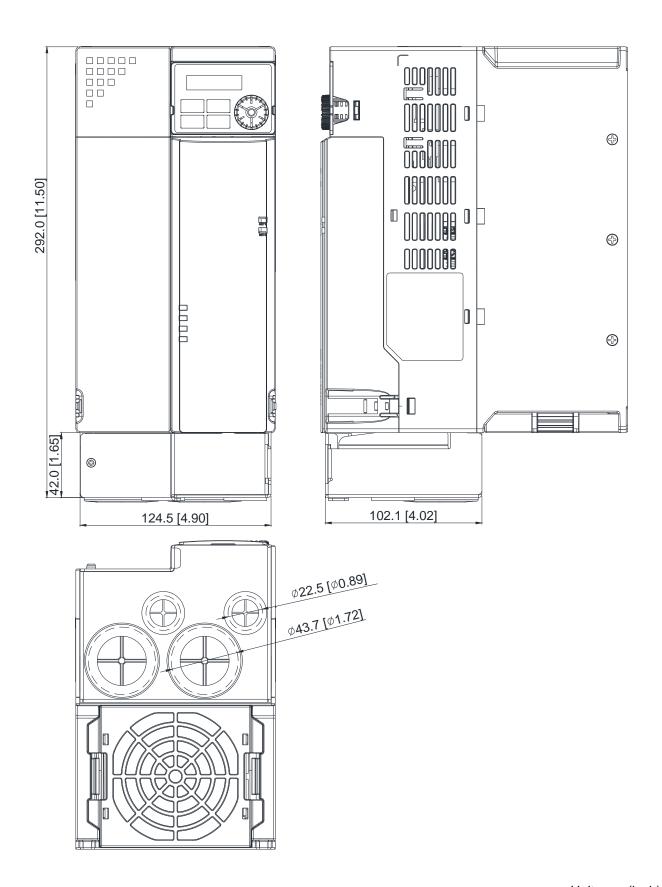
CXY101-43A

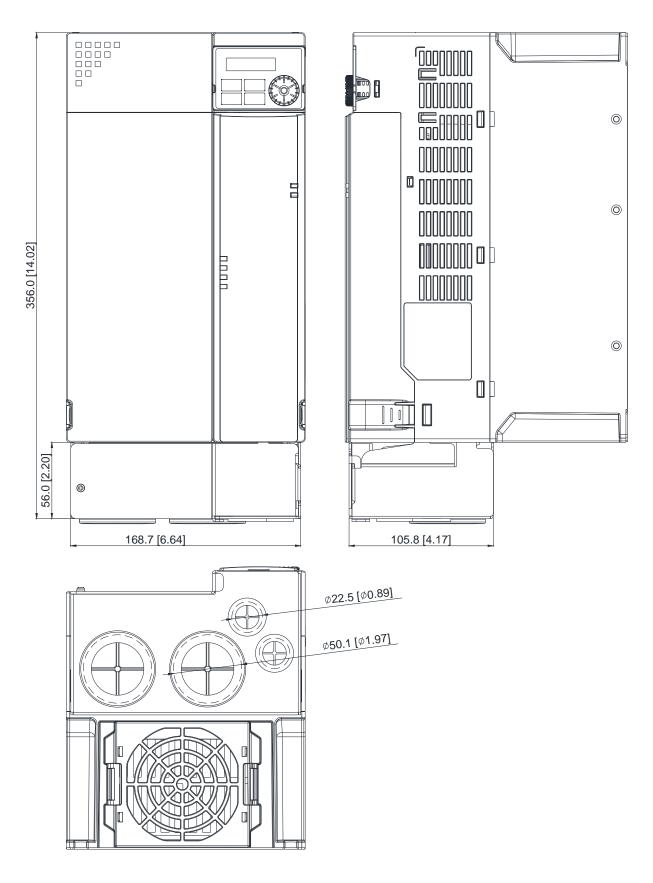


7-9 NEMA Kit


NEMA KIT complies with protection level NEMA 1 / UL Type 1.

Frame C

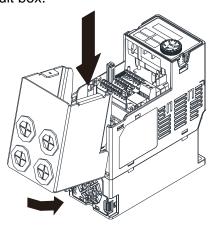

NEMA KIT model: MKMH-CBC


Frame D
NEMA KIT model: MKMH-CBD

Frame E
NEMA KIT model: MKMH-CBE

Frame F
NEMA KIT model: MKMH-CBF

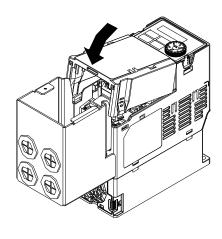
Installation

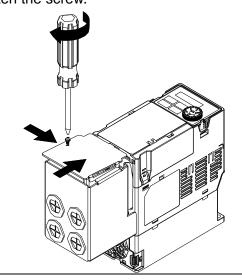

Recommended screw size and torque value: M3: 4-6 kg-cm / [3.5-5.2 lb-in.] / [0.39-0.59 Nm]

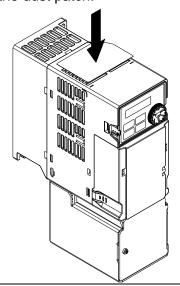
M3.5: 4–6 kg-cm / [3.5–5.2 lb-in.] / [0.39–0.59 Nm]

M4: 6-8 kg-cm / [5.2-6.9 lb-in.] / [0.59-0.78 Nm]

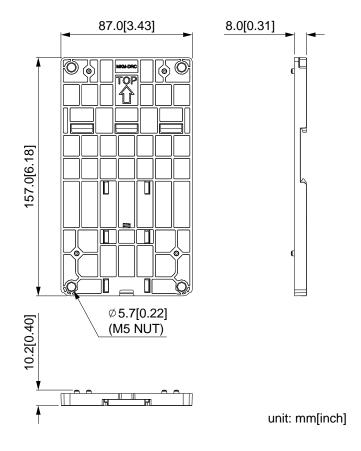
Frame C-F


1) Aim the clips at the slots to assemble the conduit box.

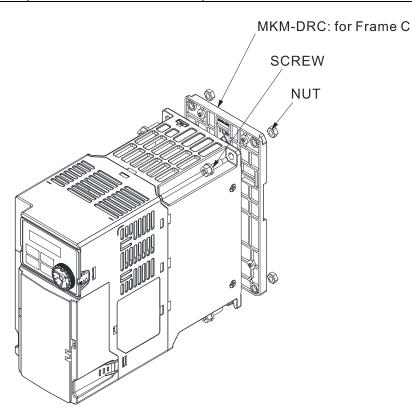

2) Tighten the screws to connect with the motor.


3) Install the front cover of the motor.

4) Install the front cover of the conduit box and tighten the screw.


5) Attach the dust patch.

7-10 DIN-Rail Mounting


MKM-DRC (Applicable for Frame C)

Screw	Torque		
	10-12 kg-cm		
M5 * 4 pcs	(8.7-10.4 lb-in.)		
	(0.98-1.18 Nm)		

Installation

Model	Screw	Torque
MKM-DRC	M5 * P0.8 * 4 pcs	18–20 kg-cm / (15.7–17.3 lb-in.) / (1.77–1.96 Nm)

[This page intentionally left blank]

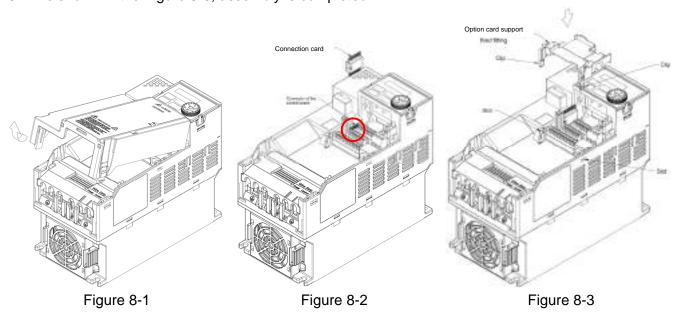
Chapter 8 Option Cards

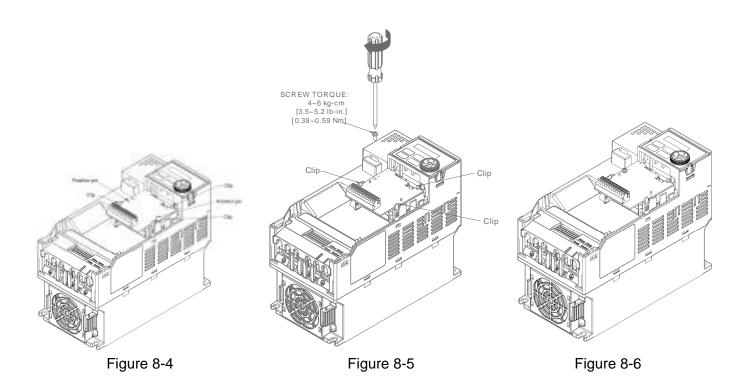
- 8-1 Option Card Installation
- 8-2 EMM-D3R2CA -- Three-point Digital Input / Relay Output Extension
 (Two-point N.C. Output Terminal)
- 8-3 CANopen Communication Cable/

Digital Keypad RJ45 Extension Cable

The option cards in this chapter are optional items. Select the applicable option cards for your drive or contact your local distributor for suggestions. The option cards can significantly improve the efficiency of the motor drive. To prevent damage to the motor drive during installation, remove the digital keypad and the cover before wiring. Note that the option cards do not support hot swapping. Turn off the drive power before installing or removing the option cards.

8-1 Option Card Installation


The mounting position and connection method corresponding to each option card is listed as the table below. For detailed information, refer to following sections.


Option card	Model	Function	Installation	Connection	Chapter
I/O + Relay card	EMM-D3R2CA	Digital Card – 3in + Relay (2 c point)			

8-1-1 I/O Card Installation

Installation method: Use connector to fit the option card on the control board

- 1. As shown in the Figure 8-1, switch off the power of the motor drive, and then remove the front cover.
- 2. Mounting the connector: as shown in the Figure 8-2, aim the adapter/ option card at the connector on the control board and then insert it to the connector.
- 3. Assembling support frame: as shown in the Figure 8-3, aim the two clips at the two slots on the motor drive and then press downward to have the two clips engage the slots.
- 4. Assembling the adpapter/ option card: As shown in the figure 8-4, have the terminal block of the adapter/ option facing up, aim the two holes of the adapter/ option card to the position column and press downard so that the three clips are engage the adapter/ option card.
- 5. As shown in the Figure 8-5, make sure that three clips are properly engage the adapter/ option card and then fasten the screw. (Suggested torque value: 4–6 kg-cm [3.5–5.2 lb-in.] [0.39–0.59 Nm])
- 6. As shown in the Figure 8-6, assembly is completed.

Note:

 The option cards listed below must connect to ground when wiring. The ground terminal is enclosed with option card as shown in Figure 8-7.

1. EMM-D3R2CA

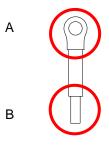


Figure 8-7

Installation:

The B side of the ground terminal connects to the ground terminal block on option card as No.4 of EMM-D3R2CA shown in Figure 8-8. See each section in Chapter 8 for ground terminal blocks of the other option cards. The A side of the ground terminal connects to the PE on the drive as the red circles shown in Figure 8-9.

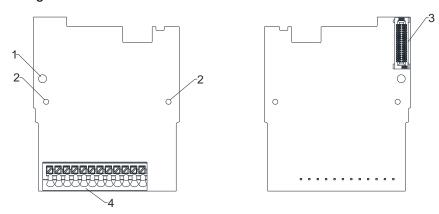
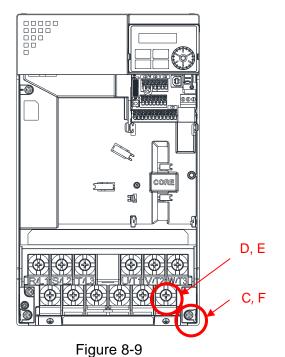
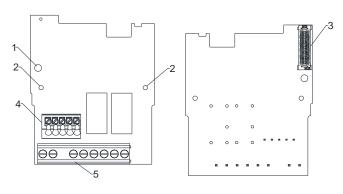



Figure 8-8

Frame C-F

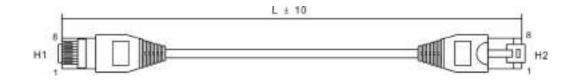

Torque (±10%)

Frame C: 20 kg-cm [17.4 lb-in.] [1.96 Nm] Frame D: 20 kg-cm [17.4 lb-in.] [1.96 Nm] Frame E: 25 kg-cm [21.7 lb-in.] [2.45 Nm] Frame F: 20 kg-cm [17.4 lb-in.] [1.96 Nm]

8-2 EMM-D3R2CA

■ Product Profile

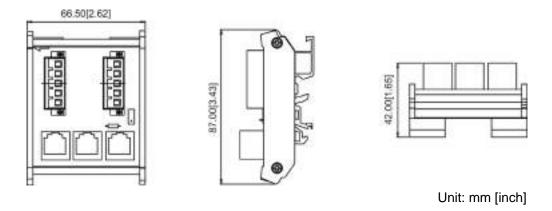
- 1. Screw fixing hole
- 2. Positioning hole
- 3. AC motor drive connection port
- 4. Spring Terminal block
- 5. Screw Terminal block


Wire: 0.25 mm² [24 AWG] -1.5 mm² [16 AWG]

Stripping length: 6 mm

Torque: 5 kg-cm / [4.3 lb-in.] / [0.49 Nm]

	Terminals	Descriptions
	24V, DCM	Output power: +24 V _{DC} ± 5 % < 30 mA
		Refer to Pr.02-26-Pr.02-28 to program the multi-function inputs
		MI10-MI12.
		Source Mode
	MI10-MI12	ON: the activation current is 3.3 mA ≥ 11 V _{DC}
	IVII I U—IVII I Z	OFF: cut-off voltage ≤ 5 V _{DC}
		Sink Mode
Digital I/O & Relay		ON: the activation current is 3.3 mA ≤ 13 V _{DC}
Extension Card		OFF: cut-off voltage ≥ 19 V _{DC}
	DE	Grounding terminal. To decrease noise, properly ground this
	PE	terminal.
		Refer to Pr.02-36-Pr.02-37 to program the multi-function
		Resistive Load:
	RA10-RA11 RB10-RB11	3 A (N.O.) / 3A (N.C.) 250 V _{AC}
	RC10-RC11	5 A (N.O.) / 3A (N.C.) 30 V _{AC}
		Function: outputs the monitor signals, such as drive in operation,
		frequency reached, or overload indication.


8-3 CANopen Communication Cable/Digital Keypad RJ45 Extension Cable

No.	Part No.	Length (L)		
INO.	Fait No.	mm	inch	
1	UC-CMC003-01A	300	11.8	
2	UC-CMC005-01A	500	19.6	
3	UC-CMC010-01A	1000	39	
4	UC-CMC015-01A	1500	59	
5	UC-CMC020-01A	2000	78.7	
6	UC-CMC030-01A	3000	118.1	
7	UC-CMC050-01A	5000	196.8	
8	UC-CMC100-01A	10000	393.7	
9	UC-CMC200-01A	20000	787.4	

■ CANopen Dimension

Model: TAP-CN03

For more information on CANopen, see the CANopen user manual or download related manuals from the Delta website: http://www.deltaww.com/iadownload_acmotordrive

Chapter 9 Specification

- 9-1 230V Series
- 9-2 460V Series
- 9-3 Environment for Operation, Storage and Transportation
- 9-4 Derating of Ambient Temperature and Altitude

9-1 230V Series

230V, three-phase

	Frame	С		C D E		E		
Model VFDSLA		11AMH23AN	17AMH23AN	25AMH23AN	33AMH23AN	49AMH23AN	65AMH23AN	
A	Applicable Motor Output (kW)	2.2	3.7	5.5	7.5	11	15	
-	Applicable Motor Output (HP)	3	5	7.5	10	15	20	
± D	Rated Output Capacity (kVA)	4.2	6.5	9.5	12.6	18.7	24.8	
Output Rating	Rated Output Current (A)	11.0	17.0	25.0	33.0	49.0	65.0	
OF	Carrier Frequency (kHz)	2–15 (Default: 8)						
	Rated Input Current (A)	13.2	20.4	30.0	39.6	58.8	78.0	
Input Rating	Rated Voltage / Frequency		three-phase	e, AC 200V–240V (-15 % –+10 %), 50/60 Hz				
Rat	Operating Voltage Range (V _{AC})			170-	-265			
	Frequency Range (Hz)	47–63						
Weight (kg)		1.24	1.24	2.07	3.97	3.97	6.30	
	Cooling Method	Fan cooling						
	EMC Filter	Optional						
	Ingress Protection Rating		IP20					

The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current. See the derating curve diagram for Pr.06-55 for more information.

[■] When a load is a shock or impact load, use a higher level model.

9-2 460V Series

460V, three-phase

Frame		C D				E										
	Model VFDSLA		Mardal VED		Madal VED		M 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1		M-d-IVED OLA		9A0MH43 13AMH43 17AMH43		25AMH	143	32AMH	143
	wodel VFDSLA	AN	AF	AN	AF	AN	AF	AN	AF	AN	AF					
A	Applicable Motor Output (kW)	3.7		5.	.5	7.	.5	1	1	15						
A	Applicable Motor Output (HP)	5	5	7.	.5	1	0	1	5	2	0					
± 0	Rated Output Capacity (KVA)	6.	9	9.	.9	13	3.3	19).1	24	.4					
Output Rating	Rated Output Current (A)	9.0		13	3.0	17.5		25.0		32.0						
0 12	Carrier Frequency (kHz)	2–15 (Default: 8)														
	Rated Input Current (A)	9.9		14	4.3 19.3		27.5		35.2							
Input Rating	Rated Voltage / Frequency		,	three-pha	se AC 38	80V–480V	(-15 % -	– +10 %),	50/60 Hz	<u>z</u>						
Raf	Operating Voltage Range (V _{AC})					323-	-528									
	Frequency Range (Hz)	47–63														
	Weight (kg)		1.84	2.07	2.93	2.07	2.93	3.97	5.19	3.97	5.19					
	Cooling Method	Fan cooling														
	EMO Eiles		AN : Optional													
EMC Filter		AF : Built-in														
	Ingress Protection Rating	IP20														

NOTE

[■] The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current. See the derating curve diagram for Pr.06-55 for more information.

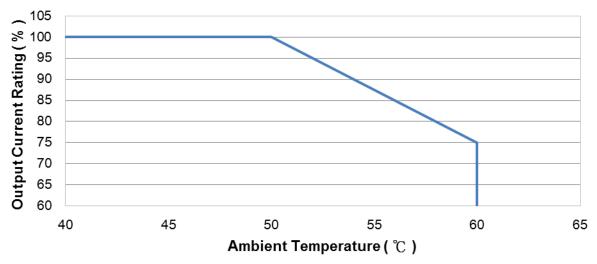
[■] When a load is a shock or impact load, use a higher level model.

Chapter 9 Specification | MH300-L

General Specifications

	Control Method	V/F, SVC			
	Applied Motor	IM (Induction Motor)			
	Max. Output	2.00.500.001			
	Frequency	0.00-599.00Hz			
	Starting Torque	150 % / 3 Hz			
	Speed Control Range	1: 50			
Control	Overload Capability	150 % 60s, 200 % 3s			
Characteristics	Fraguency Cotting	0_+10V / +10V10V			
Characteristics		4–20 mA / 0–+10V			
	Signal	1 channel pulse input (33 kHz), 2 channel pulse output (33 kHz)			
		Fast start-up, Momentary power loss ride thru, Over-torque detection,			
		16-step speed (max.), Accel./decal. time switch, S-curve accel/decel,			
	Main Function	three-wire sequence, JOG frequency, Upper/lower limits for frequency			
		reference, DC injection braking at start and stop, Built-in PLC (5 K steps),			
		MODBUS and CAN are integrated as standard			
Drotoction	Motor Protection	Over-current, Over-voltage, Over-temperature, Phase loss, Over-load			
Protection	Ctall Drawanti	Stall prevention during acceleration, deceleration and running (independent			
Characteristics	Stall Prevention	settings)			
Accessory	I/O extension cards	EMM-D3R2CA (Digital/Relay Card – 3 input and 2 relay C output)			
Cer	tifications	UL, CE, C-Tick, RoHS, REACH, TUV(SIL2)			

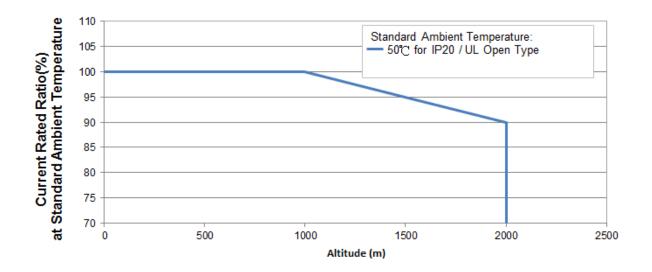
9-3 Environment for Operation, Storage and Transportation


DO NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive/ inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than 0.01 mg/ cm² every year.

	Installation location	IEC60364-1/ IEC60664-1	IEC60364-1/ IEC60664-1 Pollution degree 2, Indoor use only					
		Operation	IP20 / UL Open Type	-20-50 °C -20-60 °C (Derating required)				
	Surrounding		Installed side by side	-20–55 °C (Derating required)				
	Temperature	Storage	-40–85 °C					
		Transportation	-20–70 °C					
		Non-condensation, non-front	ozen					
		Operation	Max. 90 %					
Environment	Rated	Storage / Transportation	Max. 95 %					
	Humidity	No condense water						
	Air Dragging	Operation	86 –106 kPa					
	Air Pressure	Storage / Transportation	/ Transportation 70–106 kPa					
		IEC 60721-3-3						
		Operation	Class 3C2; Class 3S2					
	Pollution Level	Storage	Class 2C2; Class 2S2					
		Transportation	Class 1C2; Class 1S2					
		Concentrate prohibited						
	Altitude	Operable at altitude below	/ 1000 m (derating if ope	erated over 1,000 m)				
Package	Storage	ISTA procedure 1A (accor	ding to weight) IFC 6006	S8-2-31				
Drop	Transportation	10 17 procedure 17 (accor	anig to weight, in a cook	70 2 0 1				
	Operating	1.0 mm, peak to peak value range from 2–13.2 Hz; 0.7 G–1.0 G range from						
	Operating	13.2–55 Hz; 1.0 G range from 55–512 Hz; Comply with IEC 60068-2-6						
Vibration		2.5 G Peak						
	Non-operating	5 Hz–2 kHz						
		0.015" Displacement Max.						

9-4 Derating of Ambient Temperature and Altitude

Derating of Ambient Temperature


Ambient Temperature Derating of IP20 / UL Open Type

At the rated current the ambient temperature is -10°C-+50°C. Over 50°C, decrease the rated current 2.5%/°C up to 60°C.

Derating of Altitude

Derating for Altitude

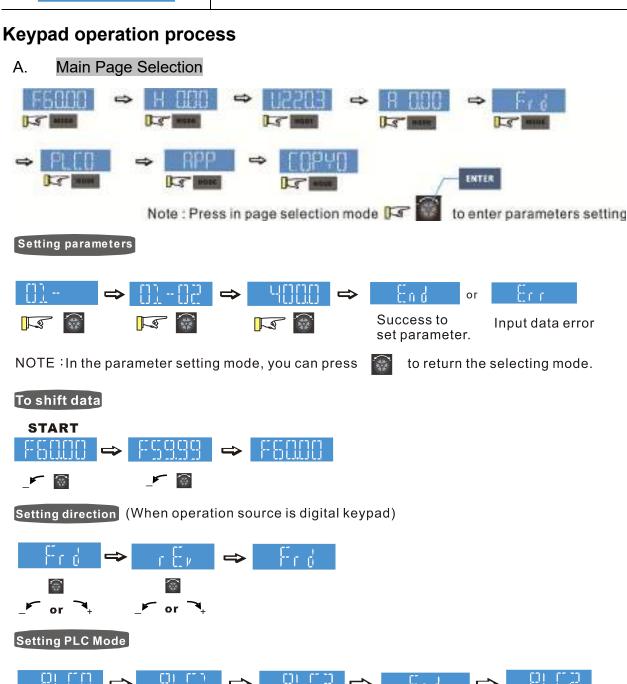
For IP20 / UL Open Type

Current derating at ambient temperature						
Ambient t	emperature	40 °C 45 °C 50 °C				
0	0-1000	100%				
Operating altitude	1001–1500	100	0%	95%		
above sea level (m)	1501–2000	100%	95%	90%		

Operating Conditions	Ambient Temperature Limits
	When the AC motor drive is operating at the rated current, the ambient
IP20 / UL Open Type	temperature has to be between -20°C- +50 °C. When the temperature is over 50
	°C, for every increase by 1 °C, decrease 2.5 % of the rated current. The maximum
	allowable temperature is 60 °C.
	If the AC motor drive is installed at altitude 0–1000 m, follow normal operation
	restriction. If it is installed at altitude 1000–2000 m, decrease
High Altitude	1 % of rated current or lower 0.5 °C of temperature for every 100 m increase in
	altitude. Maximum altitude for Corner Grounded is 2000 m. Contact Delta for more
	information if you need to use this motor drive at an altitude of 2000 m or higher.

[This page intentionally left blank]

Chapter 10 Digital Keypad


KPMH-LC01 keyboard panel

Descriptions of Keypad Functions

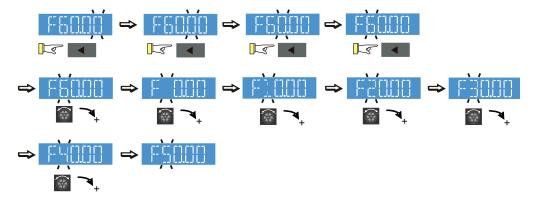
Displayed items	Descriptions
RUN TO TOTAL STOP FWD TO THE PLC REV TO THE PLC	Displays the present frequency setting for the drive
RUN STOP FWD PLC	Displays the actual frequency output to the motor
RUN STOP FWD PLC	Displays the user-defined output of a physical quantity
REV L L L L L	This example is for parameter Pr.00-04 = 30
RUN STOP FWD PLC REV PLC	Displays the load current
RUN STOP PLC REV	Forward command
RUN STOP FWD PLC	Reverse command
RUN STOP FWD PLC	Execute / stop the PLC function
RUN STOP PLC PLC	Parameter copy function
RUN FWD PLC REV PLC	Displays the count value
RUN STOP PLC REV	Displays a parameter item
RUN FWD REV STOP PLC	Displays the content of a parameter value
RUN FWD REV	Displays an external fault
RUN STOP	Displays the data that has been accepted and automatically stored in
REV PLC	the internal memory

Displayed items	Descriptions
RUN STOP FWD PLC	Displays the data set that is not accepted or has exceeded the value

LS 🚳

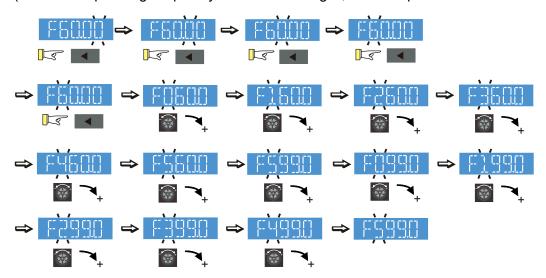
n n

or I 🚳


Enter PLC1 mode

Enter PLC2 mode

B. F Page (Frequency command setting page)


General Mode 1

(maximum operating frequency Pr.01-00 is 2 digits; for example Pr.01-00 = 60.00 Hz)

General Mode 2

(maximum operating frequency Pr.01-00 is 3 digits; for example Pr.01-00 = 599.0 Hz)

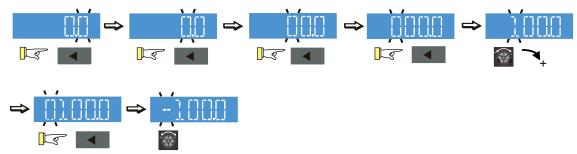
C. Parameter setting

C-1. Unsigned parameter

(parameter setting range≥0) (E.g.: Pr. 01-00)

- 1. Without using the left shift key: rotate the digital dial to select and adjust the parameters.
- 2. Using the left shift key: After you press the left shift key, and the last digit starts to blink. Press the left shift key to move the blinking cursor to the digit to adjust, and increase the value by rotating the digital dial clockwise. The value goes back to 0 after 9. Decrease the value by rotating the digital dial counter-clockwise. The value goes to 9 after 0.

For example: the default setting for Pr.01-00 is 60.00. Pressing the left shift key causes the blinking cursor to move one digit to the left:


The upper setting limit for Pr.01-00 is 599.00. If you set a value greater than 599.00, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (599.00) for a second to remind you of the incorrect setting. The setting remains as the original value and the cursor returns to the last digit.

C-2. Signed parameter setting status 1

(Parameter setting range has no or one decimal place, e.g.: 03-03)

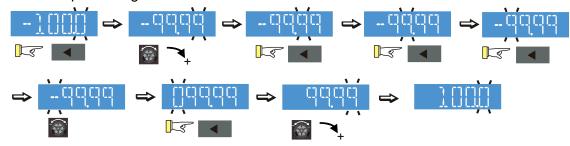
- 1. Without using the left shift key: rotate the digital dial to select and adjust the parameters.
- 2. Using left shift key: After pressing left shift key, the last digit starts to blink. Press the left shift key to move to the digit to adjust, and increase the value by rotating the digital dial clockwise.
 - The value goes back to 0 after 9. Decrease the value by rotating the digital dial counter-clockwise, and the value goes to 9 after 0.
- 3. Press left shift button to shift the blinking cursor one digit to the left. When you shift to the first digit and press the digital dial, the digit "0" changes to "-" (minus).

For example: the default setting for Pr.03-03 is 0.0. If the value should be -100, then use the left shift key to shift the blinking cursor to the hundreds digit. Rotate the digital dial clockwise to 1, and then press left shift to move to the first digit. Rotate the digital dial from '0' to '-'.

The upper limit for Pr.03-03 is 100.0 and lower limit is -100.0. If the value is more than 100.0 or less than -100.0, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (100.0) or lower limit (-100.0) for a second to remind you of the incorrect setting. The setting value remains as the original set value, and the cursor returns to the last digit.

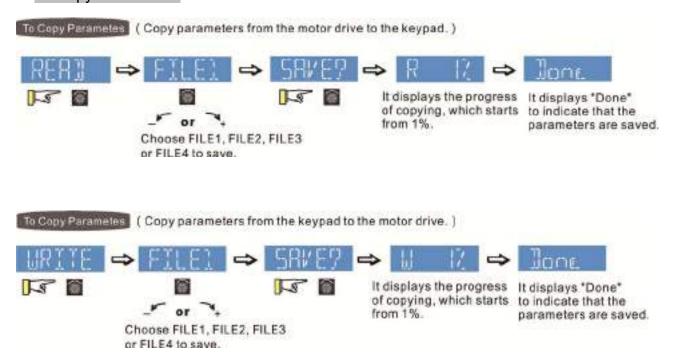
C-3. Signed parameter setting status 2

(The parameter setting range has 2 decimal places; for example: Pr.03-74)


Do not use the left shift key: rotate the digital dial to select and adjust the parameters.

Use the left shift key: After pressing left shift key, and the last digit starts to blink. Press the left shift key to move to the digit to adjust, and then increase the value by rotating the digital dial clockwise. The value goes back to 0 after 9. Decrease the value by rotating the digital dial counter-clockwise, and the value goes to 9 after 0.

Press left shift button to shift the blinking cursor one digit to the left. When you shift to the first digit and press the digital dial, the digit "0" changes to "-" (minus).


Note: When the parameter value can be set to 2 decimal places, and the set value has hundred digits, then you cannot shift the blinking cursor with the left shift key.

For example: change Pr.03-74 from -100 to 100

The upper limit for Pr.03-74 is 100.00 and lower limit is -100.00. If you set a value of more than 100.0 or less than -100.0, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (100.0) or lower limit (-100.0) (only 1 decimal) for a second to remind you of the incorrect setting. The setting value remains as the original set value. The cursor returns to the last digit.

D. To Copy Parameters

Reference Table for the 16-segment LED Display of the Digital Keypad

Number	0	1	2	3	4	5	6	7	8	9
Eleven- Segment Display					L	5	6			ij
Number	Α	В	С	D	E	F	G	Н	I	J
Eleven- Segment Display						-		}{	Ĭ	
Number	K	L	М	N	0	Р	Q	R	S	Т
Eleven- Segment Display	K		M	11		p		R	5	-
Number	U	V	W	X	Υ	Z				
Eleven- Segment Display		1/		\ \	H	7				
Number	b	С	d	е	f	h	i	j	n	0
Eleven- Segment Display	Ь	C	d	2_	Ŧ	h	Ī	ار	П	Ω
Number	q	r	t	u	V	W				
Eleven- Segment Display	디	<u></u>	<u>}:</u>	LJ	LJ	w				

Chapter 11 Summary of Parameter Settings

This chapter provides a summary of parameter (Pr.) setting ranges and defaults. You can set, change, and reset parameters through the digital keypad.

00 Drive Parameters

Pr.	Parameter Name	Setting Range	Default
		206: 230 V, Three-phase, 3 HP	
		207: 230 V, Three-phase, 5 HP	
		208: 230 V, Three-phase, 7.5 HP	
		209: 230 V, Three-phase, 10 HP	
		210: 230 V, Three-phase, 15 HP	Daad
00-00	Identity code of the AC	211: 230 V, Three-phase, 20 HP	Read
	motor drive	407: 460 V, Three-phase, 5 HP	only
		408: 460 V, Three-phase, 7.5 HP	
		409: 460 V, Three-phase, 10 HP	
		410: 460 V, Three-phase, 15 HP	
		411: 460 V, Three-phase, 20 HP	
00.04	Display AC motor drive	Pinds to so tale	Read
00-01	rated current	Display by models	only
		0: No function	
		1: Parameter write protection	
		5: Reset kWH display to 0	
		6: Reset PLC	
00-02	Parameter reset	7: Reset CANopen index (slave)	0
		9: All parameters are reset to defaults	
		(base frequency is 50 Hz)	
		10: All parameters are reset to defaults	
		(base frequency is 60 Hz)	
		0: F (Frequency command)	
00.00	Otani, madianahan sahani'an	1: H (output frequency)	
00-03	Start-up display selection	2: U (user-defined, see Pr.00-04)	0
		3: A (output current)	
		0: Output current (A) (unit: Amps)	
	Content of an III for all a	1: Counter value (c) (unit: CNT)	
00-04	Content of multi-function display (user-defined)	2: Actual output frequency (H.) (unit: Hz)	3
		3: DC BUS voltage (V) (unit: V _{DC})	
		4: Output voltage (E) (unit: V _{AC})	

	Pr.	Parameter Name	Setting Range	Default
			5: Output power angle (n) (unit: deg)	
			6: Output power in kW (P) (unit: kW)	
			7: Motor speed (unit: rpm)	
			8: Estimated output torque percentage, motor's rated torque is	
			100% (t) (unit: %)	
			11: Signal value of AVI analog input terminal (1.) (unit: %)	
			12: Signal value of ACI analog input terminal (2.) (unit: %)	
			14: IGBT temperature (i.) (unit: °C)	
			15: CAP temperature (i.) (unit: °C)	
			16: Digital input status (ON / OFF) (i)	
			17: Digital output status ON / OFF (o)	
			18: Multi-step speed that is executing (S)	
			19: Digital input CPU pin status (d)	
			20: Digital output CPU pin status (0.)	
			25: Overload count (0.00–100.00%) (o.) (unit: %)	
			26: GFF ground fault (G.) (unit: %)	
			27: DC BUS voltage ripple (r.) (unit: V _{DC})	
			30: Output user-defined parameter (U)	
			35: Control mode: 0 = Speed control mode (SPD)	
			36: Present operating carrier frequency (J.) (unit: Hz)	
			38: Drive status (6.)	
			41: kWH display (J) (unit: kWh)	
			47: Master frequency value (A) (unit: Hz)	
	00-06	Firmware version	Read only	#.#
√	00-07	Parameter protection	0–65535	0
		password input	0-3 (number of wrong password attempts)	
			0–65535	
~	00-08	Parameter protection	0: No password protection / password is entered correctly	0
		password setting	(Pr.00-07)	
			1: Password has been set	
	00-11	Speed control mode	0: VF (IM V/F control)	0
			2: SVC	
	00-17	Carrier frequency	2–15 kHz	8
	00-19	PLC command mask	bit 0: Control command forced by PLC control	Read
		1 Lo command mack	bit 1: Frequency command forced by PLC control	only
			0: Digital keypad	
			1: RS-485 serial communication	
,	00-20	Master frequency	2: External analog input (Refer to Pr.03-00)	0
		command (AUTO) source	3: External terminals	
			6: CANopen input	
Ĺ			Note: It is valid only when using with KPC-CC01.	

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Parameter Name	Setting Range	Default
*	00-21	Operation command (AUTO) source	0: Digital keypad 1: External terminals 2: Communication RS-485 input 3: CANopen input Note: It is valid only when using with KPC-CC01.	0
*	00-48	Display filter time (Current)	0.001-65.535 sec.	0.100
~	00-49	Display filter time (Keypad)	0.001-65.535 sec.	0.100
	00-50	Software version (Date)	Read only	#####

01 Basic Parameters

	Pr.	Parameter Name	Setting Range	Default
	01-00	Maximum operation frequency of motor 1	0.00–599.00 Hz	60.00/ 50.00
-	01-01	Output frequency of motor 1	0.00–599.00 Hz	60.00/ 50.00
	04.00	0.10.10.010.00.01	230V series : 0.0 V–255.0 V	220.0
	01-02	Output voltage of motor 1	460 V series : 0.0 V-510.0 V	440.0
	01-03	Mid-point frequency 1 of motor 1	0.00–599.00 Hz	3.00
[01-04	Mid point voltage 1 of motor 1	230 V series : 0.0 V-240.0 V	11.0
_	01-04	Mid-point voltage 1 of motor 1	460 V series : 0.0 V-480.0 V	22.0
	01-05	Mid-point frequency 2 of motor 1	0.00–599.00 Hz	0.50
	01-06	Mid point voltage 2 of motor 1	230 V series : 0.0 V-240.0 V	2.0
_	01-06	Mid-point voltage 2 of motor 1	460 V series : 0.0 V-480.0 V	4.0
	01-07	Minimum output frequency of motor 1	0.00–599.00 Hz	0.00
	04.00	Minimum	230 V series : 0.0 V-240.0 V	0.0
~	01-08	Minimum output voltage of motor 1	460 V series : 0.0 V-480.0 V	0.0
	01-09	Start-up frequency	0.00–599.00 Hz	0.50
×	01-10	Output frequency upper limit	0.00–599.00 Hz	599.00
×	01-11	Output frequency lower limit	0.00–599.00 Hz	0.00
×	01-12	Acceleration time 1	0.00-600.00 sec.	2.00
×	01-13	Deceleration time 1	0.00-600.00 sec.	2.00
×	01-14	Acceleration time 2	0.00-600.00 sec.	10.00
×	01-15	Deceleration time 2	0.00-600.00 sec.	10.00
×	01-16	Acceleration time 3	0.00-600.00 sec.	10.00
×	01-17	Deceleration time 3	0.00-600.00 sec.	10.00
×	01-18	Acceleration time 4	0.00-600.00 sec.	10.00
×	01-19	Deceleration time 4	0.00-600.00 sec.	10.00
×	01-20	JOG acceleration time	0.00-600.00 sec.	10.00
×	01-21	JOG deceleration time	0.00-600.00 sec.	10.00
×	01-22	JOG frequency	0.00–599.00 Hz	6.00
*	01-23	First/Fourth acceleration / deceleration frequency	0.00–599.00 Hz	0.00
×	01-24	S-curve acceleration begin time S1	0.00-25.00 sec.	1.00
×	01-25	S-curve acceleration arrival time S2	0.00-25.00 sec.	1.00
×	01-26	S-curve deceleration begin time S3	0.00-25.00 sec.	1.00
×	01-27	S-curve deceleration arrival time S4	0.00-25.00 sec.	1.00
İ	01-28	Skip frequency 1 (upper limit)	0.00–599.00 Hz	0.00
	01-29	Skip frequency 1 (lower limit)	0.00-599.00 Hz	0.00
İ	01-30	Skip frequency 2 (upper limit)	0.00–599.00 Hz	0.00

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Parameter Name	Setting Range	Default
	01-31	Skip frequency 2 (lower limit)	0.00–599.00 Hz	0.00
	01-32	Skip frequency 3 (upper limit)	0.00-599.00 Hz	0.00
	01-33	Skip frequency 3 (lower limit)	0.00–599.00 Hz	0.00
			0: Output waiting	
	01-34	Zero-speed mode	1: Zero-speed operation	2
			2: Fmin (Refer to Pr.01-07)	
*	01-46	CANopen quick stop time	0.00-600.00 sec.	1.00
	01-71	Leveling Speed Switch	0.00–599.00 Hz	0.00
*	01-72	Lower than Leveling Speed S5	0.00-25.00 sec.	1.00
	01-73	Deceleration Time when Operating	0.00-25.00 sec.	2.00
	01-73	without RUN Command	0.00-23.00 Sec.	2.00

02 Digital Input / Output Parameters

Pr.	Parameter Name	Setting Range	Default
		0: No function	
		1: Two-wire mode 1, power on for operation control	
		(M1: FWD/STOP, M2: REV/STOP)	
		2: Two-wire mode 2, power on for operation control	
		(M1: RUN/STOP, M2: FWD/REV)	
		3: Three-wire, power on for operation control	
		(M1: RUN, M2: REV/FWD, M3: STOP)	
		4: Two-wire mode 1, Quick Start	
	Two-wire / Three-wire operation	(M1: FWD/STOP, M2: REV/STOP)	
02-00	control	5: Two-wire mode 2, Quick Start	1
	CONTROL	(M1: RUN/STOP, M2: FWD/REV)	
		6: Three-wire, Quick Start	
		(M1: RUN, M2: REV/FWD, M3: STOP)	
		<u>IMPORTANT</u>	
		In the Quick Start mode, terminal output stays in a	
		ready state, and the drive responds to the command	
		immediately.	
		2. When using the Quick Start function, the output	
		terminal has higher potential voltage.	
02-01	Multi-function input command 1	0: No function	0
02-01	(MI1)	1: Multi-step speed command 1 / multi-step position	
02-02	Multi-function input command 2	command 1	0
02-02	(MI2)	2: Multi-step speed command 2 / multi-step position	
02-03	Multi-function input command 3	command 2	1
02-03	(MI3)	3: Multi-step speed command 3 / multi-step position	ı
02-04	Multi-function input command 4	command 3	2
02-04	(MI4)	4: Multi-step speed command 4 / multi-step position	
02-05	Multi-function input command 5	command 4	3
02-05	(MI5)	5: Reset	3
02.06	Multi-function input command 6	6: JOG operation	4
02-06	(MI6)	7: Acceleration / deceleration speed inhibit	4
02.07	Multi-function input command 7	8: 1st, 2nd acceleration / deceleration time selection	40
02-07	(MI7)	9: 3 rd , 4 th acceleration / deceleration time selection	49
00.00	Multi-function input command 10	10: EF Input (Pr.07-20)	0
02-26	(MI10)	11: Base Block (B.B.) input from external	0
00.07	Multi-function input command 11	12: Output stop	
02-27	(MI11)	15: Rotating speed command from AVI	0
00.00	Multi-function input command 12	16: Rotating speed command from ACI	
02-28		i -	0

	Pr.	Parameter Name	Setting Range	Default
			24: FWD JOG command	
			25: REV JOG command	
			28: Emergency stop (EF1)	
			29: Signal confirmation for Y-connection	
			30: Signal confirmation for Δ-connection	
			38: Disable EEPROM writing function	
			40: Force coasting to stop	
			49: Enable Drive	
			51: Selection for PLC mode bit 0	
			52: Selection for PLC mode bit 1	
			53: Trigger CANopen quick stop	
			58: Emergency power mode detection	
			59: Magnetic contactor error detection	
			60: Mechanical brake error detection	
			61: Power loss signal	
			62: Mechanical brake error detection 2	
x	02-11	Multi-function input response time	0.000-30.000 sec.	0.005
~	02-12	Multi-function input mode selection	0000h-FFFFh (0: N.O.; 1: N.C.)	0000
	00.40	M (6' 6' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0: No function	4.4
^	02-13	Multi-function output 1 (Relay 1)	1: Indication during RUN	11
×	02-16	Multi-function output 2 (MO1)	2: Operation speed reached	0
	00.47	M (1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/1	3: Desired frequency reached 1 (Pr.02-22)	
^	02-17	Multi-function output 3 (MO2)	4: Desired frequency reached 2 (Pr.02-24)	0
		Output terminal of extension card	5: Zero speed (Frequency command)	
^	02-36	(MO10) or (RY10)	6: Zero speed, includes STOP (Frequency command)	0
,		Output terminal of extension card	7: Over-torque 1 (Pr.06-06-08)	
^	02-37	(MO11) or (RY11)	9: Drive is ready	0
,		Output terminal of extension card	10: Low voltage warning (LV) (Pr.06-00)	_
^	02-38	(MO12) or (RY12)	11: Malfunction indication	0
			12: Mechanical brake signal (Pr.02-39–Pr.02-42)	
			13: Over-heat warning (Pr.06-15)	
			16: Slip error (oSL)	
			19: External interrupt B.B. input (Base Block)	
			20: Warning output	
			21: Over-voltage	
			22: Over-current stall prevention	
			23: Over-voltage stall prevention	
			24: Operation source	

	Pr.	Parameter Name	Setting Range	Default
			25: Forward command	
			26: Reverse command	
			27: Output when current ≥ Pr.02-41	
			28: Output when current < Pr.02-41	
			31: Y-connection for the motor coil	
			32: Δ-connection for the motor coil	
			33: Zero speed (actual output frequency)	
			34: Zero speed includes stop (actual output frequency)	
			35: Error output selection 1 (Pr.06-23)	
			36: Error output selection 2 (Pr.06-24)	
			37: Error output selection 3 (Pr.06-25)	
			38: Error output selection 4 (Pr.06-26)	
			40: Speed reached (including STOP)	
			44: Low current output (use with Pr.06-71-06-73)	
			45: UVW output magnetic contactor ON/OFF switch	
			50: Output control for CANopen	
			56: Power generation direction and status verification	
			57: Power generation direction	
			58: EPS MODE	
			67: Analog input level reached	
			75: Motor-controlled magnetic contactor output	
~	02-18	Multi-function output direction	0000h-FFFFh (0: N.O.; 1: N.C.)	0000
~ [02-21	Digital output gain (DFM)	1–55	1
~	02-22	Desired frequency reached 1	0.00–599.00 Hz	60.00/ 50.00
~	02-23	Width of desired frequency reached 1	0.00–599.00 Hz	2.00
*	02-24	Desired frequency reached 2	0.00–599.00 Hz	60.00/ 50.00
~	02-25	Width of desired frequency reached 2	0.00–599.00 Hz	2.00
~	02-30	Turn On Delay of Magnetic Contactor between Drive and Motor	0.010–65.000 sec.	0.200
~	02-31	Turn Off Delay of Magnetic Contactor between Drive and Motor	0.010–65.000 sec.	0.200
*	02-32	Motor Magnetic Contactor Error Detection Time Setting	0.00-10.00 sec.	0.00
~	02-33	Mechanical Brake Error	0.00-10.00 sec.	0.00

	Pr.	Parameter Name	Setting Range	Default
		Detection Time Setting		
		External operation control	0: Disable	
×	02-35	selection after reset and	1: Drive runs if the RUN command remains after reset or	0
		activation	reboot.	
	02-39	Brake Release Delay Time When Elevator Starts	0.010-65.000 sec.	0.250
	02-40	Brake Contracting Delay Time When Elevator Stops	0.010-65.000 sec.	0.250
	02-41	Output Current Level Setting for External Terminals	0–100% (Rated current of drive %)	0
			Bit 0 = 0: No function	
			Bit 0 = 1: Check torque output function switch	
×	02-42	Brake Release Function Option	Bit 1 = 0: No function	0000h
			Bit 1 = 1: Brake control by frequency threshold function	
			switch	
	02-43	Brake Release Frequency	0.00–10.00 Hz	0.00
	02-44	Brake Engage Frequency	0.00–10.00 Hz	0.00
	02-50	Display the status of	Monitor the status of multi-function input terminals	Read
	02 30	multi-function input terminals	Monitor the status of main function input terminals	only
	02-51	Display the status of	Monitor the status of multi-function output terminals	Read
		multi-function output terminals	inomer are stated or main randion suspen terminals	only
	02-52	Display external multi-function	Monitor the status of PLC input terminals	Read
		input terminals used by PLC		only
	02-53	Display external multi-function	Monitor the status of PLC output terminals	Read
		output terminals used by PLC		only
	02-54	Display the Frequency command	Read only	Read
		executed by the external terminal	·	only
	02-70	IO card type	9: EMM-D3R2CA	Read only
		Initial Frequency command (F)	0: Use current Frequency command	
×	02-82	mode after stop	1: Use zero Frequency command	0
		mode and stop	2: Refer to Pr.02-83 to set up	
*	02-83	Initial Frequency command (F) setting after stop	0.00–599.0 Hz	60.00

03 Analog Input / Output Parameters

	Pr.	Parameter Name	Setting Range	Default
~	03-00	Analog input selection (AVI)	0: No function	1
~	03-01	Analog input selection (ACI)	1: Frequency command	0
~	03-03	Analog input bias (AVI)	-100.0–100.0%	0
*	03-04	Analog input bias (ACI)	-100.0–100.0%	0
		Positive / negative bias mode	0: No bias	
*	03-07	03-07 (AVI)	1: Lower than or equal to bias	
}			2: Greater than or equal to bias	0
		Positive / negative bias mode	3: The absolute value of the bias voltage while serving as	U
*	03-08	(ACI)	the center	
			4: Bias serves as the center	
			0: Negative frequency input is not allowed. The digital	
			keypad or external terminal controls the forward and	
		Reverse setting when analog	reverse direction.	
*	03-10	signal input is negative	1: Negative frequency input is allowed. Positive frequency	0
		frequency	= run in forward direction; negative frequency = run in	
			reverse direction. The digital keypad or external terminal	
			control cannot switch the running direction.	
*	03-11	Analog input gain (AVI)	-500.0–500.0%	100.0
*	03-12	Analog input gain (ACI)	-500.0–500.0%	100.0
*	03-15	Analog input filter time (AVI)	0.00-20.00 sec.	0.01
*	03-16	Analog input filter time (ACI)	0.00–20.00 sec.	0.01
~	03-18	Analog input addition function	0: Disable (AVI, ACI)	0
	00 10	Analog input addition function	1: Enable	
			0: Disable	
		Signal loss selection for analog	1: Continue operation at the last frequency	
	03-19	input 4–20 mA	2: Decelerate to 0 Hz	0
			3: Stop immediately and display "ACE"	
,			0: Output frequency (Hz)	
			1: Frequency command (Hz)	
	03-20	Multi-function output (AFM)	2: Motor speed (Hz)	0
			3: Output current (rms)	
			4: Output voltage	
	03-21	Analog output gain (AFM)	0.0–500.0%	100.0
´		3 3 (' '' ''')	0: Absolute value of output voltage	- 55.5
	03-22	Analog output in REV direction	1: Reverse output 0 V; forward output 0–10 V	0
	00 22	(AFM)	2: Reverse output 5–0 V; forward output 5–10 V	
	03-27	AFM output bias	-100.00–100.00%	0.00
"	00-21		100.00-100.0070	0.00

	Pr.	Parameter Name	Setting Range	Default
~	03-28	AVI terminal input selection	0: 0–10 V	0
	03-20	Avi terrilinai input selection	3: -10-10 V (Pr.03-69-03-74 are valid)	U
			0: 4–20 mA	
*	03-29	ACI terminal input selection	1: 0–10 V	0
			2: 0–20 mA	
			Monitor the status of PLC analog output terminals	
	03-30	Display the analog output	bit 1: AFM	Read
	03-30	terminals used by PLC	bit 2: AO10	only
			bit 3: AO11	
			0: 0–10 V output	
~	03-31	AFM output selection	1: 0–20 mA output	0
			2: 4-20 mA output	
~	03-32	AFM DC output setting level	0.00–100.00%	0.00
	03-32	AFM filter output time	0.00–100.00% 0.00–20.00 sec.	0.00
	00-00	At Writter output time	0: Disable	0.01
*	03-39	VR input selection	1: Frequency command	1 1
			0: AVI	
		Multi-function MO output by Al	1: ACI	
*	03-44	level source	3: Extension card input terminal Al10	0
			4: Extension card input terminal Al11	
~	03-45	Al upper level 1	-100.00–100.00%	50.00
~	03-46	Al lower level 2	-100.00–100.00%	10.00
	02.57	ACI lourest point	Pr.03-29 = 1, 0.00–10.00 V	4.00
~	03-57	ACI lowest point	Pr.03-29 ≠ 1, 0.00–20.00 mA	4.00
*	03-58	ACI proportional lowest point	0.00-100.00%	0.00
~	03-59	ACI mid-point	Pr.03-29 = 1, 0.00–10.00 V	12.00
		ACI Illia-politi	Pr.03-29 ≠ 1, 0.00–20.00 mA	12.00
*	03-60	ACI proportional mid-point	0.00–100.00%	50.00
~	03-61	ACI highest point	Pr.03-29 = 1, 0.00–10.00 V	20.00
,		, recompliant	Pr.03-29 ≠ 1, 0.00–20.00 mA	
*	03-62	ACI proportional highest point	0.00-100.00%	100.00
~	03-63	AVI voltage lowest point	0.00–10.00 V	0.00
*	03-64	AVI voltage proportional lowest point	-100.00–100.00%	0.00
*	03-65	AVI voltage mid-point	0.00–10.00 V	5.00
*	03-66	AVI voltage proportional mid-point	-100.00–100.00%	50.00
*	03-67	AVI voltage highest point	0.00–10.00 V	10.00

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Parameter Name	Setting Range	Default
*	03-68	AVI voltage proportional highest point	-100.00–100.00%	100.00
*	03-69	Negative AVI voltage lowest point	-10.00–0.00 V (valid when Pr.03-28 sets as -10–10 V)	0.00
*	03-70	Negative AVI voltage proportional lowest point	-100.00–100.00% (valid when Pr.03-28 sets as -10–10 V)	0.00
*	03-71	Negative AVI voltage mid-point	-10.00–0.00 V (valid when Pr.03-28 sets as -10–10 V)	-5.00
*	03-72	Negative AVI voltage proportional mid-point	-100.00–100.00% (valid when Pr.03-28 sets as -10–10 V)	-50.00
*	03-73	Negative AVI voltage highest point	-10.00–0.00 V (valid when Pr.03-28 sets as -10–10 V)	-10.00
*	03-74	Negative AVI voltage proportional highest point	-100.00–100.00% (valid when Pr.03-28 sets as -10–10 V)	-100.00

04 Multi-step Speed Parameters

	Pr.	Parameter Name	Setting Range	Default
*	04-00	1 st step speed frequency	0.00-599.00 Hz	0.00
*	04-01	2 nd step speed frequency	0.00-599.00 Hz	0.00
*	04-02	3 rd step speed frequency	0.00–599.00 Hz	0.00
*	04-03	4 th step speed frequency	0.00–599.00 Hz	0.00
*	04-04	5 th step speed frequency	0.00–599.00 Hz	0.00
×	04-05	6 th step speed frequency	0.00-599.00 Hz	0.00
*	04-06	7 th step speed frequency	0.00–599.00 Hz	0.00
×	04-07	8 th step speed frequency	0.00–599.00 Hz	0.00
*	04-08	9 th step speed frequency	0.00–599.00 Hz	0.00
×	04-09	10 th step speed frequency	0.00–599.00 Hz	0.00
×	04-10	11 th step speed frequency	0.00–599.00 Hz	0.00
×	04-11	12 th step speed frequency	0.00–599.00 Hz	0.00
*	04-12	13 th step speed frequency	0.00–599.00 Hz	0.00
*	04-13	14 th step speed frequency	0.00–599.00 Hz	0.00
*	04-14	15 th step speed frequency	0.00–599.00 Hz	0.00
*	04-50	PLC buffer 0	0–65535	0
*	04-51	PLC buffer 1	0–65535	0
*	04-52	PLC buffer 2	0–65535	0
*	04-53	PLC buffer 3	0–65535	0
*	04-54	PLC buffer 4	0–65535	0
*	04-55	PLC buffer 5	0–65535	0
*	04-56	PLC buffer 6	0–65535	0
*	04-57	PLC buffer 7	0–65535	0
*	04-58	PLC buffer 8	0–65535	0
*	04-59	PLC buffer 9	0–65535	0
*	04-60	PLC buffer 10	0–65535	0
*	04-61	PLC buffer 11	0–65535	0
*	04-62	PLC buffer 12	0–65535	0
*	04-63	PLC buffer 13	0–65535	0
*	04-64	PLC buffer 14	0–65535	0
*	04-65	PLC buffer 15	0–65535	0
*	04-66	PLC buffer 16	0–65535	0
*	04-67	PLC buffer 17	0–65535	0
*	04-68	PLC buffer 18	0–65535	0
*	04-69	PLC buffer 19	0–65535	0

05 Motor Parameters

	Pr.	Parameter Name	Setting Range	Default
			0: No function	
	05-00	Motor parameter auto-tuning	1: Dynamic test for an induction motor (IM)	0
			2: Static test for an induction motor (IM)	
	05-01	Full-load current for an induction motor (A)	10–120% of the drive's rated current	#.##
,	05-02	Rated power for an induction motor (kW)	0.00–655.35 kW	#.##
/	05-03	Rated speed for an induction motor (rpm)	0–65535 rpm 1710 (60 Hz, 4 poles); 1410 (50 Hz, 4 poles)	1710
	05-04	Number of poles for an induction motor	2–20	4
	05-05	No-load current for an induction motor (A)	0.00-Pr.05-01 default	#.##
	05-06	Stator resistance (Rs) for an induction motor	0.000–65.535 Ω	#.###
	05-07	Rotor resistance (Rr) for an induction motor	0.000 – 65.535Ω	#.###
	05-08	Magnetizing inductance (Lm) for an induction motor	0.0-6553.5 mH	#.#
	05-09	Stator inductance (Lx) for an induction motor	0.0-6553.5 mH	#.#
,	05-23	Frequency for Y-connection /Δ-connection switch for an induction motor	0.00-599.00 Hz	60.00
	05-24	Y-connection /Δ-connection switch for an induction motor	0: Disable 1: Enable	0
<i>,</i>	05-25	Delay time for Y-connection /Δ-connection switch for an induction motor	0.000-60.000 sec.	0.200
	05-26	Accumulated Watt-second for a motor in low word (W-sec.)	Read only	#.#
	05-27	Accumulated Watt-second for a motor in high word (W-sec.)	Read only	#.#
	05-28	Accumulated Watt-hour for a motor (W-hour)	Read only	#.#
	05-29	Accumulated Watt-hour for a motor in low word (kW-hour)	Read only	#.#

Chapter 11 Summary of Parameter Settings | MH300-L

Pr.	Parameter Name	Setting Range	Default
05-30	Accumulated Watt-hour for a motor in high word (kW-hour)	Read only	#.#
05-31	Accumulated motor operation time (minutes)	0–1439	0
05-32	Accumulated motor operation time (days)	0–65535	0

06 Protection Parameters

	Pr.	Parameter Name	Setting Range	Default
	00.00	L ouveltone level	230V: 150.0–220.0 V _{DC}	180.0
_	06-00	Low voltage level	460V: 300.0-440.0 V _{DC}	360.0
			0: Disabled	200.0
*	06-01	6-01 Over-voltage stall prevention	230V: 0.0–450.0 V _{DC}	380.0
			460V: 0.0–900.0 V _{DC}	760.0
	06-02	Selection for over-voltage stall	0: Traditional over-voltage stall prevention	0
_	00-02	prevention	1: Smart over-voltage stall prevention	0
	06-03	Over-current stall prevention	0–200%	400
_	06-03	during acceleration	(100% corresponds to the rated current of the drive)	180
	00.04	Over-current stall prevention	0–200%	400
^	06-04	during operation	(100% corresponds to the rated current of the drive)	180
			0: By current acceleration / deceleration time	
			1: By the 1 st acceleration / deceleration time	
		Acceleration / deceleration time selection for stall prevention at constant speed	2: By the 2 nd acceleration / deceleration time	0
^	06-05		3: By the 3 rd acceleration / deceleration time	
			4: By the 4 th acceleration / deceleration time	
			5: By auto-acceleration / auto-deceleration	
	06-06	Over-torque detection selection (motor)	0: No function	0
			1: Continue operation after over-torque detection during	
			constant speed operation	
,			2: Stop after over-torque detection during constant speed	
^			operation	
			3: Continue operation after over-torque detection during	
			RUN	
			4: Stop after over-torque detection during RUN	
,		Over-torque detection level	10–250% (100% corresponds to the rated current of the	
^	06-07	(motor)	drive)	120
,		Over-torque detection time		
^	06-08	(motor)	0.1–60.0 sec.	0.1
	00.40	Ourse and Heaville	0-250% (100% corresponds to the rated current of the	450
^	06-12	Current limit	drive)	150
			0: Inverter motor (with external forced cooling)	
$\boldsymbol{\varkappa}$	06-13	Electronic thermal relay	1: Standard motor (motor with fan on shaft)	2
		selection 1 (motor)	2: Disable	
	00.44	Electronic thermal relay action	00 0 000 0 000	60.5
^	06-14	time 1 (motor)	30.0–600.0 sec.	60.0
	00.45	Temperature level overheat	0.0.440.000	405.0
^	06-15	(OH) warning	0.0-110.0°C	105.0

₩	
~	

	Pr.	Parameter Name	Setting Range	Default
· [06-16	Stall prevention limit level	0-100% (refer to Pr.06-03-06-04)	100
	00.47	F	0: No fault record	Read
	06-17	Fault record 1	1: Over-current during acceleration (ocA)	only
	00.40	F- 11 1 0	2: Over-current during deceleration (ocd)	Read
	06-18	Fault record 2	3: Over-current during constant speed (ocn)	only
Ì	00.40	F 11 10	4: Ground fault (GFF)	Read
	06-19	Fault record 3	6: Over-current at stop (ocS)	only
	22.22	- II	7: Over-voltage during acceleration (ovA)	Read
	06-20	Fault record 4	8: Over-voltage during deceleration (ovd)	only
			9: Over-voltage during constant speed (ovn)	Read
	06-21	Fault record 5	10: Over-voltage at stop (ovS)	only
Ì			11: Low-voltage during acceleration (LvA)	Read
	06-22	Fault record 6	12: Low-voltage during deceleration (Lvd)	only
-			13: Low-voltage during constant speed (Lvn)	-
			14: Low-voltage at stop (LvS)	
			15: Phase loss protection (orP)	
			16: IGBT overheat (oH1)	
			18: TH1 open: IGBT overheat protection error (tH1o)	
			21: Drive overload (oL)	
			22: Electronic thermal relay protection 1 (EoL1)	
			26: Over-torque 1 (ot1)	
			28: Low current (uC)	
			31: Memory read-out error (cF2)	
			33: U-phase current detection error (cd1)	
			34: V-phase current detection error (cd2)	
			35: W-phase current detection error (cd3)	
			36: Clamp current detection error (Hd0)	
			37: Over-current detection error (Hd1)	
			40: Auto-tuning error (AUE)	
			41: PID feedback loss (AFE)	
			48: Analog current input loss (ACE)	
			49: External fault input (EF)	
			50: Emergency stop (EF1)	
			51: External Base Block (B.B.)	
			52: Password error (Pcod)	
			54: Communication error (CE1)	
			55: Communication error (CE2)	
			56: Communication error (CE3)	
			57: Communication error (CE4)	
			58: Communication time-out (CE10)	
			61: Y-connection / Δ-connection switch error (ydc)	

Pr.	Parameter Name	Setting Range	Default
		62: Deceleration energy backup error (dEb)	
		63: Slip error (oSL)	
		71: Mechanical brake error 2 (MBF2)	
		72: Channel 1 (S1–DCM) safety loop error (STL1)	
		74: Magnetic contactor error (MCF)	
		75: Mechanical brake error (MBF)	
		76: Safe Torque Off (STo)	
		77: Channel 2 (S2–DCM) safety loop error (STL2)	
		78: Internal loop error (STL3)	
		79: U-phase over-current before run (Uoc)	
		80: V-phase over-current before run (Voc)	
		81: W-phase over-current before run (Woc)	
		82: U-phase output phase loss (OPHL)	
		83: V-phase output phase loss (OPHL)	
		84: W-phase output phase loss (OPHL)	
		87: Drive overload in low frequency (oL3)	
		101: CANopen software disconnect 1 (CGdE)	
		102: CANopen software disconnect 2 (CHbE)	
		104: CANopen hardware disconnect (CbFE)	
		105: CANopen index setting error (CldE)	
		106: CANopen station number setting error (CAdE)	
		107: CANopen memory error (CFrE)	
		127: Software version error (CP33)	
		140: GFF detected when power on (Hd6)	
		141: GFF before run (BGFF)	
		142: Auto-tuning error 1 (DC test stage) (AUE1)	
		143: Auto-tuning error 2 (High frequency test stage)	
		(AUE2)	
		144: Auto-tuning error 3 (Rotary test stage) (AUE3)	
06-23	Fault output option 1	0-65535 (refer to bit table for fault code)	0
06-24	Fault output option 2	0-65535 (refer to bit table for fault code)	0
06-25	Fault output option 3	0-65535 (refer to bit table for fault code)	0
06-26	Fault output option 4	0-65535 (refer to bit table for fault code)	0
60.5:	Frequency command for	0.00.500.00.11	Read
06-31	malfunction	0.00–599.00 Hz	only
00.55		0.00.500.00.11	Read
06-32	Output frequency at malfunction	0.00–599.00 Hz	only
			Dee !
06-33	Output voltage at malfunction	0.0–6553.5 V	Read
00.01	DO alternation if the	0.0 0550 5.1/	only
06-34	DC voltage at malfunction	0.0–6553.5 V	Read

	Pr.	Parameter Name	Setting Range	Default
Ī				only
	06-35	Output current at malfunction	0.00 655 25 Amp	Read
	06-35	Output current at malfunction	0.00–655.35 Amp	only
	06-36	IGBT temperature at	-3276.7–3276.7°C	Read
		malfunction	3270.7 3270.7 0	only
	06-37	Capacitance temperature at	-3276.7–3276.7°C	Read
		malfunction	0270.7 0270.7 0	only
	06-38	Motor speed in rpm at	-32767–32767 rpm	Read
		malfunction	52. 5. 52. 5. 1p	only
	06-40	Status of the multi-function input	0000h-FFFFh	Read
		terminal at malfunction		only
	06-41	Status of the multi-function	0000h-FFFFh	Read
-		output terminal at malfunction		only
	06-42	Drive status at malfunction	0000h-FFFFh	Read
-				only
$_{\prime}$	06-44	STO latch selection	0: STO Latch	0
-			1: STO No Latch	
	06-45	Output phase loss detection action (OPHL)	0: Warn and continue operation	
\sim			1: Warn and ramp to stop	3
			2: Warn and coast to stop	
			3: No warning	
~	06-46	Detection time for output phase loss	0.000–65.535 sec.	0.500
$_{\scriptscriptstyle{\prime\prime}}$	06-47	Current detection level for	0.00–100.00%	1.00
_ [00-47	output phase loss	0.00-100.0078	1.00
*	06-48	DC brake time for output phase loss	0.000–65.535 sec.	0.000
. [06-49	LvX auto-reset	0: Disable	0
~	00-49	LVA auto-reset	1: Enable	U
	06-53	Detected input phase loss	0: Warn and ramp to stop	0
~	00-33	action (OrP)	1: Warn and coast to stop	U
			0: constant rated current and limit carrier wave by load	
			current and temperature	
$_{\scriptscriptstyle{N}}$	06-55	Derating protection	1: constant carrier frequency and limit load current by	0
	00-33	Derating protection	setting carrier wave	
			2: constant rated current (same as setting 0), but close	
			current limit	
*	06-60	Software detection GFF current level	0.0–6553.5%	60.0
*	06-61	Software detection GFF filter	0.00-655.35 sec.	0.10

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Parameter Name	Setting Range	Default
		time		
	06-63	Operation time of fault record 1 (Days)	0–65535 days	Read only
-	06-64	Operation time of fault record 1	0–65535 min.	Read
		(Minutes)	0 00000 111111.	only
	06-65	Operation time of fault record 2 (Days)	0–65535 days	Read only
-	06-66	Operation time of fault record 2	0–65535 min.	Read
-	06-67	(Minutes) Operation time of fault record 3	0–65535 days	Read
-	06-68	(Days) Operation time of fault record 3 (Minutes)	0–65535 min.	Read
-	06-69	Operation time of fault record 4	0-65535 days	only Read only
-	06-70	(Days) Operation time of fault record 4 (Minutes) 0–65535 min.		Read
,	06-71	Low current setting level	0.0–100.0%	0.0
,	06-72	Low current detection time	0.00-360.00 sec.	0.00
•	06-73	0: No function 1: Warn and coast to stop 2: Warn and ramp to stop by the 2 nd deceleration time 3: Warn and continue operation		0
,	06-80	Emergency power voltage in operation	280.0-537.0 V _{DC}	300.0
	06-81	Emergency power speed in operation	0.00–599.00 Hz	Read only
	06-82	Emergency power capacity in operation	0.0–100.0 KVA	0.0
•	06-83	EPS mode selection	 Operate by current command direction. Run in the running direction of power generation mode. Execute the power generation direction detection when running in power generation mode. After determining the power generation direction, the host controller sends a running direction command. (When at STOP, the direction of power generation mode (MO = 57) confirmation and the direction of power generation does not maintain.) Execute the power generation direction detection each time whenever running. 	0

Pr.	Parameter Name	Setting Range	Default
		3: After determining the power generation direction, the	
		host controller sends a running direction command.	
		(When at STOP, the direction of power generation	
		mode (MO = 57) confirmation and the direction of the	
		power generation does not maintain.) Execute the	
		power generation direction detection only one time	
		when running.	
		4: Run by the direction of power generation mode.	
		Execute the power generation direction detection when	
		running in normal mode.	
06-84	Power generation direction search time	0.0-5.0 sec.	1.0
06-85	UPS output delay time	0.0-10.0 sec.	1.0
	Power factor kevel for		
06-86	determining the power	0.0–150.0°	70.0
	generation direction		
	Reference level of the power		Read
06-87	factor when running	0.0–200.0 °	only
	Power generation direction	0: Forward running	Read
06-88		1: Reverse running	only
06-89	Delay time on stopping UPS output	0.0-60.0 sec.	3.0
00.00	Operation time of fault record 5	0.05505 days	Read
06-90	(Day)	0–65535 days	only
00.04	Operation time of fault record 5	o offer with	Read
06-91	(Min.)	0–65535 min.	only
00.00	Operation time of fault record 6	0.05505.4.	Read
06-92	(Day)	0–65535 days	only
06-93	Operation time of fault record 6 (Min.)	0–65535 min.	Read only

07 Special Parameters

	Pr.	Parameter Name	Setting Range	Default
/	07.00	Coffman harden land	230V: 350.0–450.0 V _{DC}	370.0
×	07-00	Software brake level	460V: 700.0–900.0 V _{DC}	740.0
×	07-01	DC brake current level	0–100 %	30
×	07-02	DC brake time at Start-up	0.0-60.0 sec.	0.7
×	07-03	DC brake time at stop	0.0-60.0 sec.	0.7
×	07-04	DC brake frequency at stop	0.00-599.00 Hz	0.00
×	07-05	Voltage increasing gain	1–200 %	100
		Destart ofter memorters never	0: Stop operation	
×	07-06	Restart after momentary power	1: Speed tracking by the speed before the power loss	0
		loss	2: Speed tracking by the minimum output frequency	
×	07-07	Allowed power loss duration	0.0–20.0 sec.	2.0
×	07-08	Base block time	0.1-5.0 sec.	0.5
×	07-09	Current limit of speed tracking	20–200 %	100
			0: Stop operation	
*	07-10	Restart after fault action	1: Speed tracking by current speed	0
			2: Speed tracking by minimum output frequency	
×	07-11	Number of times of auto-restart after fault	0–10	0
*	07-12	Speed tracking during start-up	Disable Speed tracking by maximum output frequency Speed tracking by motor frequency at start Speed tracking by minimum output frequency	0
N	07-13	dEb function selection	O: Disable 1: dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored. 2: dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored.	0
N	07-15	Dwell time at acceleration	0.00-600.00 sec.	0.00
×	07-16	Dwell frequency at acceleration	0.00-599.00 Hz	0.00
×	07-17	Dwell time at deceleration	0.00-600.00 sec.	0.00
×	07-18	Dwell frequency at deceleration	0.00–599.00 Hz	0.00
N	07-19	Fan cooling control	 0: Fan always ON 1: Fan is OFF after the AC motor drive stops for one minute. 2: Fan is ON when the AC motor drive runs; fan is OFF when the AC motor drive stops. 3: Fan turns ON when the temperature reaches around 60°C. 	3

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Parameter Name	Setting Range	Default	
			0: Coast to stop		
			1: Stop by the 1 st deceleration time		
		Deceleration of emergency or	2: Stop by the 2 nd deceleration time		
*	07-20	forced stop	3: Stop by the 3 rd deceleration time	0	
		Toroca stop	4: Stop by the 4 th deceleration time		
			5: System deceleration		
			6: Automatic deceleration		
~	07-21	Automatic energy-saving setting	0: Disable	0	
		Tratemate energy saving setting	1: Enable		
~	07-22	Energy-saving gain	10–1000%	100	
		Automatic voltage regulation	0: Enable AVR		
*	07-23	(AVR) function	1: Disable AVR	0	
		(AVIV) ranotion	2: Disable AVR during deceleration		
~	07-24	Torque command filter time	0.001-10.000 sec.	0.050	
	07 24	(V/F and SVC control mode)	0.001 10.000 300.	0.000	
~	07-25	Slip compensation filter time	0.001–10.000 sec.	0.100	
	07 20	(V/F and SVC control mode)	0.001 10.000 300.	0.100	
×	07-26	Torque compensation gain	0–10	1	
~	07-27	Slip compensation gain	0.00–10.00	0.00	
	01 21	(V/F and SVC control mode)	(default value is 1 in SVC mode)	0.00	
~	07-29	Slip deviation level	0.0–100.0%	0	
	07 20	onp adviation level	0: No detection		
×	07-30	Slip deviation detection time	0.0–10.0 sec.	1.0	
			0: Warn and continue operation		
~	07-31	Slip deviation action	1: Warn and ramp to stop	0	
	07 31	Onp deviation action	2: Warn and coast to stop		
			3: No warning		
~	07-32	Motor shock compensation	0–10000	1000	
	07-32	factor	0-10000	1000	
*	07-33	Auto-restart interval of fault	0.0-6000.0 sec.	60.0	
~	07-34	Slip compensation gain %	0.0–100.0 %	0.0	
7	U1-34	(power generation mode)	0.0-100.0 /6	0.0	
	07-35	Slip compensation gain %	0.0–100.0 %	0.0	
7	U1-33	(electricity mode)	0.0-100.0 /6	0.0	
*	07-36	Maximum slip frequency	0.00–200.00 Hz	0.00	

09 Communication Parameters

	Pr.	Parameter Name	Setting Range	Default
×	09-00	Communication address	1–254	1
×	09-01	COM1 transmission speed	4.8–115.2 kbps	9.6
*	09-02	COM1 transmission fault treatment	0: Warn and continue operation1: Display error and ramp to stop2: Display error and coast to stop3: No warning, no error displayed and continue operation	3
×	09-03	COM1 time-out detection	0.0-100.0 sec.	0.0
~	09-04	COM1 communication protocol	1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 7O1 (ASCII) 4: 7E2 (ASCII) 5: 7O2 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 8O1 (ASCII) 10: 8E2 (ASCII) 11: 8O2 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 8O1 (RTU) 16: 8E2 (RTU) 17: 8O2 (RTU)	1
*	09-09	Communication response delay time	0.0–200.0 ms	2.0
*	09-33	PLC command force to 0	0–65535	0
	09-35	PLC address	1–254	2
	09-36	CANopen slave address	0: Disable 1–127	0
	09-37	CANopen speed	0: 1 Mbps 1: 500 Kbps 2: 250 Kbps 3: 125 Kbps 4: 100 Kbps (Delta only) 5: 50 Kbps	0

Chapter 11 Summary of Parameter Settings | MH300-L

Pr.	Parameter Name	Setting Range	Default
		bit 0: CANopen software disconnection 1	
		(CANopen guarding time-out)	
		bit 1: CANopen software disconnection 2	
		(CANopen heartbeat time-out)	
09-39	CANopen warning record	bit 3: CANopen SDO time-out	0
		bit 4: CANopen SDO buffer overflow	
		bit 5: CANopen hardware disconnection warning	
		(Can Bus OFF)	
		bit 6: Error protocol for CANopen	
00.40	CAN an an de andino months ad	0: Delta-defined decoding method	4
09-40	CANopen decoding method	1: CANopen standard DS402 protocol	1
		0: Node reset	
	CANopen communication status	1: Com reset	
00.44		2: Boot up	Read
09-41		3: Pre-operational	only
		4: Operation	
		5: Stopped	
		0: Not ready for use	
		1: Inhibit start	
		2: Ready to switch on	
00.40		3: Switched on	Read
09-42	CANopen control status	4: Enable operation	only
		7: Quick stop active	
		13: Error reaction activation	
		14: Error state	
		bit 0: CANopen reset, internal address 20XX is 0	
00.40		bit 1: CANopen reset, internal address 264X is 0	05505
09-43	CANopen reset index	bit 2: CANopen reset, internal address 26AX is 0	65535
		bit 3: CANopen reset, internal address 60XX is 0	

11 Advanced Parameters

	Pr.	Parameter Name	Setting Range	Default
	11-41	PWM mode selection	0: Two-phase	0
	11-41	Pyvivi mode selection	2: Space vector	U
/	11-42	System control flag	0000-FFFFh	0000

Chapter 12 Description of Parameter Settings

00 Drive Parameters

✓ You can set this parameter during operation.

Identity Code of the AC Motor Drive

Default: #.#

Settings Read Only

GRAPH - GRAPH Display AC Motor Drive Rated Current

Default: #.#

Settings Read Only

Pr.00-00 displays the identity code of the AC motor drive. Use the following specification table to check if the Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity code of the motor.

		230V Series: Three-Phase				460V Series: Three-Phase				ase	
Frame	С		Frame C D E F		F	С	D		E		
kW	2.2	3.7	5.5	7.5	11	15	3.7	5.5	7.5	11	15
HP	3	5	7.5	10	15	20	5	7.5	10	15	20
Identity Code	206	207	208	209	210	211	407	408	409	410	411
Rated Current	11	17	25	33	49	65	9	13	17	25	32

Parameter Reset

Default: 0

Settings 0: No Function

1: Parameter write protection

5: Reset kWH display to 0

6: Reset PLC

7: Reset CANopen index (Slave)

9: All parameters are reset to defaults (base frequency is 50 Hz)

10: All parameters are reset to defaults (base frequency is 60 Hz)

- 1: All parameters are read-only except Pr.00-02, 00-07, and 00-08. You must set Pr.00-02 to 0 before changing other parameter settings.
- 5: You can set the kWh displayed value to 0 even when the drive is operating. Reset Pr.05-26, 05-27, 05-28, 05-29, 05-30 to 0.
- 6: Clear internal PLC program (including the related settings for PLC internal CANopen master)
- 2: Reset the related settings for CANopen slave.
- 9 or 10: All parameters are reset to defaults. If password is set in Pr.00-08, enter the password set in Pr.00-07 to reset to defaults.
- 6, 9, 10: Reboot the motor drive after you finish setting.

★ ☐ ☐ - ☐ 子 Start-up Display Selection

Default: 0

Settings 0: F (Frequency command)

1: H (output frequency)

2: U (user-defined) (refer to Pr.00-04)

3: A (output current)

Determines the start-up display page. User-defined display selection is according to the setting in Pr.00-04.

✓ ☐☐ - ☐ Y Content of Multi-function Display (User-Defined)

Default: 3

Settings 0: Display output current (A) (Unit: Amps)

- 1: Display counter value (c) (Unit: CNT)
- 2: Display actual output frequency (H.) (Unit: Hz)
- 3: Display DC BUS voltage (v) (Unit: V_{DC})
- 4: Display output voltage of U, V, W (E) (Unit: V_{AC})
- 5: Display output power angle of U, V, W (n) (Unit: deg)
- 6: Display output power of U, V, W (P) (Unit: kW)
- 7: Display motor speed rpm (r) (Unit: rpm)
- 8: Display estimated output torque %, motor's rated torque is 100% (Unit: %)
- 11: Display signal value of AVI analog input terminal (1.) (Unit: %)
- 12: Display signal value of ACI analog input terminal (2.) (Unit: %)
- 14: Display IGBT temperature (i.) (Unit: °C)
- 15: Display CAP temperature (i.) (Unit: °C)
- 16: Display digital input status (ON / OFF) (i)
- 17: Display digital output status (ON / OFF) (o)
- 18: Display multi-step speed that is executing (S)
- 19: Display corresponding CPU pin status of digital input (d)
- 20: Display corresponding CPU pin status of digital output (0.)
- 25: Display overload count (0.00-100.00%) (o.) (Unit: %)
- 26: Display GFF Ground Fault (G.) (Unit: %)
- 27: Display DC BUS voltage ripple (r.) (Unit: V_{DC})
- 30: Display user-defined output (U)
- 35: Display control mode:

0 = speed control mode (SPD)

- 36: Display present operating carrier frequency (Hz) (J.)
- 38: Display drive status (6.)
- 41: Display kWH (J) (Unit: kWh)
- 47: Display master frequency value (A) (Unit: Hz)

_						- 2
Ex	nı.	or.	121	rin	n	1
-	יוט	aı	ıaı	uu		

- It can also display negative values when setting analog input bias (Pr.03-03-03-10).
- Example: Assume that AVI input voltage is 0 V, Pr.03-03 is 10.0%, Pr.03-07 is 4 (Bias serves as the center), and Pr.03-10 is 1 allowing negative frequency input.

Explanation 2

Example: If MI1 and MI6 are ON, the following table shows the status of the terminals.

Normally opened contact (N.O.): (0: OFF, 1: ON)

Terminal	MI7	MI6	MI5	MI4	MI3	MI2	MI1
Status	0	1	0	0	0	0	1

- The value is 0000 0000 0010 0001 in binary and 0021H in HEX. When Pr.00-04 is set to "16" or "19", the u page on the keypad displays 0021h.
- The setting 16 is the ON / OFF status of digital input according to Pr.02-12 setting and the setting 19 is the corresponding CPU pin ON / OFF status of the digital input.
- When MI1 / MI2 default setting is two-wire/ three-wire operation control (Pr.02-00 ≠ 0), and MI3 is set as three-wire, it is not affected by Pr.02-12.
- You can set 16 to monitor the digital input status, and then set 19 to check if the circuit is normal.

Explanation 3

Example: Assume that RY: Pr.02-13 is set to 9 (Drive is ready). After the drive applies power, if there is no other abnormal status, the contact is ON. The display status is shown below.

Normally opened contact (N.O.):

Terminal	MO2	MO1	RY1
Status	0	0	1

- If Pr.00-04 is set to 17 or 20, it displays in hexadecimal "0001h" with LED u page is ON on the keypad.
- The setting 17 is the ON / OFF status of digital output according to Pr.02-18 setting and the setting 20 is the corresponding CPU pin ON / OFF status of the digital output.
- You can set 17 to monitor the digital output status, and then set 20 to check if the circuit is normal.

Explanation 4

Setting value 8: 100% means the motor rated torque.

Motor rated torque = (motor rated power x 60 / 2π) / motor rated rotating speed.

Explanation 5

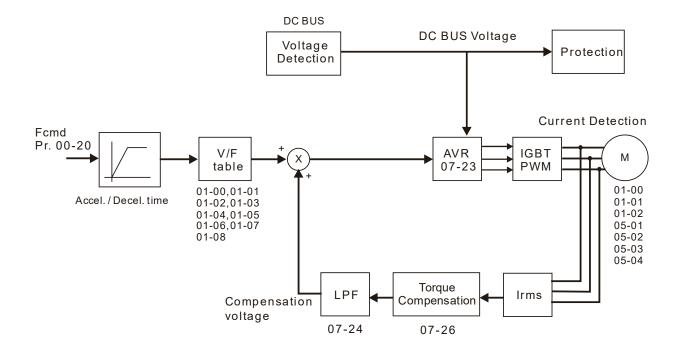
Setting value 25: when display value reaches 100.00 %, the drive shows "oL" as an overload warning.

Explanation 6

- Setting value 38:
 - bit 0: The drive is running forward.
 - bit 1: The drive is running backward.
 - bit 2: The drive is ready.
 - bit 3: Errors occurred on the drive.
 - bit 4: The drive is running.
 - bit 5: Warnings occurred on the drive.

activate password protection.

88-8	Firmwar	e Version
		Default: #.#
	Settings	Read only
00-0	Paramet	er Protection Password Input
		Default: 0
	Settings	0–65535
		0–3 (number of wrong password attempts)
Allo	ws you to ente	er your password (which is set in Pr.00-08) to unlock the parameter protection and to
chai	nge paramete	rs.
☐ Be s	sure to record	the password for later use after you set this parameter.
Pr.0	0-07 and Pr.0	0-08 are used to prevent personnel from setting other parameters by accident. If you
forg	et the passwo	ord, clear the password setting by entering 9999 and pressing the ENTER key, then
ente	er 9999 again	and press ENTER within 10 seconds. After decoding, all the settings return to default.
Whe	en setting is u	nder password protection, all the parameters read 0, except Pr.00-08.
00-0	Raramet	er Protection Password Setting
		Default: 0
	Settings	0–65535
		0: No password protection or password is entered correctly (Pr.00-07)
		1: Password has been set
This	parameter is	for setting the password protection. Password can be set directly the first time. After
you	set the passw	ord, the value of Pr.00-08 is 1, which means password protection is activated. At this
time	, if you want	to change any of the parameter settings, you must enter the correct password in
Pr.0	0-07 to deact	ivate the password temporarily, and this would make Pr.00-08 become 0. After you
finis	h setting the p	parameters, reboot the motor drive and the password is activated again.
Enter	ering the corre	ect password in Pr.00-07 only temporarily deactivates the password. To permanently
dea	ctivate passw	ord protection, set Pr.00-08 to 0 manually. Otherwise, password protection is always
reac	ctivated after y	ou reboot the motor drive.
The	keypad copy	function works only when the password protection is deactivated (temporarily or
perr	nanently), and	d the password set in Pr.00-08 cannot be copied to the keypad. So when copying
para	meters from t	he keypad to the motor drive, set the password manually again in the motor drive to


\$\frac{1}{12} - \frac{1}{12} \text{ Speed Control Mode}

Default: 0


Settings 0: V/F (IM V/F control)

2: SVC

- Determines the control mode of the AC motor drive:
 - 0: IM V/F control: user can design proportion of V/F as required and control multiple motors simultaneously.
 - 2: IM sensorless vector control: get the optimal control by the auto-tuning of motor parameters.
- When Pr.00-10 = 0 and set Pr.00-11 to 0, the V/F control diagram is shown as follows:

When Pr.00-10 = 0 and set Pr.00-11 to 2, the sensorless vector control diagram is shown as follows:

GR-17 Carrier Frequency

Default: 8

Settings 2-15 kHz

Determinates the PWM carrier frequency for the AC motor drive.

_	Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
	2 kHz	Significant	Minimal	Minimal	
	8 kHz		ĺ	1	
	15 kHz		↓	↓	-√√/// ↓
		Minimal	Significant	Significant	

- From the table, you see that the PWM carrier frequency has significant influences on the electromagnetic noise, the AC motor drive heat dissipation, and the motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency to reduce the temperature rise. Although the motor has quiet operation in the higher carrier frequency, consider the entire wiring and interference.
- When the carrier frequency is higher than the default, decrease the carrier frequency to protect the drive. Refer to Pr.06-55 for related setting and details.

- # PLC Command Mask

Default: Read Only

Settings bit 0: Control command forced by PLC control

bit 1: Frequency command forced by PLC control

Determines if frequency command or control command is locked by the PLC.

Master Frequency Command (AUTO) Source

Default: 0

		1: RS-485 serial communication	
		2: External analog input (Refer to Pr.03-00)	
		3: External terminals	
		6: CANopen input	
		Note: It is valid only when using with KPC-CC01.	
□ Y	ou can switch the	e AUTO / HAND mode with the keypad KPC-CC01 (optional).	
	Pr.00-20 and Pr.0	00-21 are for setting the frequency source and operation source in AUTO mod	de.
F	Pr.00-30 and Pr.00	0-31 are for setting the frequency source and operation source in HAND mode.	
₽ T	he default for the	e frequency source or operation source is for AUTO mode. It returns to AUTO mo	de
٧	vhenever you cyc	ele the power. If you use a multi-function input terminal to switch between AUTO a	ınd
H	HAND mode, the I	highest priority is the multi-function input terminal. When the external terminal is O	FF,
tl	he drive does not	accept any operation signal and cannot execute JOG.	
nη	- ₽ ∤ Operatio	n Command (AUTO) Source	
ייי	Operation	Default: 0	
	Cottingo		
	Settings	0: Digital keypad 1: External terminals.	
		2: Communication RS-485 input	
		3: CANopen input	
		Note: It is valid only when using with KPC-CC01.	
	•	peration frequency source in AUTO mode.	
	•	the operation command by the keypad KPC-CC01 (optional), keys RUN, STOP a	ınd
J	IOG (F1) are valid		
88	- Ч₿ Display F	Filter Time (Current)	
		Default: 0.100	
	Settings	0.001–65.535 sec.	
	Minimizes the curi	rent fluctuation displayed by digital keypad.	
88	- 43 Display F	Filter Time (Keypad)	
		Default: 0.100	
	Settings	0.001–65.535 sec.	
<u> </u>	/linimizes the valu	ue fluctuation displayed by digital keypad.	
88	- 5 ∰ Software	e Version (Date)	
		Default: #####	
	Settings	Read only	
	Displays the curre	nt drive software version by date.	

Settings 0: Digital keypad

[This page intentionally left blank]

01 Basic Parameters

✓ You can set this parameter during operation.

:- ## Maximum Operation Frequency of Motor 1

Default: 60.00 / 50.00

Settings 00.00-599.00 Hz

Determines the drive's maximum operation frequency range. This setting corresponds to the maximum value for the analog input frequency setting signal (0–10 V, 4–20 mA, 0–20 mA, ±10 V).

Default: 60.00 / 50.00

Settings 00.00-599.00 Hz

Set this value according to the motor's rated frequency from the motor's nameplate. If the motor's rated frequency is 60 Hz, set the value to 60 Hz. If the motor's rated frequency is 50 Hz, set the value to 50 Hz.

G: :- @ ? Output Voltage of Motor 1

Default: 220.0 / 440.0

Settings 230 V series: 0.0–255.0 V 460 V series: 0.0–510.0 V

- Set this value according to the rated voltage of the motor from the motor's nameplate. If the motor's rated voltage is 220 V, set the value to 220.0 V. If the motor's rated voltage is 200 V, set the value to 200.0 V.
- There are a wide variety of motors, but the power system for each country is different. The convenient and economical way to solve this problem is to use an AC motor drive, which can deal with different voltages and frequencies, while supporting the original characteristics and life of the motor.

☐ I - ☐ ☐ Mid-point Frequency 1 of Motor 1

Default: 3.00

Settings 0.00-599.00 Hz

★ # - # Mid-point Voltage 1 of Motor 1

Default: 11.0 / 22.0

Settings 230 V series: 0.0 V-240.0 V

460 V series: 0.0 V-480.0 V

Default: 0.50

Settings 0.00-599.00 Hz

Default: 2.0 / 4.0

Settings 230 V series: 0.0 V–240.0 V

460 V series: 0.0 V-480.0 V

! - ! : Minimum Output Frequency of Motor 1

Default: 0.00

Settings 0.00-599.00 Hz

Default: 0.0 / 0.0

Settings 230 V series: 0.0 V-240.0 V

460 V series: 0.0 V-480.0 V

☐ ! - ☐ ☐ Start-up Frequency

Default: 0.50

Settings 0.00-599.00 Hz

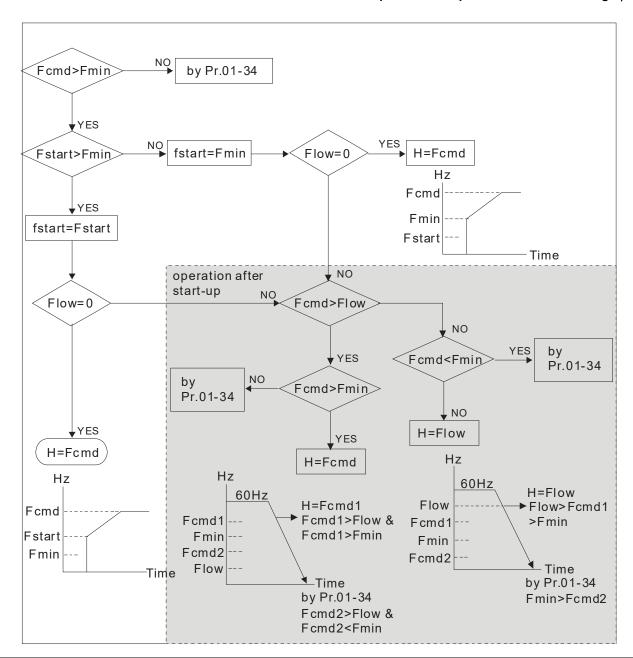
When start frequency is higher than the minimum output frequency, drive's output is from the starting frequency to the setting frequency. Refer to the following diagram for details.

Fcmd = frequency command;

Fstart = start frequency (Pr.01-09);

fstart = actual start frequency of drive;

Fmin = 4th output frequency setting (Pr.01-07);


Flow = output frequency lower limit (Pr.01-11)

When Fcmd > Fmin and Fcmd < Fstart:

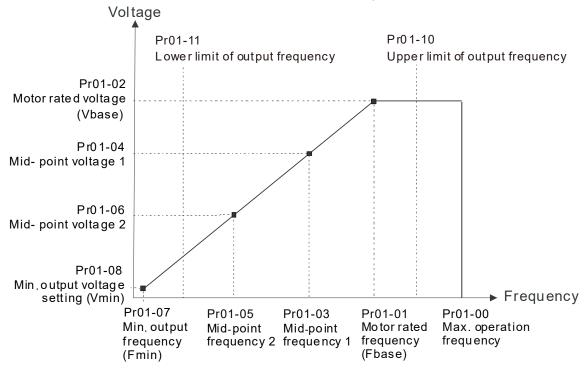
If Flow < Fcmd, drive runs directly by Fcmd.

If Flow ≥ Fcmd, drive runs by Fcmd, then rise to Flow according to acceleration time.

The output frequency goes directly to 0 when decelerating to Fmin.

✓ ☐ !- !☐ Output Frequency Upper Limit

Default: 599.00

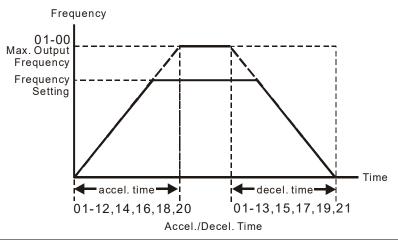

Settings 0.00-599.00 Hz

Default: 0.00

Settings 0.00-599.00 Hz

- Use the upper and lower limit output frequency settings to limit the actual output frequency. If the frequency setting is higher than the upper limit (Pr.01-10), the drive uses the upper limit frequency. If the output frequency is lower than lower limit (Pr.01-11) and frequency setting is higher than minimum frequency (Pr.01-07), the drive uses the lower limit frequency. Set the upper limit frequency > lower limit frequency (Pr.01-10 setting value must be > Pr.01-11 setting value).
- The upper output frequency limits the maximum output frequency of the drive. If the frequency setting is higher than Pr.01-10, the Pr.01-10 setting limits the output frequency.
- When the drive starts the slip compensation function (Pr.07-27) or PID feedback control, the drive output frequency may exceed frequency command but is still limited by this setting.

Related parameters: Pr.01-00 Maximum Operation Frequency.


- The lower output frequency limits the minimum output frequency of the drive. When the drive frequency command is lower than this setting, the lower limit of the frequency limits the drive output frequency.
- When the drive starts, it operates from the minimum output frequency (Pr.01-07) and accelerates to the setting frequency. It is not limited by the lower output frequency settings.
- Use the output frequency upper and lower limit settings to prevent operator misuse, overheating caused by operating at a too low frequency, or damage caused by excessive speed.
- If the output frequency upper limit setting is 50 Hz and the frequency setting is 60 Hz, the maximum output frequency is 50 Hz.
- If the output frequency lower limit setting is 10 Hz and the minimum operation frequency setting (Pr.01-07) is 1.5 Hz, the drive operates at 10 Hz when the frequency command is greater than Pr.01-07 and less than 10 Hz. If the frequency command is less than Pr.01-07, the drive stays in ready status with no output.
- If the frequency output upper limit is 60 Hz and the frequency setting is also 60 Hz, only the Frequency command is limited in 60 Hz. The actual frequency output may exceed 60 Hz if the drive starts the slip compensation function.

\checkmark	☐ I - I ☐ Acceleration Time 1	
		Default: 2.00
\mathcal{M}	[] ! - !] Deceleration Time 1	
		Default: 2.00
\varkappa	G: - : Acceleration Time 2	
\mathcal{M}	G !- !5 Deceleration Time 2	
×	G: 1- 15 Acceleration Time 3	
×	C: ! T Deceleration Time 3	
\mathcal{M}	G: - :8 Acceleration Time 4	
×	C: - :3 Deceleration Time 4	

JOG Acceleration Time	
✓ ☐ ! - 2 ! JOG Deceleration Time	
	Default: 10.00

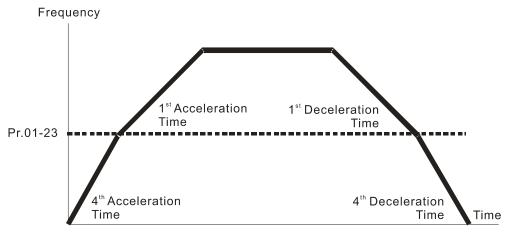
Settings 0.00-600.00 sec.

- Use the acceleration time to determine the time required for the AC motor drive to accelerate from 0 Hz to maximum output frequency (Pr.01-00).
- Select the acceleration and deceleration time 1, 2, 3, and 4 with the multi-function input terminals settings. The defaults are acceleration and deceleration time 1. With the enabled torque limits and stall prevention functions, the actual acceleration and deceleration time are longer than the above action time.
- Note that setting the acceleration and deceleration time too short may trigger the protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention).
- Note that setting the acceleration time too short may cause motor damage or trigger drive protection due to over-current during acceleration.
- Note that setting the deceleration time too short may cause motor damage or trigger drive protection due to over-current during deceleration or over-voltage.
- Use suitable brake resistors (refer to Chapter 07 Optional Accessories) to decelerate in a short time and prevent over-voltage.
- When you enable Pr.01-24–Pr.01-27 (S-curve acceleration and deceleration begin and arrival time), the actual acceleration and deceleration time are longer than the setting.

✓
☐ 1 - 2 2 JOG Frequency

Default: 6.00

Settings 0.00-599.00 Hz

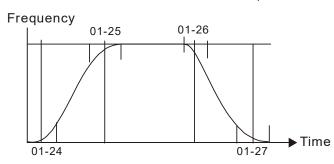

You can use both the external terminal JOG and F1 key on the optional keypad KPC-CC01 to set the JOG function. When the JOG command is ON, the AC motor drive accelerates from 0 Hz to the JOG frequency (Pr.01-22). When the JOG command is OFF, the AC motor drive decelerates from the JOG frequency to stop. The JOG acceleration and deceleration time (Pr.01-20, Pr.01-21) are the time to accelerate from 0.0 Hz to the JOG frequency (Pr.01-22). You cannot execute the JOG command when the AC motor drive is running. When the JOG command is executing, other operation commands are invalid.

First / Fourth Acceleration / Deceleration Frequency

Default: 0.00

Settings 0.00–599.00 Hz

- This function does not require the external terminal switching function; it switches the acceleration and deceleration time automatically by the Pr.01-23 setting. If you set the external terminal, it is based on the external terminal first, and not on Pr.01-23.
- When using this function, set the S-curve acceleration time to 0.

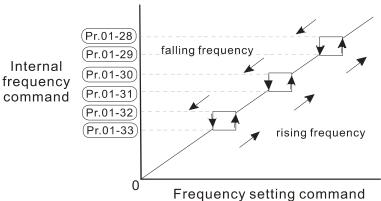

1st/4thAcceleration/Deceleration Frequency Switching

×	☐ ! - 군 Y S-curve Acceleration Begin Time S1
×	## S-curve Acceleration Arrival Time S2
×	☐ 1 - 25 S-curve Deceleration Begin Time S3
×	□ ! - 2 ↑ S-curve Deceleration Arrival Time S4
•	Default: 1.00

o ...

Settings 0.00-25.00 sec.

- Sets a slow start when the drive begins to accelerate at the start. The acceleration and deceleration curve adjust the S-curve acceleration and deceleration according to the parameter value. When you enable this function, the drive has a different acceleration and deceleration curve based on the acceleration and deceleration time.
- The S-curve function is disabled when you set the acceleration and deceleration time to 0.
- When Pr.01-12, 01-14, 01-16, 01-18 \geq Pr.01-24 and Pr.01-25, the actual acceleration time = Pr.01-12, 01-14, 01-16, 01-18 + (Pr.01-24 + Pr.01-25) / 2.
- When Pr.01-13, 01-15, 01-17, 01-19 \geq Pr.01-26 and Pr.01-27, the actual deceleration time = Pr.01-13, 01-15, 01-17, 01-19 + (Pr.01-26 + Pr.01-27) / 2.



☐ 1-29 Skip Frequency 1 (Lower Limit)
☐ ! - ∃☐ Skip Frequency 2 (Upper Limit)
☐ ! - 3 ! Skip Frequency 2 (Lower Limit)
☐ !- 3 ☐ Skip Frequency 3 (Upper Limit)
G !- 33 Skip Frequency 3 (Lower Limit)

Default: 0.00

Settings 0.00-599.00 Hz

- Sets the AC drive's skip frequency. The drive's frequency setting skips these frequency ranges. However, the frequency output is continuous. There are no limits for these six parameters and you can combine them. Pr.01-28 does not need to be greater than Pr.01-29; Pr.01-30 does not need to be greater than Pr.01-31; Pr.01-32 does not need to be greater than Pr.01-33. Pr.01-28–01-33 can be set as required. There is no size distinction among these six parameters.
- These parameters set the skip frequency ranges for the AC motor drive. You can use this function to avoid frequencies that cause mechanical resonance. The skip frequencies are useful when a motor has resonance vibration at a specific frequency bandwidth. Skipping this frequency avoids the vibration. There are three frequency skip zones available. You can set the Frequency command (F) within the range of skip frequencies. Then the output frequency (H) is limited to the lower limit of skip frequency ranges.
- When accelerating and decelerating, the output frequency still passes through the skip frequency ranges.

Default: 2

Settings 0: Output waiting

1: Zero-speed operation

2: Fmin (Refer to Pr.01-07)

- When the frequency command of drive is less than Fmin (Pr.01-07), the drive operates using this parameter.
- 0: the AC motor drive is in waiting mode without voltage output from terminals U, V, W.
- 1: the drive executes the DC brake by Vmin (Pr.01-08 and Pr.01-42) in V/F and SVC modes.
- 2: the AC motor drive runs using Fmin (Pr.01-07) and Vmin (Pr.01-08, Pr.01-42) in V/F and SVC modes.

☐ : - Y ☐ Time for CANopen Quick Stop

Default: 1.00

Settings 0.00-600.00 sec.

Use this to set the time to decelerate from the maximum operation frequency (Pr.01-00) to 0.00 Hz by CANopen control.

Leveling Speed Switch

Default: 0.00

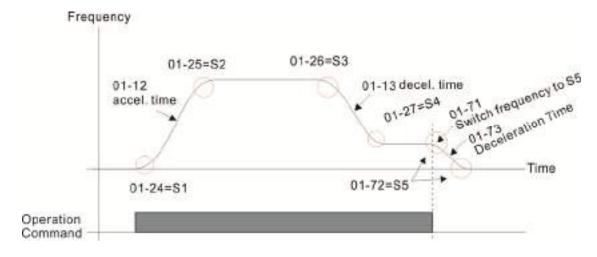
Settings 0.00-599.00 Hz

- When the drive decelerates from S4 to S5, it switches the frequency to reach a smooth stop.
- ☐ Set the speed for Pr.01-07 to the same as that for elevator.

Lower than Leveling Speed S5

Default: 1.00

Settings 0.00-25.00 sec.


- It activates S-curve deceleration. The drive's deceleration curves act at different speed according to the original deceleration time.
- The Actual Deceleration Time = Pr.01-73 deceleration time + Pr.01-72.

Deceleration Time when Operating without RUN Command

Default: 2.00

Settings 0.00–25.00 sec.

When you cancel RUN command, the drive decelerates according to the dEB deceleration time in this parameter setting.

Actual Elevator Curve and Parameter Configuration Diagram

★ You can set this parameter during operation.

B2-BB Two-wire / Three-wire Operation Control

Default: 1

Settings 0: No function

1: Two-wire mode 1, power on for operation control

(M1: FWD / STOP, M2: REV / STOP)

2: Two-wire mode 2, power on for operation control

(M1: RUN / STOP, M2: FWD / REV)

3: Three-wire, power on for operation control

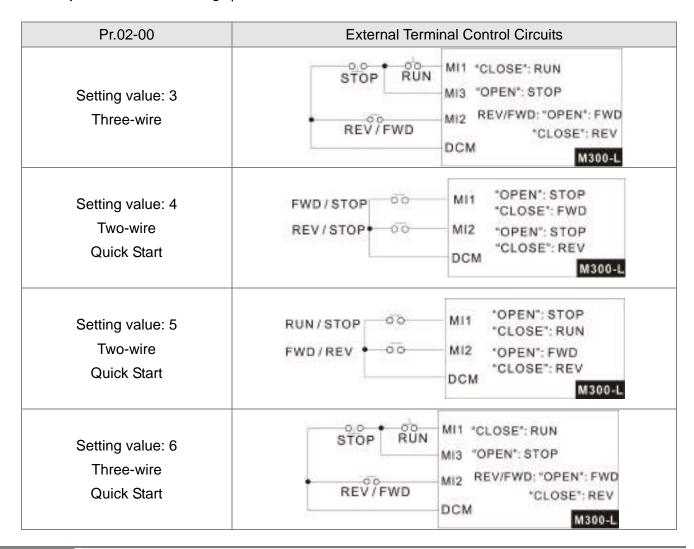
(M1: RUN, M2: REV / FWD, M3: STOP)

4: Two-wire mode 1, Quick Start

(M1: FWD / STOP, M2: REV / STOP)

5: Two-wire mode 2, Quick Start

(M1: RUN / STOP, M2: FWD / REV)


6: Three-wire, Quick Start

(M1: RUN, M2: REV / FWD, M3: STOP)

IMPORTANT

- 1. In the Quick Start function, terminal output stays in ready status, and the drive responds to the command immediately.
- 2. When using the Quick Start function, the output terminal has higher potential voltage.
- In the Quick Start function, the output remains ready for operation. The drive responds to the Start command immediately.
- When using the Quick Start function, there is greater potential voltage on the output terminals.
- This parameter sets the configuration of the external drive operation control and the Quick Start function. There are six different control modes listed in the following table.

Pr.02-00	External Terminal Control Circuits	
Setting value: 1 Two-wire FWD / STOP REV / STOP	FWD/STOP OO MI1 "OPEN": STOP "CLOSE": FWD MI2 "OPEN": STOP "CLOSE": REV DCM M300-L	
Setting value: 2 Two-wire RUN / STOP FWD / REV	RUN/STOP OO MI1 "OPEN": STOP "CLOSE": RUN MI2 "OPEN": FWD "CLOSE": REV DCM M300-L	

### Multi-function Input Command 1 (MI1)	
## Multi-function Input Command 2 (MI2)	
	Default: 0
Multi-function Input Command 3 (MI3)	
	Default: 1
Multi-function Input Command 4 (MI4)	
	Default: 2
	Default: 3
## Multi-function Input Command 6 (MI6)	
	Default: 4
Multi-function Input Command 7 (MI7)	
	Default: 49
## Multi-function Input Command 10 (MI10)	
## Multi-function Input Command 11 (MI11)	
## Multi-function Input Command 12 (MI12)	
	Default: 0

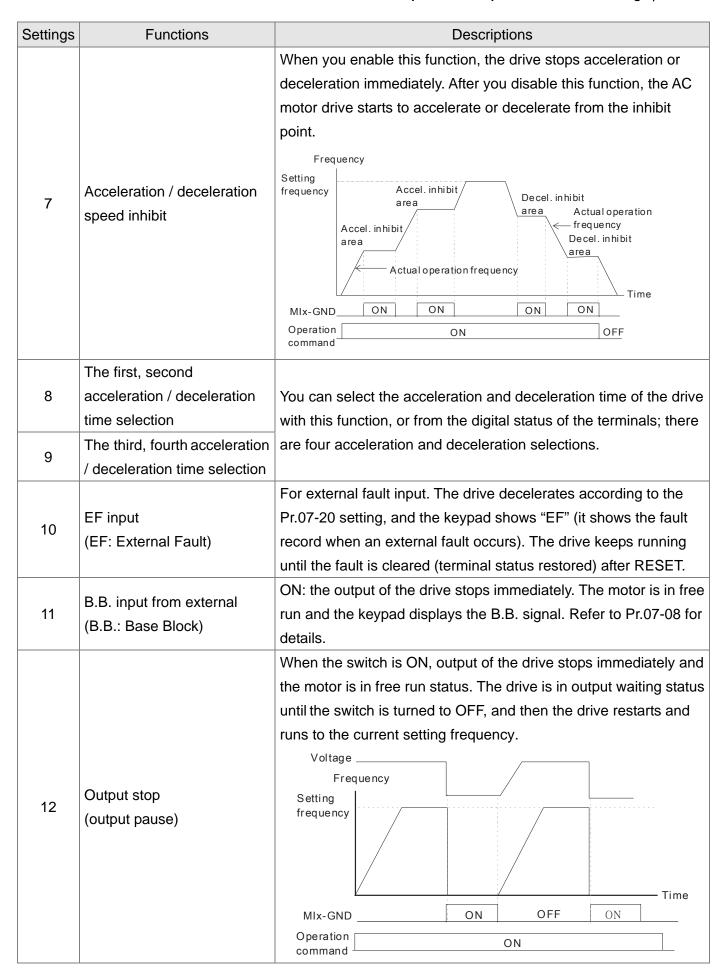
Settings 0: No function

1: Multi-step speed command 1 / multi-step position command 1

- 2: Multi-step speed command 2 / multi-step position command 2
- 3: Multi-step speed command 3 / multi-step position command 3
- 4: Multi-step speed command 4 / multi-step position command 4
- 5: Reset
- 6: JOG operation (by KPC-CC01 or external control)
- 7: Acceleration / deceleration speed inhibit
- 8: The first and second acceleration / deceleration time selection
- 9: The third and fourth acceleration / deceleration time selection
- 10: EF input (Pr.07-20)
- 11: B.B. input from external (Base Block)
- 12: Output stop
- 15: Rotating speed command from AVI
- 16: Rotating speed command from ACI
- 18: Forced to stop (Pr.07-20)
- 24: FWD JOG command
- 25: REV JOG command
- 28: Emergency stop (EF1)
- 29: Signal confirmation for Y-connection
- 30: Signal confirmation for Δ -connection
- 38: Disable write EEPROM function
- 39: Torque command direction
- 40: Force coasting to stop
- 49: Enable Drive
- 51: Selection for PLC mode bit 0
- 52: Selection for PLC mode bit 1
- 53: Trigger CANopen quick stop
- 58: Emergency power mode detection
- 59: Detection of Magnetic
- 60: Mechanical brake error detection
- 61: Power down signal
- 62: Mechanical brake error detection 2
- This parameter selects the functions for each multi-function terminal.
- When Pr.02-00 = 0, you can set multi-function options with the multi-function input terminals MI1, MI2.
- When Pr.02-00 ≠ 0, the multi-function input terminals MI1, MI2 work in accordance with the setting values for Pr.02-00.

Example:

- If Pr. 02-00 = 1: multi-function input terminal MI1 = FWD / STOP,
 - multi-function input terminal MI2 = REV / STOP.
- If Pr. 02-00 = 2: multi-function input terminal MI1 = RUN / STOP,
 - multi-function input terminal MI2 = FWD / REV.


Chapter 12 Description of Parameter Settings | MH300-L

- When multi-function input terminal MI7 = 0, MI7 is designated as a pulse input terminal.
- ☐ If Pr.02-00 is set to three-wire operation control, terminal MI3 is for the STOP contact. The function set previously for this terminal is automatically invalid.

Summary of function settings

Take the normally opened contact (N.O.) for example, ON: contact is closed, OFF: contact is open.

Settings	Functions		Descriptions		
0	No Function				
1	Multi-step speed command 1 / multi-step position command 1				
2	Multi-step speed command 2 / multi-step position command 2	You can set 15 steps of speed or 15 positions with the digital status of these 4 terminals. You can use 16-steps of speed if you include the master speed when setting as 15 steps of speed (resto Parameter Group 04 Multi-step Speed Parameters).			
3	Multi-step speed command 3 / multi-step position command 3				
4	Multi-step speed command 4 / multi-step position command 4				
5	Reset	Use this terminal t	o reset the drive after clearing	g a drive fault.	
6	JOG operation	is the external terr The JOG operatio While running, yo the STOP key on receives the OF	ninals. n executes when the drive store of the operation of the operation of the keypad is valid. Once the F command, the motor store of the refer to Pr.01-20-01-22 for operations.	ops completely. tion direction, and e external terminal tops in the JOG	
		Pr.01-07 Min. output frequency MIx-GND Mix: external	JOG accel. time Pr.01-20 ON	JOG decel. time Pr.01-21 OFF	

Settings	Functions	Descriptions		
15	Rotating speed command from AVI	ON: force the source of the frequency to be AVI. If the rotating speed commands are set to AVI and ACI at the same time, the priority is AVI > ACI.		
16	Rotating speed command from ACI	ON: force the source of the frequency to be ACI. If the rotating speed commands are set to AVI and ACI at the same time, the priority is AVI > ACI.		
18	Forced to stop	ON: the drive ramps to stop according to the Pr.07-20 setting.		
24	FWD JOG command	This function is valid when the source of the operation command is external terminal. ON: the drive executes forward JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete.		
25	REV JOG command	This function is valid when the source of the operation command is external terminal. ON: the drive executes reverse JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete.		
28	Emergency stop (EF1)	ON: the output of the drive stops immediately, displays "EF1" on the keypad, and the motor is in free run status. The drive keeps running until the fault is cleared after you press RESET on the keypad (EF: External Fault). Voltage Frequency Setting frequency Setting frequency ON OFF ON ON OFF		
29	Signal confirmation for	When the control mode is V/F, ON: the drive operates by the first		
30	Y-connection Signal confirmation for Δ-connection	V/F. When the control mode is V/F, ON: the drive operates by the second V/F.		
38	Disable EEPROM write function (parameters memory disable)	ON: writing to EEPROM is disabled. Changed parameters are not saved after power off.		
40	Force coasting to stop	ON: during operation, the drive free runs to stop.		

Settings	Functions	Descriptions				
		When the drive is enabled, the RUN comma	nd is vali	d.		
49	Enable drive	When the drive is disabled, the RUN command is invalid.				
49	Enable drive	When the drive is operating, the motor coast	s to stop			
		This function varies with MO=45.				
51	Selection for PLC mode (bit	PLC status	bit 1	bit 0		
31	0)	Disable PLC function (PLC 0)	0	0		
		Trigger PLC to operate (PLC 1)	0	1		
52	Selection for PLC mode (bit	Trigger PLC to stop (PLC 2)	1	0		
	1)	No function	1	1		
	Trigger CANopen Quick	When this function is enabled under CANope	en contro	ol, it cha	nges	
53	Stop	to Quick Stop. Refer to Chapter 15 CANoper	Overvie	ew for m	ore	
		details.				
		If the drive runs during power lose and detect		Ū		
		than Lv limit, the drive stops running. At this t				
58	Emergency power mode detection	normal power supply magnetic contactor, ger		_	•	
		power, then set the terminal of this parameter	•		d and	
		enter RUN command again. The drive runs according to the internal secured frequency set.				
		Uses for magnetic contactor ON/OFF feedback signal.				
		When the drive receives RUN command after Pr.02-30 release				
		time, it switches its corresponding multi-function output terminal				
		(setting value = 75) to ON. Then the drive begins to confirm				
59	Detection of Magnetic	whether the contact for this parameter setting receives magnetic				
	contactor	contactor's normal signal (closed) according to Pr.02-32 magnetic				
		contactor detection time. If the drive does not close within Pr.02-32				
		release time, it means that magnetic contactor is abnormal, and				
		the drive displays error code 74 (MCF).				
		When the drive receives RUN command after	r Pr.02-3	9 releas	e	
		time, it switches its corresponding multi-funct	ion outpu	ut termir	nal	
		(setting value = 12) to ON. Then the drive begins to confirm				
60	Mechanical brake error	whether the contact for this parameter setting receives brake's				
	detection	normal signal (closed) according to Pr.02-33 mechanical brake				
		detection time. If the drive does not close within Pr.02-33 release				
		time, it means that mechanical brake is abnormal, and the drive				
		displays error code 75 (MBF).	iet ontor	this sign	nal +0	
61	Power down signal	When system power loses, host controller mu inform the drive. When the drive receives this		•		
01	Power down signal	sec., MO = 58 signal closes.	o orginal a	1 1.0	,0-00	
	Mechanical brake error	When the drive receives RUN command after	r Pr.02-3	9 releas	е	
62	detection 2			/-		

Settings	Functions	Descriptions
		time, it switches its corresponding multi-function output terminal
		(setting value = 12) to ON. Then the drive begins to confirm
		whether the contact for this parameter setting receives brake's
		normal signal (closed) according to Pr.02-33 mechanical brake
		detection time. If the drive does not close within Pr.02-33 release
		time, it means that mechanical brake is abnormal, and the drive
		displays error code 71 (MBF2).

Default: 0.005

Settings 0.000-30.000 sec.

- Use this parameter to set the response time of the digital input terminals MI1–MI7.
- This function is to delay and confirm the digital input terminal signal. The time for delay is also the time for confirmation. The confirmation prevents interference that could cause error in the input to the digital terminals. But in the meanwhile, it delays the response time though confirmation improves accuracy.

Multi-function Input Mode Selection

Default: 0000

Settings 0000h-FFFFh (0: N.O.; 1: N.C.)

- This parameter setting is in hexadecimal.
- This parameter sets the status of the multi-function input signal (0: normally open; 1: normally closed) and it is not affected by the status of SINK / SOURCE.
- bit 0-bit 6 correspond to MI1-MI7.
- The default for bit 0 (MI1) is FWD terminal, and the default for bit 1 (MI2) is REV terminal. You cannot use this parameter to change the input mode when $Pr.02-00 \neq 0$.
- You can change the terminal ON / OFF status through communications. For example: MI3 is set to 1 (multi-step speed command 1) and MI4 is set to 2 (multi-step speed command 2). Then the forward + second step speed command = $1001_2 = 9_{10}$.
- As long as Pr.02-12 = 9 is set through communications, there is no need to wire any multi-function terminal to run forward with the second step speed.

bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
MI7	MI6	MI5	MI4	MI3	MI2	MI1

★ # # Multi-function Output 1 (Relay1)

Default: 11

- Multi-function Output 2 (MO1)
- Multi-function Output 3 (MO2)
- Output Terminal of Extension Card (MO10) or (RY10)
- Output Terminal of Extension Card (MO11) or (RY11)
 - Card (MO12) or (RY12)

Default: 0

Settings 0: No function

- 1: Indication during RUN
- 2: Operation speed reached
- 3: Desired frequency reached 1 (Pr.02-22)
- 4: Desired frequency reached 2 (Pr.02-24)
- 5: Zero speed (Frequency command)
- 6: Zero speed, includes STOP (Frequency command)
- 7: Over-torque 1 (Pr.06-06-08)
- 9: Drive is ready
- 10: Low voltage warning (LV) (Pr. 06-00)
- 11: Malfunction indication
- 12: Mechanical brake signal (Pr. 02-39-Pr. 02-42)
- 13: Over-heat warning (Pr. 06-15)
- 16: Slip error (oSL)
- 19: External interrupt B.B. input (Base Block)
- 20: Warning output
- 21: Over-voltage
- 22: Over-current stall prevention
- 23: Over-voltage stall prevention
- 24: Operation source
- 25: Forward command
- 26: Reverse command
- 27: Output when current >= Pr.02-41
- 28: Output when current < Pr.02-41
- 31: Y-connection for the motor coil
- 32: △ -connection for the motor coil
- 33: Zero speed (actual output frequency)
- 34: Zero speed include stop (actual output frequency)
- 35: Error output selection 1 (Pr. 06-23)
- 36: Error output selection 2 (Pr. 06-24)
- 37: Error output selection 3 (Pr. 06-25)
- 38: Error output selection 4 (Pr. 06-26)
- 40: Speed reached (including STOP)
- 44: Low current output (use with Pr.06-71-Pr.06-73)
- 45: UVW output magnetic contactor ON / OFF switch
- 50: Output control for CANopen
- 56: Power generation direction and status verify
- 57: Power generation direction
- 58: EPS MODE
- 67: Analog input level reached
- 75: Motor-controlled magnetic contactor output

Summary of function settings

Take the normally open contact (N.O.) for example, ON: contact is closed, OFF: contact is open.

Settings	Functions	Descriptions	
0	No Function	Output terminal with no function	
1	Indication during RUN	Active when the drive is not at STOP.	
2	Operation speed reached	Active when output frequency of the drive reaches the setting frequency.	
3	Desired frequency attained 1 (Pr. 02-22)	Active when the desired frequency (Pr.02-22) reached.	
4	Desired frequency attained 2 (Pr. 02-24) Active when the desired frequency (Pr.02-24) reached.		
5	Zero speed (Frequency command)	Active when frequency command = 0 (the drive must be in RUN status).	
6	Zero speed, includes STOP (Frequency command)	Active when frequency command = 0 or stopped.	
7	Over-torque 1	Active when the drive detects over-torque. Pr.06-07 sets the over-torque detection level (motor 1), and Pr.06-08 sets the over-torque detection time (motor 1). Refer to Pr.06-06-06-08.	
9	Drive is ready	Active when the drive is ON with no error detected.	
10	Low voltage warn (LV)	Active when the DC BUS voltage is too low (refer to Pr.06-00 Low Voltage Level).	
11	Malfunction indication	Active when fault occurs (except Lv stop).	
12	Mechanical brake signal	When the drive runs after Pr.02-39 delay time, this contact is closed. Use this function with DC brake and use "b"(N.C) contact. (Refer to Pr.02-39–Pr.02-42) operation command enable drive function (setting 49) drive ready is finished Turn on delay of magnetic contactor between drive and motor output current >02-41	
13	Over-heat warning	Active when IGBT or heat sink overheats; to prevent the drive from shutting down due to over-heating (refer to Pr.06-15).	
16	Slip error (oSL)	Active when the slip error is detected.	
19	External interrupt B.B. input (Base Block)		
20	Warning output	Active when a warning is detected.	
21	Over-voltage	Active when over-voltage is detected.	
22	Over-current stall prevention	Active when over-current stall prevention is detected.	
23	Over-voltage stall prevention	Active when over-voltage stall prevention is detected.	

Settings	Functions	Descriptions		
3-		Active when the source of operation command is controlled by		
24	Operation source	the digital keypad (Pr.00-21 = 0).		
25	Forward command	Active when the operation direction is forward.		
26	Reverse command	Active when the operation direction is reverse.		
27	Output when current >= Pr.02-41	Active when current is >= Pr.02-41		
28	Output when current < Pr.02-41	Active when current is < Pr.02-41		
		Active when Pr.05-24 = 1, the frequency output is lower than		
31	Y-connection for the motor coil	Pr.05-23 minus 2 Hz, and the time is longer than Pr.05-25.		
		Active when Pr.05-24 = 1, the frequency output is higher than		
32	Δ -connection for the motor coil	Pr.05-23 plus 2 Hz, and the time is longer than Pr.05-25.		
	Zero speed	Active when the actual output frequency is 0		
33	(actual output frequency)	(the drive is in RUN mode).		
	Zero speed includes stop (actual			
34	output frequency)	Active when the actual output frequency is 0 or stopped.		
35	Error output selection 1	Active when Pr. 06-23 is ON.		
36	Error output selection 2	Active when Pr. 06-24 is ON.		
37	Error Output Selection 3	Active when Pr. 06-25 is ON.		
38	Error Output Selection 4	Active when Pr. 06-26 is ON.		
40	Speed reached (including Stop)	Active when the output frequency reaches the setting		
		frequency or stopped.		
44	Low current output	Use this function with Pr.06-71–Pr.06-73.		
		Use this function with external terminal input = 49 (drive		
		enabled) and external terminal output = 45 (magnetic		
		contactor enabled), and then the magnetic contactor is ON or		
		OFF according to the status of the drive.		
		Enable ON		
45	UVW output magnetic contactor	Contactor		
	ON / OFF switch			
		AC Drive MC		
		U(T1) Motor		
		3~		
		W(T3) •		
		MOx=45		
		▼ MIx=49		
		WIX 45		
		Control the multi-function output terminals through CANopen.		
50	Output control for CANonon	The mapping table of the CANopen DO is shown in the		
50	Output control for CANopen	following table:		

Settings	Functions	Descriptions				
		Physical terminal	Setting for related parameters	Attribute	Corresponding index	
		RY1	Pr.02-13 = 50	RW	2026-41 bit 0 of initial value 0x01	
		MO1	Pr.02-16 = 50	RW	2026-41 bit 3 of initial value 0x01	
		MO2	Pr.02-17 = 50	RW	2026-41 bit 4 of initial value 0x01	
		Refer to S	Section 15-3-5	for more in	formation.	
56	Power generation direction and	When fini	sh searching th	ne power ge	enerating mode, this switch	
	status verify	will be clo	sed.			
57	Power generation direction	When the running direction of the power generating mode is				
57	Power generation direction	forward, t	his switch will b	oe closed.		
	EPS MODE	When receiving signals from the upper drive, (Pr.02-01 =61),				
58		there will be a few seconds of delay (Pr.06-85), then this				
		switch will be closed.				
		The multi-function output terminals operate when the analog				
		input level is between the high level and the low level.				
		Pr.03-44: Select one of the analog input channels (AVI, ACI)				
	Analog input level reached	to be compared.				
67	output	Pr.03-45: The high level for the analog input, default is 50%.				
	output	Pr.03-46: The low level for the analog input, default is 10%.				
		If analog input > Pr.03-45, the multi-function output terminal				
		operates. If analog input < Pr.03-46, the multi-function				
		output terminal stops output.				
	Motor-controlled magnetic	When the drive receives that multi-function input terminal is set				
75	contactor output	to 49 (drive enable), this contact is closed.				
		(Refer to	Pr.02-30 and F	Pr.02-31)		

✓ G2 - 18 Multi-function Output Direction

Default: 0000

Settings 0000h–FFFFh (0:N.O.; 1:N.C.)

- This parameter is in hexadecimal.
- This parameter is set by a bit. If the bit is 1, the corresponding multi-function output acts in an opposite way.

Example:

Assume Pr.02-13 = 1 (indication when the drive is operating). If the output is positive, the bit is set to 0, and then Relay is ON when the drive runs and is OFF when the drive stops. On the contrary, if the output is negative, and the bit is set to 1, then the Relay is OFF when the drive runs and is ON when the drive stops.

bit 4	bit 3	bit 2	bit 1	bit 0
MO2	MO1	reserved	reserved	RY

Default: 1

Settings 1-55

Sets the signal for the digital output terminals (DFM-DCM) and the digital frequency output (pulse, work period = 50 %). The output pulse per second = output frequency X Pr.02-21.

★ G2 - 22 Desired Frequency Attained 1

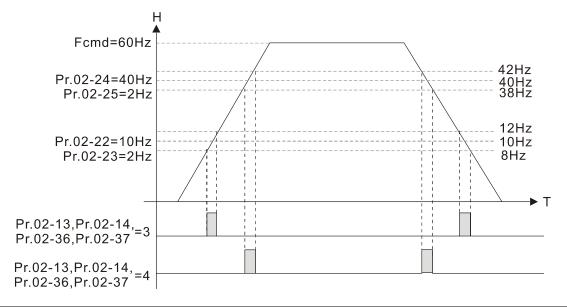
Default: 60.00 / 50.00

Settings 0.00–599.00 Hz

Default: 2.00

Settings 0.00-599.00 Hz

Default: 60.00 / 50.00


Settings 0.00-599.00 Hz

★ 32 - 25 Width of the Desired Frequency Attained 2

Default: 2.00

Settings 0.00-599.00 Hz

Once the output speed (frequency) reaches the desired speed (frequency), if the corresponding multi-function output terminal is set to 3–4 (Pr.02-13, Pr.02-36, and Pr.02-37), this multi-function output terminal is "closed".

Turn On Delay of Magnetic Contactor between Drive and Motor

▼ 182 331 Turn Off Delay of Magnetic Contactor between Drive and Motor

Default: 0.200

Settings 0.010-65.000 sec.

✓ ### Magnetic Contactor Error Detection Time Setting

Default: 0.00

Settings 0.00-10.00 sec.

Magnetic Contactor Feedback Error

- 1. MI terminal setting 59 (magnetic contactor feedback signal)
- 2. MO terminal setting 75 (magnetic contactor output signal)
- 3. Pr.02-32 (Magnetic Contactor Error Detection Time Setting)
- 4. When magnetic contactor output signal and feedback signal are not in the same level and exceeds the setting time for Pr.02-32, "Magnetic contactor error (MCF)" displays with an error code 74.
- 5. Homing condition: magnetic contactor output signal and feedback signal are in the same level.

Mechanical Brake Feedback Error

- 1. MI terminal setting 60 and 62 (mechanical brake feedback signals)
- 2. MO terminal setting 12 (mechanical brake output signal)
- 3. Pr.02-33 (Mechanical Brake Error Detection Time Setting)
- 4. When mechanical brake output signal and feedback signal are not in the same level and exceeds the setting time for Pr.02-33, "Mechanical brake error (MBF)" displays with an error code 75 and "Mechanical brake error 2 (MBF2)" displays with an error code 71.
- 5. Homing condition: mechanical brake output signal and feedback signal are in the same level.

External Operation Control Selection after Reset and Activate

Default: 0

Settings 0: Disable

1: Drive runs if the RUN command remains after reset or reboot.

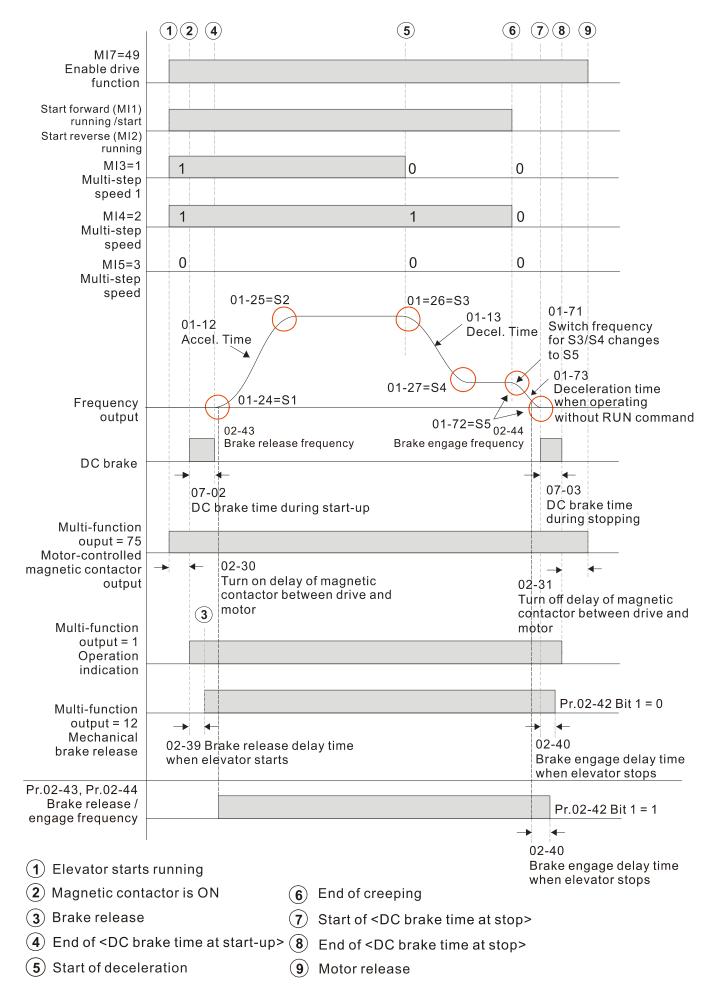
Set value as 1:

- Status 1: After the drive is powered on and the external terminal for RUN stays ON, the drive runs.
- Status 2: After clearing a fault once a fault is detected and the external terminal for RUN stays ON, you can run the drive by pressing the RESET key.

#2-39 Brake Release Delay Time When Elevator Starts

Brake Contracting Delay Time When Elevator Stops

Default: 0.250


Settings 0.010-65.000 sec.

Start-up Time Sequence

As below diagram shows, magnetic contactor attracts when the drive is enabled. After Pr.02-30 delay time, DC brake starts to make the drive output and maintain motor's speed at 0. The mechanical brake releases after Pr.02-39 delay time. Elevator starts to lift (rotation speed starts increasing) when DC brake stops (Pr.07-02).

Stop Time Sequence

As below diagram shows, DC brake starts when elevator stops to lift (rotation speed decreases to 0) to make the drive output and maintain the motor's speed at 0. The mechanical brake contracts after Pr.02-40 delay time. When DC brake stops (Pr.07-03) and after Pr.02-31 delay time, motor magnetic contactor releases and time sequence stops.

Elevator Timing Diagram

B2-41 Output Current Level Setting for External Terminals

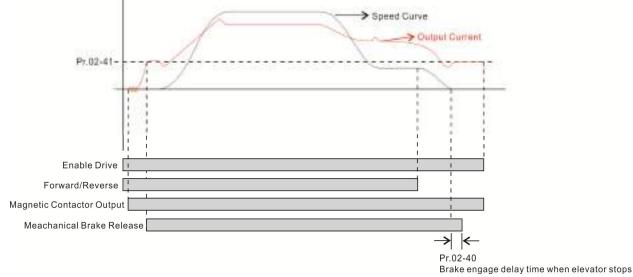
Default: 0

Settings 0–100% (Rated current of drive %)

- When output current is >= Pr.02-41, it will activate multi-function output terminal (Pr.02-13, 16, 17, 36, 37, 38 is set to 27).
- When output current is < Pr.02-41, it will activate multi-function output terminal (Pr.02-13, 16, 17, 36, 37, 38 is set to 28).

₩ 📆 - ५२ Brake Release Function Option

Default: 0000h


Settings Bit 0 = 0: No function

Bit 0 = 1: Check torque output function switch

Bit 1 = 0: No function

Bit 1 = 1: Brake control by frequency threshold function switch

Bit 0: When the drive receives the operation signal, the drive checks if there is a torque output. When enabled, the drive releases mechanical brake after confirming that there is torque output.

Sequence Diagram

- Bit 1: See the elevator timing diagram on page 12-02-15.
- Roll-back solution:
 - 1. Set contactor delay and DC brake (Pr.07-01 and Pr.07-03) constant time during stop.
 - 2. Set Pr.02-42 Bit 1=1.
 - 3. Set frequencies for brake release and brake engage (Pr.02-43 and Pr.02-44) to solve roll-back issue.

Brake Release Frequency

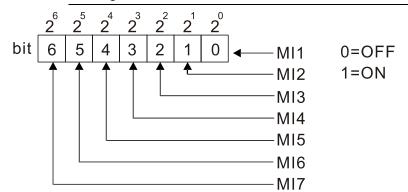
Default: 0.00

Settings 0.00-10.00 Hz

Use this function with Pr.02-42 Bit 1 =1.

Brake Engage Frequency

Default: 0.00

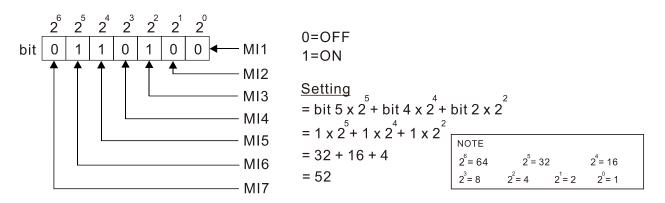

Settings 0.00-10.00 Hz

 \square Use this function with Pr.02-42 Bit 1 =1.

Display the Status of Multi-function Input Terminal

Default: Read only

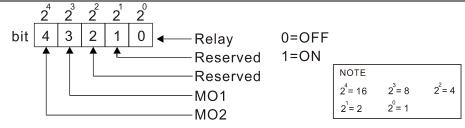
Settings Monitor the status of the Multi-function Input Terminal



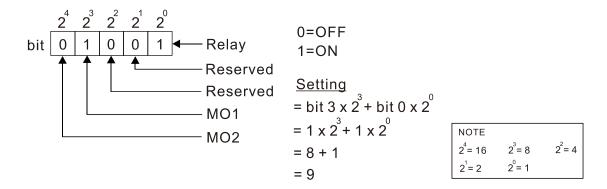
NOTE

$$2^{6} = 64$$
 $2^{5} = 32$ $2^{4} = 16$
 $2^{3} = 8$ $2^{2} = 4$ $2^{1} = 2$ $2^{0} = 1$

Example:


When Pr.02-50 displays 0034h (hex) (that is, the value is 52 (decimal) and 0110100 (binary)), it means that MI3, MI5 and MI6 are ON.

Status of Multi-function Output Terminal

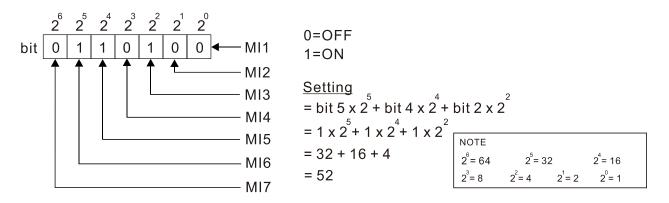

Default: Read only

Settings Monitor the status of the Multi-function Output Terminal

Example:

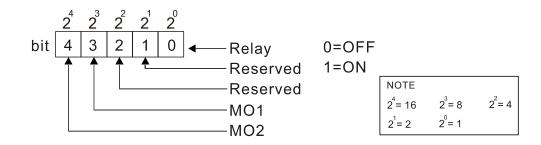
When Pr.02-51 displays 0009h (hex) (that is, the value is 9 (decimal) and 01001 (binary)), it means that Relay and MO1 are ON.

12 - 52 Display External Multi-function Input Terminals Used by PLC

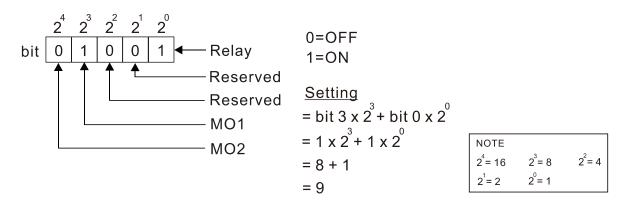

Default: Read only

Settings Monitor the status of the PLC input terminals

Example:


When Pr.02-52 displays 0034h (hex) (that is, the value is 52 (decimal) and 0110100 (binary)), it means that MI3, MI5 and MI6 are used by PLC.

Display External Multi-function Output Terminals Used by PLC


Default: Read only

Settings Monitor the status of the PLC output terminals

Example:

When Pr.02-53 displays 0009h (hex) (that is, the value is 9 (decimal) and 01001 (binary)), it means that Relay and MO1 are used by PLC.

Display the Frequency Command Executed by External Terminal

Default: Read only

Settings Read only

When you set the source of the Frequency command as the external terminal, if Lv or Fault occurs, the external terminal Frequency command is saved in this parameter.

Default: Read only

Settings 09: EMM-D3R2CA

M R2-82 Initial Frequency Command (F) Mode after Stop

Default: 0

Settings 0: Use current Frequency command

1: Use zero Frequency command

2: Refer to Pr.02-83 to set up

M 82-83 Initial Frequency Command (F) Setting after Stop

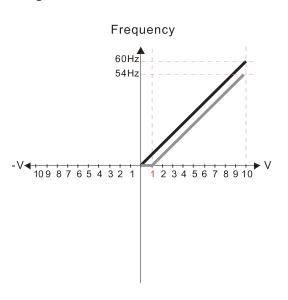
Default: 60.00

Settings 0.00-599.0 Hz

- Sets the elevator's running speed when using Emergency Power Supply (EPS).
- When elevator uses EPS, it runs at Pr.02-83, and the maximum running speed should not be larger than Pr.06-81 (Emergency Power Speed in Operation). If you set Pr.02-83 to be larger than Pr.06-81, the elevator runs at Pr.06-81 setting value.

[This page intentionally left blank]

03 Analog Input / Output Parameters


✓ You can set this parameter during operation.

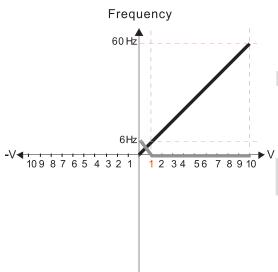
€ 3 - CC Analo	og Input Selection (AVI)
	Default: 1
<i>₿</i>	og Input Selection (ACI)
	Default: 0
Settin	gs 0: No function
	1: Frequency command
When you use	e analog input as the PID reference target input, you must set Pr.00-20 to 2 (exte
analog input).	
Setting metho	d 1: Pr.03-00–03-01 set 1 as PID reference target input.
When you us	se the Frequency command, the corresponding value for 0– ± 10 V / 4–20 m/s
0-maximum o	peration frequency (Pr.01-00).
When the setti	ngs for Pr.03-00–Pr.03-01 are the same, the highest priority is AVI.
## Analo	og Input Bias (AVI)
	Default: 0
Settin	gs -100.0–100.0 %
Sets the corres	sponding AVI voltage for the external analog input 0.
## Analo	og Input Bias (ACI)
	Default: 0
Settin	gs -100.0–100.0 %
Sets the corre	sponding ACI voltage for the external analog input 0.
## Posit	ive / Negative Bias Mode (AVI)
Posit	ive / Negative Bias Mode (ACI)
	Default: 0
Settin	gs 0:No bias
	1: Lower than or equal to bias
	2: Greater than or equal to bias
	3: The absolute value of the bias voltage while serving as the center
	4: Bias serves as the center
In a noisy envi	ronment, use negative bias to provide a noise margin. Do NOT use less than 1 V to s
the operation f	requency.
<i>₿</i>	rse Setting when Analog Signal Input is Negative Frequency
	Default: 0
Settin	gs 0: Negative frequency input is not allowed. The digital keypad or external
	terminal controls the forward and reverse direction.
	1: Negative frequency input is allowed. Positive frequency = run in forward

or external terminal control cannot switch the running direction.

- Use Pr.03-10 to enable running in the reverse direction command when a negative frequency (negative bias and gain) is input to the AVI or ACI analog signal input.
- Condition for negative frequency (reverse)
 - 1. Pr.03-10 = 1
 - 2. Bias mode = Bias serves as the center
 - 3. Corresponded analog input gain < 0 (negative); this makes the input frequency negative. In using the additional analog input function (Pr.03-18 = 1), when the analog signal is negative after the addition, you can set this parameter to allow or not allow the reverse direction. The result after adding is restricted by the "Condition for negative frequency (reverse)".

In the diagram below: Black line: Curve with no bias. Gray line: curve with bias Diagram 01

Pr.03-03=10% Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

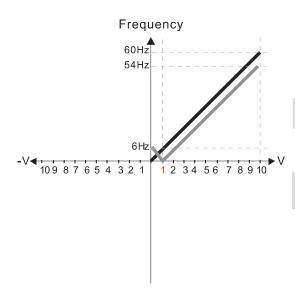
Pr.03-10 (Analog Frequency Command for Reverse Run)

- Negative frequency is not valid.
 Forward and reverse run is controlled by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 02

Pr.03-03=10% Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

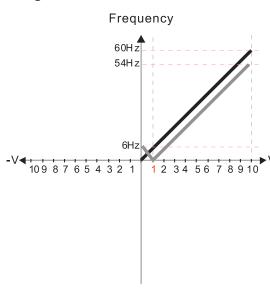
Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 03

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center


Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.

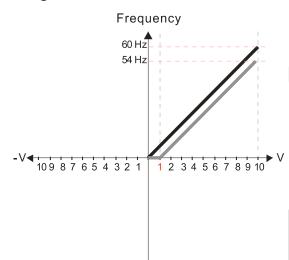
 Forward and reverse run is controlled by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 04

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

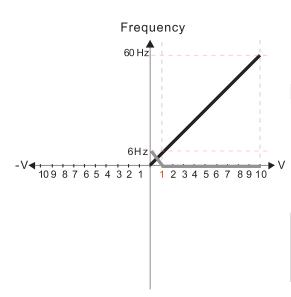
Pr.03-10 (Analog Frequency Command for Reverse Run)

- Negative frequency is not valid.
 Forward and reverse run is controlled by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 05

Pr.03-03=10%


Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

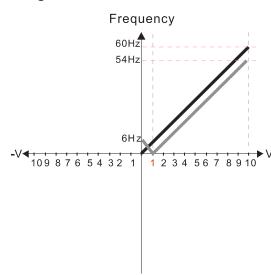
Pr.03-10 (Analog Frequency Command for Reverse Run)

- O: Negative frequency is not valid.

 Forward and reverse run is controlled by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

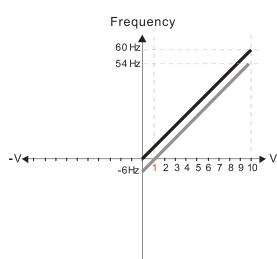
Diagram 07

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)


- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.

 Positive frequency = forward run;
 negative frequency = reverse run.

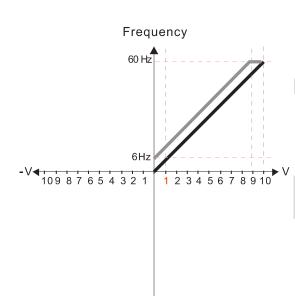
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 08

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

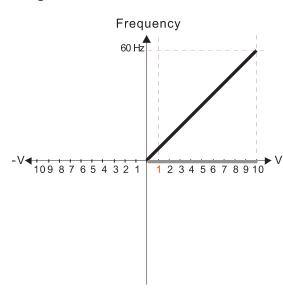
- Negative frequency is not valid.
 Forward and reverse run is controlled by digital keyboard or external terminals.
- 1: Negative frequency is valid.

 Positive frequency = forward run;
 negative frequency = reverse run.

 Direction can not be switched by digital keypad or external terminal control.

Pr.03-03=-10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

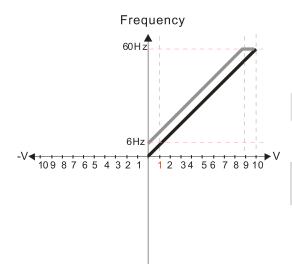
Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 10

Pr.03-03=-10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

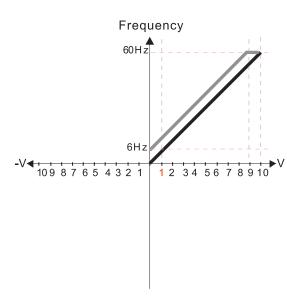

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 11



Pr.03-03=-10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

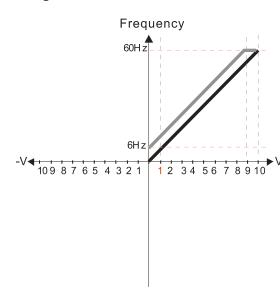
- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-03=-10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center


Pr.03-10 (Analog Frequency Command for Reverse Run)

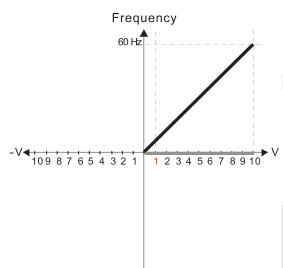
- 0: Negative frequency is not valid.

 Forward and reverse run is controlled by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 13

Pr.03-03=-10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

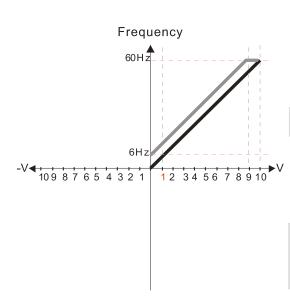

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- Negative frequency is not valid.
 Forward and reverse run is controlled by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 14



Pr.03-03=-10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

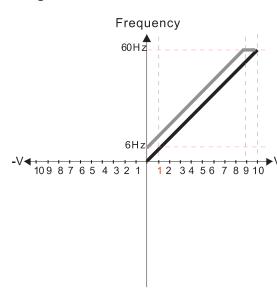
- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- Negative frequency is not valid.
 Forward and reverse run is controlled by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-03=-10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

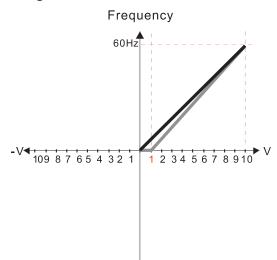
- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 16

Pr.03-03=-10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)


- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

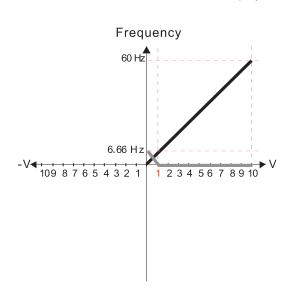
Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 100%

Diagram 17

Pr.03-03=10%


Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

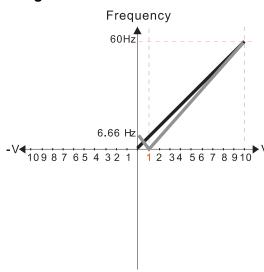
- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1%

Pr.03-03=10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)


0: Negative frequency is not valid.

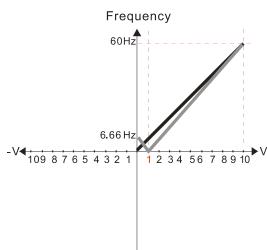
Forward and reverse run is controlled by digital keyboard or external terminals.

1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad
or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1%

Diagram 19

Pr.03-03=10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

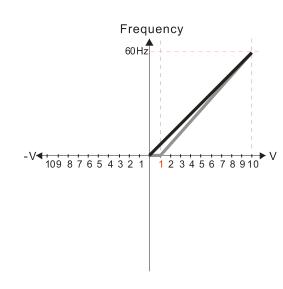

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1%

Diagram 20


Pr.03-03=10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1%

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)

0: No bias

1: Lower than or equal bias

2: Greater than or equal to bias

3: The absolute value of the bias voltage while serving as the center

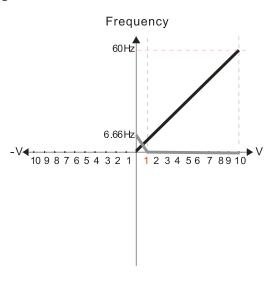
4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

0: Negative frequency is not valid.

Forward and reverse run is controlled by digital keyboard or external termina

by digital keyboard or external terminals.


1: Negative frequency is valid.

Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad

or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1%

Diagram 22

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)

0: No bias

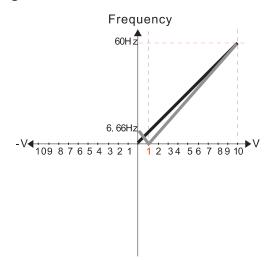
1: Lower than or equal bias

2: Greater than or equal to bias

3: The absolute value of the bias voltage while serving as the center

4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)


O: Negative frequency is not valid.

Forward and reverse run is controlled by digital keyboard or external terminals.

Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1%

Diagram 23

Pr.03-03=10%

Pr.03-07-03-08 (Positive/Negative Bias Mode)

0: No bias

1: Lower than or equal bias

2: Greater than or equal to bias

3: The absolute value of the bias voltage while serving as the center

4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

Negative frequency is not valid.
 Forward and reverse run is controlled

by digital keyboard or external terminals.

1: Negative frequency is valid.

Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1% Frequency
60Hz
1 2 3 4 5 6 7 8 910

Pr.03-03=10% Pr.03-07-03-08 (Positive/Negative Bias Mode)

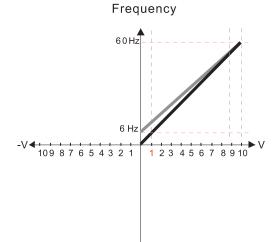
0: No bias

1: Lower than or equal bias

2: Greater than or equal to bias

3: The absolute value of the bias voltage while serving as the center

4: Bias serves as the center


Pr.03-10 (Analog Frequency Command for Reverse Run)

0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keyboard or external terminals.

Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) = 111.1% 10/9 = 111.1%

Diagram 25

Pr.03-07-03-08 (Positive/Negative Bias Mode)

0: No bias

1: Lower than or equal bias

2: Greater than or equal to bias

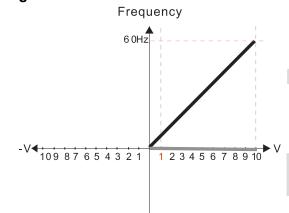
3: The absolute value of the bias voltage while serving as the center

4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keyboard or external terminals.

Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.


Calculate the bias:

$$\frac{60-6Hz}{10V} = \frac{6-0Hz}{(0-X)} \times V = \frac{100}{-9} = -1.11V \quad \therefore 03-03 = \frac{-1.11}{10} \times 100\%$$

Calculate the gain:

$$Pr.03-11 = \frac{10V}{11.1V} \times 100\% = 90.0\%$$

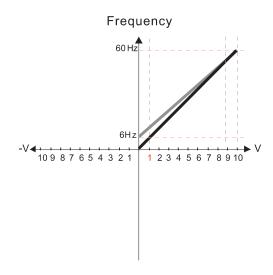
Diagram 26

Pr.03-07-03-08 (Positive/Negative Bias Mode)

0: No bias

1: Lower than or equal bias

2: Greater than or equal to bias


3: The absolute value of the bias voltage while serving as the center

4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

 Negative frequency is not valid.
 Forward and reverse run is controlled by digital keyboard or external terminals.

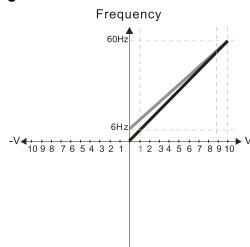
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad
or external terminal control.

Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled by digital keyboard or external terminals.
- Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad or external terminal control.


Calculate the bias:

$$\frac{60-6Hz}{10V} = \frac{6-0Hz}{(0-X)} \times V = \frac{100}{-9} = -1.11V \quad \therefore 03-03 = \frac{-1.11}{10} \times 100\%$$

Calculate the gain:

$$Pr.03-11 = \frac{10V}{11.1V} \times 100\% = 90.0\%$$

Diagram 28

Pr.03-07-03-08 (Positive/Negative Bias Mode)

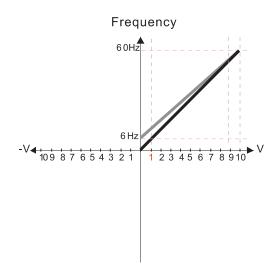
- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- O: Negative frequency is not valid.

 Forward and reverse run is controlled by digital keyboard or external terminals.
- 1: Negative frequency is valid.

 Positive frequency = forward run;
 negative frequency = reverse run.


 Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:

$$\frac{60-6Hz}{10V} = \frac{6-0Hz}{(0-XV)} \times V = \frac{100}{-9} = -1.11V \quad \therefore 03-03 = \frac{-1.11}{10} \times 100\%$$

Calculate the gain:

$$Pr.03-11 = \frac{10V}{11.1V} \times 100\% = 90.0\%$$

Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

0: Negative frequency is not valid.

Forward and reverse run is controlled by digital keyboard or external terminals.

1: Negative frequency is valid.

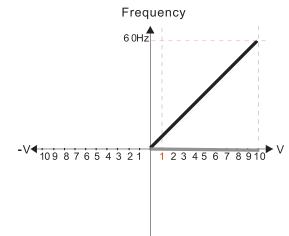
Positive frequency = forward run;

negative frequency = reverse run.

Direction can not be switched by digital keypad

or external terminal control.

Calculate the bias:


$$\frac{60-6Hz}{10V} = \frac{6-0\,Hz}{(0-XV)} \quad XV = \frac{100}{-9} = -1.11V \quad \therefore 03-03 = \frac{-1.11}{10} \times 100\%$$

= -11.1 %

Calculate the gain:

$$Pr.03-11 = \frac{10V}{11.1V} \times 100\% = 90.0\%$$

Diagram 30

Pr.03-07-03-08 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.
 Positive frequency = forward run;
 negative frequency = reverse run.
 Direction can not be switched by digital keypad
 or external terminal control.

Frequency
60 Hz
10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10

Pr.03-07-03-08 (Positive/Negative Bias Mode)

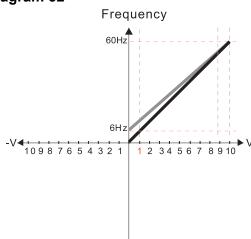
- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid.
 Forward and reverse run is controlled
 by digital keyboard or external terminals.
- 1: Negative frequency is valid.

 Positive frequency = forward run;
 negative frequency = reverse run.

 Direction can not be switched by digital keypad or external terminal control.


Calculate the bias:

$$\frac{60-6Hz}{10V} = \frac{6-0Hz}{(0-XV)} \quad XV = \frac{100}{-9} = -1.11V \quad \therefore 03-03 = \frac{-1.11}{10} \times 100\%$$

Calculate the gain:

$$Pr.03-11 = \frac{10V}{11.1V} \times 100\% = 90.0\%$$

Diagram 32

Pr.03-07-03-08 (Positive/Negative Bias Mode)

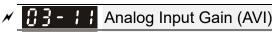
- 0: No bias
- 1: Lower than or equal bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Bias serves as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- O: Negative frequency is not valid.

 Forward and reverse run is controlled by digital keyboard or external terminals.
- 1: Negative frequency is valid.

 Positive frequency = forward run;
 negative frequency = reverse run.


 Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:

$$\frac{60-6Hz}{1.0V} = \frac{6-0 Hz}{(0-XV)} \quad XV = \frac{100}{-9} = -1.11V \quad \therefore 03-03 = \frac{-1.11}{10} \times 100\%$$

Calculate the gain:

$$Pr.03-11 = \frac{10V}{11.1V} \times 100\% = 90.0\%$$

🗸 🔢 - 🚼 Analog Input Gain (ACI)

Default: 100.0

Settings -500.0-500.0 %

- ☐ Use Pr.03-03-03-12 when the Frequency command source is the analog voltage or current signal.
- ★ 3 15 Analog Input Filter Time (AVI)

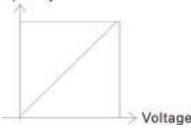
Analog Input Filter Time (ACI)

Default: 0.01

Settings 0.00-20.00 sec.

- Use these input delays to filter a noisy analog signal.
- When the time constant setting is too large, the control is stable but the control response is slow. When the time constant setting is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting based on the control stability or the control response.

★ 3 - 18 Analog Input Addition Function


Default: 0

Settings 0: Disable (AVI, ACI)

1: Enable

- 1: Example: Pr.03-00 = Pr.03-01 = 1 Frequency command = AVI + ACI
- 0 and the analog input setting are the same: the priority for AVI and ACI is AVI > ACI.

Frequency

F command=[(ay±bias)*gain]* Fmax (01-00)
10V or 16mA or 20mA

F command: the corresponding frequency for 10V or 20mA

ay: 040V, 4~20mA, 0~20mA bias: Pr. 03-03, Pr. 03-04 gain: Pr. 03-11, Pr. 03-12

Signal Loss Selection for Analog Input 4–20 mA

Default: 0

Settings 0: Disable

- 1: Continue operation at the last frequency
- 2: Decelerate to 0 Hz
- 3: Stop immediately and display "ACE"
- Determines the treatment when the 4–20 mA signal is lost, when ACIc (Pr.03-29 = 0).
- When Pr.03-29 \neq 0, the voltage input to ACI terminal is 0–10 V or 0–20 mA, and Pr.03-19 is invalid.
- When the setting is 1 or 2, the keypad displays the warning code "ANL". It keeps blinking until the ACI signal is restored.
- When the motor drive stops, the warning condition does not continue to exist, so the warning disappears.

✓ ## ## Multi-function Output (AFM)

Default: 0

Settings 0–4

Function Chart

Settings	Functions	Descriptions
0	Output frequency (Hz)	Maximum frequency Pr.01-00 is processed as 100%.
1	Frequency command (Hz)	Maximum frequency Pr.01-00 is processed as 100%.
2	Motor speed (Hz)	Maximum frequency Pr.01-00 is processed as 100%.

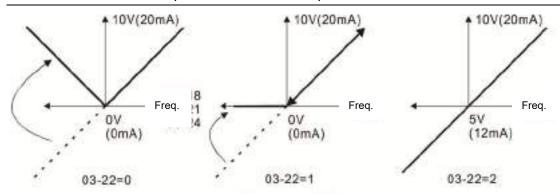
Settings	Functions	Descriptions
3	Output current (rms)	(2.5 X rated current) is processed as 100%.
4	Output voltage	(2 X rated voltage) is processed as 100%.

★ 3 - 2 ↑ Analog Output Gain (AFM)

Default: 100.0

Settings 0–500.0 %

Adjusts the voltage level outputted to the analog meter from the analog signal (Pr.03-20) output terminal AFM of the drive.


★ ☐ 3 - 2 2 Analog Output in REV Direction (AFM)

Default: 0

Settings 0: Absolute value of output voltage

1: Reverse output 0 V; forward output 0-10 V

2: Reverse output 5-0 V; forward output 5-10 V

Analog output direction selection

Default: 0.00

Settings -100.00-100.00 %

Example 1: AFM 0-10 V is set to the output frequency, the output equation is

$$10V \times (\frac{Output Frequency}{01-00}) \times 03-24+10V \times 03-27$$

Example 2: AFM 0-20 mA is set to the output frequency, the output equation is

$$20\text{mA} \times (\frac{\text{Output Frequency}}{01-00}) \times 03-24+20\text{mA} \times 03-27$$

Example 3: AFM 4–20 mA is set to the output frequency, the output equation is

$$4\text{mA} + 16\text{mA} \times (\frac{\text{Output Frequency}}{01 - 00}) \times 03 - 24 + 16\text{mA} \times 03 - 27$$

This parameter sets the corresponding voltage for the analog output 0.

★ 3 - 28 AVI Terminal Input Selection

Default: 0

Settings 0: 0-10 V

3: -10-10 V (Pr.03-69-03-74 are valid)

ACI Terminal Input Selection

Default: 0

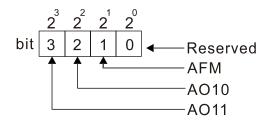
Settings 0: 4-20 mA

1: 0-10 V

2: 0-20 mA

When you change the input mode, verify that the external terminal switch position (ACI) is correct.

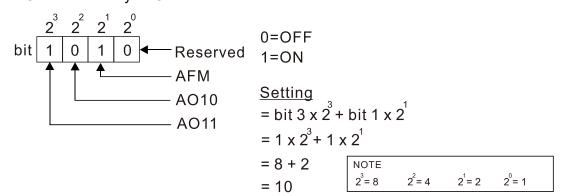
☐ 3 - 3 ☐ Display the Analog Output Terminals Used by PLC


Default: Read only

Settings Monitor the status of the PLC analog output terminals

bit 1: AFM

bit 2: AO10


bit 3: AO11

NOTE
$$2^3 = 8$$
 $2^2 = 4$ $2^1 = 2$ $2^0 = 1$

Example:

When Pr.03-30 displays 000Ah (hex) (that is, the value is 10 (decimal) and 1010 (binary)), it means that AFM and AO11 are used by PLC.

★ 3 - 3 | AFM Output Selection

Default: 0

Settings 0: 0–10 V output

1: 0-20 mA output

2: 4-20 mA output

Default: 0.00

Settings 0.00-100.00 %

#3-35 AFM Filter Output Time Default: 0.01 Settings 0.00-20.00 sec. ✓ ☐ Selection Default: 1 Settings 0: Disable 1: Frequency command Multi-function MO Output by Al Level Source Default: 0 Settings 0: AVI 1: ACI 3: Extension card input terminal AI10 4: Extension card input terminal Al11 ★ 3 - 45 Al Upper Level 1 Default: 50.00 Settings -100.00-100.00% ★ 3 - 45 Al Lower Level 2 Default: 10.00 Settings -100.00-100.00% Multi-function output terminal 67 must work with Pr.03-44 to select input channels. When analog input level is higher than Pr.03-45, multi-function output acts; when analog input level is lower than Pr.03-46, multi-function output terminals stop outputting. When setting levels, Al upper level must be higher than Al lower level. ✓
☐ ☐ ☐ ☐ ACI Lowest Point Default: 4.00 Settings Pr.03-29 = 1, 0.00–10.00 V $Pr.03-29 \neq 1, 0.00-20.00 \text{ mA}$ ★ # B = 58 ACI Proportional Lowest Point Default: 0.00 Settings 0.00-100.00% ★ 33-53 ACI Mid-point Default: 12.00 Settings Pr.03-29 = 1, 0.00-10.00 V $Pr.03-29 \neq 1, 0.00-20.00 \text{ mA}$

ACI Proportional Mid-point	
A Mer i reportional wild-point	 Default: 50.00
Settings 0.00-100.00%	20.000
ACI Highest Point	
	Default: 20.00
Settings Pr.03-29 = 1, 0.00–10.00 V	
Pr.03-29 ≠ 1, 0.00–20.00 mA	
ACI Proportional Highest Point	
	Default: 100.00
Settings 0.00–100.00%	
\square When Pr.03-29 = 1, the ACI setting is 0–10 V and the unit is voltage.	ge (V).
When Pr.03-29 ≠ 1, the ACI setting is 0–20 mA or 4–20 mA and t	he unit is current (mA).
	100% corresponds to Fmax (Pr.01-00
Maximum Operation Frequency).	
The requirement for these three parameters (Pr.03-57, Pr.03-59	and Pr.03-61) is Pr.03-57 < Pr.03-59 <
Pr.03-61. The values for three proportional points (Pr.03-58, Pr	r.03-60 and Pr.03-62) have no limits.
There is a linear calculation between two points.	
☐ The output % becomes 0% when the ACI input value is lower that	n lowest point setting.
For example:	
If Pr.03-57 = 2 mA; Pr.03-58 = 10%, then the output becomes 0%	•
If the ACI input swings between 2 mA and 2.1 mA, the drive's ou	tput frequency oscillates between 0%
and 10%.	
AVI Voltage Lowest Point	
	Default: 0.00
Settings 0.00–10.00 V	
✓ 🖁 🖁 - 🖥 🖁 AVI Voltage Proportional Lowest Point	
	Default: 0.00
Settings -100.00-100.00%	Default: 0.00
Settings -100.00–100.00% ***	Default: 0.00
	Default: 0.00 Default: 5.00
AVI Voltage Mid-point Settings 0.00–10.00 V	
AVI Voltage Mid-point Settings 0.00–10.00 V	
AVI Voltage Mid-point Settings 0.00–10.00 V	Default: 5.00
Settings 0.00–10.00 V Settings Proportional Mid-point Settings -100.00–100.00%	Default: 5.00
Settings 0.00–10.00 V Settings Proportional Mid-point AVI Voltage Proportional Mid-point	Default: 5.00 Default: 50.00
Settings 0.00–10.00 V Settings Proportional Mid-point Settings -100.00–100.00%	Default: 5.00

AVI Voltage Proportional Highest Point Default: 100.00 Settings -100.00–100.00% When you set the positive voltage AVI to the Frequency command, 100% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency) and the motor runs in the forward direction. ☐ The requirement for these three parameters (Pr.03-63, Pr.03-65 and Pr.03-67) is Pr.03-63 < Pr.03-65 < Pr.03-67. The values for three proportional points (Pr.03-64, Pr.03-66 and Pr.03-68) have no limits. There is a linear calculation between two points. The output % becomes 0% when the positive voltage AVI input value is lower than lowest point setting. For example: If Pr.03-63 = 1 V; Pr.03-64 = 10%, then the output becomes 0% when the AVI input is \leq 1 V. If the AVI input swings between 1 V and 1.1 V, the drive's output frequency oscillates between 0% and 10%. ★ # 3 - # 3 Negative AVI Voltage Lowest Point Default: 0.00 Settings 0.00- -10.00 V (valid when Pr.03-28 sets as -10-10 V) Market Point Negative AVI Voltage Proportional Lowest Point Default: 0.00 Settings -100.00-100.00% (valid when Pr.03-28 sets as -10-10 V) Default: -5.00 Settings 0.00- -10.00 V (valid when Pr.03-28 sets as -10-10 V) ✓ ☐ ☐ ☐ Negative AVI Voltage Proportional Mid-point Default: -50.00 -100.00-100.00% Settings (valid when Pr.03-28 sets as -10-10 V) Default: -10.00 Settings 0.00- -10.00 V (valid when Pr.03-28 sets as -10-10 V) Negative AVI Voltage Proportional Highest Point Default: -100.00 Settings -100.00-100.00% (valid when Pr.03-28 sets as -10-10 V)

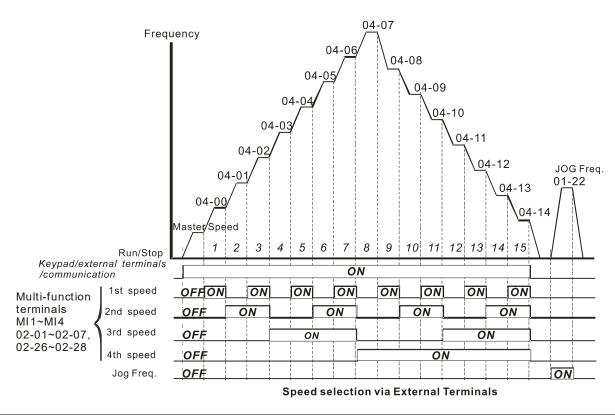
Chapter 12 Description of Parameter Settings | MH300-L

- When you set the negative voltage AVI to the Frequency command, -100% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency) and the motor runs in the reverse direction.
- The requirement for these three parameters (Pr.03-69, Pr.03-71 and Pr.03-73) is Pr.03-69 < Pr.03-71 < Pr.03-73. The values for three proportional points (Pr.03-70, Pr.03-72 and Pr.03-74) have no limits. There is a linear calculation between two points.
- The output % becomes 0% when the negative AVI input value is lower than the lowest point setting. For example:

If Pr.03-69 = -1 V; Pr.03-70 = 10%, then the output becomes 0% when the AVI input is $\geq -1 V$. If the AVI input swings between -1 V and -1.1 V, drive's output frequency oscillates between 0% and 10%.

Default: 0.00

04 Multi-Step Speed Parameters


✓ You can set this parameter during operation.

N	1st Step Speed Frequency
N	☐ Y - ☐ I 2 nd Step Speed Frequency
N	3 rd Step Speed Frequency
N	☐ Y - ☐ 3 4 th Step Speed Frequency
N	□ Y - □ Y 5th Step Speed Frequency
N	6 th Step Speed Frequency
N	7 th Step Speed Frequency
N	8 th Step Speed Frequency
N	9 th Step Speed Frequency
N	10 th Step Speed Frequency
N	11th Step Speed Frequency
N	12 th Step Speed Frequency
N	13 th Step Speed Frequency
N	14 th Step Speed Frequency
×	15 th Step Speed Frequency

Settings 0.00-599.00 Hz

- Use the multi-function input terminals (refer to settings 1–4 of Pr.02-01–02-07 and Pr.02-26–02-28 Multi-function Input Command) to select multi-step speed command (the maximum is 15th step speed). Pr.04-00 to Pr.04-14 sets the multi-step speed frequency as shown in the following diagram.
- The external terminal/digital keypad/communication controls the RUN and STOP commands with Pr.00-21.
- You can set each multi-step speed between 0.00–599.00 Hz during operation.
- Explanation for the timing diagram of the multi-step speed and external terminals

 The related parameter settings are:
 - 1. Pr.04-00-04-14: sets the 1st-15th multi-step speed (to set the frequency of each step speed).
 - 2. Pr.02-01-02-07 and Pr.02-26-02-28: sets the multi-function input terminals (multi-step speed command 1-4).
- Related parameters:
 - Pr.01-22 JOG frequency setting
 - Pr.02-01 multi-function input command 1 (MI1)
 - Pr.02-02 multi-function input command 2 (MI2)
 - Pr.02-03 multi-function input command 3 (MI3)
 - Pr.02-04 multi-function input command 4 (MI4)

_		
×	84-58	PLC Buffer 0
\varkappa	84-51	PLC Buffer 1
\varkappa	84-52	PLC Buffer 2
*	84-53	PLC Buffer 3
×	84-54	PLC Buffer 4
×	84-55	PLC Buffer 5
\varkappa	84-58	PLC Buffer 6
×	84-57	PLC Buffer 7
~	84-58	PLC Buffer 8
×	84-59	PLC Buffer 9
N	84-88	PLC Buffer 10
~	84-88	PLC Buffer 11
×	88-20	PLC Buffer 12
~	84-83	PLC Buffer 13
×	84-84	PLC Buffer 14
\varkappa	84-85	PLC Buffer 15
~	88-28	PLC Buffer 16
×	84-88	PLC Buffer 17
N	88-20	PLC Buffer 18
×	84-88	PLC Buffer 19
_		Default: 0

You can combine the PLC buffer with the built-in PLC function for a variety of applications.

0-65535

Settings

05 Motor Parameters

 $\ensuremath{\boldsymbol{\varkappa}}$ You can set this parameter during operation.

-	85-88 N	/lotor Pa	rameter Auto-Tuning	
-				Default: 0
	S	Settings	0: No function	
			1: Dynamic test for an induction motor (IM)	
			2: Static test for an induction motor (IM)	
-			Compart for an Industrian Mater (A)	
-	00-01 F	-uii-ioad	Current for an Induction Motor (A)	
				Unit: Ampere
				Default: #.##
	_	Settings	10–120 % of drive's rated current	
			cording to the rated current of the motor as indicated	on the motor nameplate. The
			ne drive's rated current.	
	•		d current for a 7.5 HP (5.5 kW) motor is 25 A. The defa	
		The setti	ng range is 2.5–30 A. (25 × 10 % = 2.5 A and 25 × 120) % = 30 A).
~ −	05-02 F	Rated Po	ower for an Induction Motor (kW)	
-			, ,	Default: #.##
	S	Settings	0.00–655.35 kW	
	_		er for motor 1. The default is the drive's power value.	
_		•	·	
<i>×</i> _	85-83 F	Rated Sp	eed for an Induction Motor (rpm)	
				Default: 1710
	S	Settings	0–65535 rpm	
	_		1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)	
	Sets the ra	ated spee	ed for the motor as indicated on the motor nameplate.	
-	05-04 N	Jumber d	of Poles for an Induction Motor	
-	02 0 1	Tarrisor (or reserver arrandoment motor	Default: 4
	S	Settings	2–20	Doladit. 4
	_		poles for the motor (must be an even number).	
			d Pr.05-03 before setting up Pr.05-04 to make sure the	a motor operates pormally
_	Set up i i.	OI-OI all	d 1 1.05-05 before setting up 1 1.05-04 to make sure the	motor operates normally.
_	85-85 N	lo-load (Current for an Induction Motor (A)	
				Unit: Ampere
				Default: #.##
	S	Settings	0.00-Pr.05-01 Default	
	The defau	ılt is 40%	of the motor's rated current.	

Stator Resistance (Rs) for an Induction Motor

Rotor Resistance (Rr) for an Induction Motor

Default: #.###

Settings $0.000-65.535 \Omega$

☐ 5 - ☐ ☐ Magnetizing Inductance (Lm) for an Induction Motor

Stator Inductance (Lx) for an Induction Motor

Default: #.#

Settings 0.0-6553.5 mH

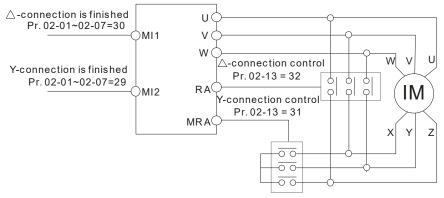
Default: 60.00

Settings 0.00-599.00 Hz

 # 5 - 2 4
 Y-connection /△-connection Switch for an Induction Motor

Default: 0

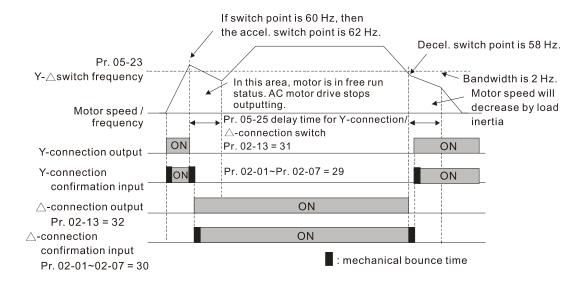
Settings 0: Disable

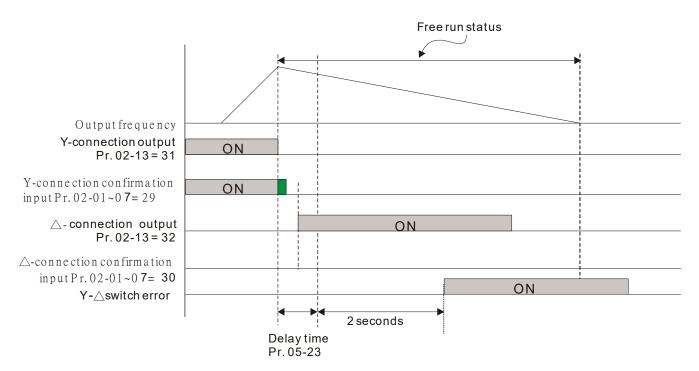

1: Enable

✓ # 5 - 2 5 Delay Time for Y-connection/△-connection Switch for an Induction Motor.

Default: 0.200

Settings 0.000-60.000 sec.


- You can apply Pr.05-23–Pr.05-25 in a wide range of motors, and the motor coil executes the Y-connection / Δ -connection switch as required. The wide range motors are related to the motor design. In general, the motor has higher torque with low speed Y-connection and has higher speed with high speed Δ -connection
- \square Pr.05-24 enables and disables the switch of Y-connection / \triangle -connection.
- When you set Pr.05-24 as 1, the drive uses the Pr.05-23 setting and current motor frequency, and switches the current motor to Y-connection or Δ-connection. You can switch the relevant motor parameter settings simultaneously.
- \square Pr.05-25 sets the switch delay time of Y-connection / Δ -connection.
- When the output frequency reaches the Y-connection / Δ -connection switch frequency, the drive delays according to Pr.05-25 before activating the multi-function output terminals.



Y- \triangle connection switch: can be used for wide range motor

Y-connection for low speed: higher torque can be used for rigid tapping

 \triangle -connection for high speed: higher torque can be used for high-speed drilling

Accumulative Watt-second for a Motor in Low Word (W-sec.)
Accumulative Watt-second for a Motor in High Word (W-sec.)
Accumulative Watt-hour for a Motor (W-Hour)
Accumulative Watt-hour for a Motor in Low Word (kW-Hour)
S - 3 # Accumulative Watt-hour for a Motor in High Word (kW-Hour)

Default: #.#

Settings Read only

- Pr.05-26–05-30 records the amount of power the motors consume. The accumulation begins when the drive is activated and the record is saved when the drive stops or turns OFF. The amount of consumed watts continues to accumulate when the drive is activated again. To clear the accumulation, set Pr.00-02 as 5 to return the accumulation record to 0.
- The accumulated total watts of the motor per second = Pr.05-27 x 65536 + Pr.05-26 Example: when Pr.05-26 = 2548.1 and Pr.05-27 = 15.2, the accumulated total watts of the motor per second = 15.2 x 65536 + 2548.1 = 996147.2 + 2548.1 = 998695.3

Chapter 12 Description of Parameter Settings | MH300-L

The accumulated total kilowatts of the motor per hour = $Pr.05-30 \times 65536 + Pr.05-29$ Example: when Pr.05-29 = 3361.4 and Pr.05-30 = 11.2, the accumulated total kilowatts of the motor per hour = $11.2 \times 65536 + 3361.4 = 734003.2 + 3361.4 = 737364.6$

35-3 Accumulative Motor Operation Time (Min.)

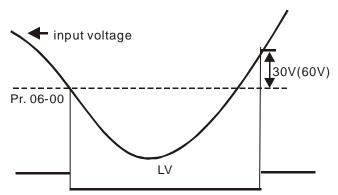
Default: 0

Settings 0-1439

☐ 5 - 3 Accumulative Motor Operation Time (Day)

Default: 0

Settings 0-65535


Use Pr.05-31 and Pr.05-32 to record the motor operation time. To clear the operation time, set Pr.05-31 and Pr.05-32 as 00. An operation time shorter than 60 seconds is not recorded.

06 Protection Parameters

✓ You can set this parameter during operation.

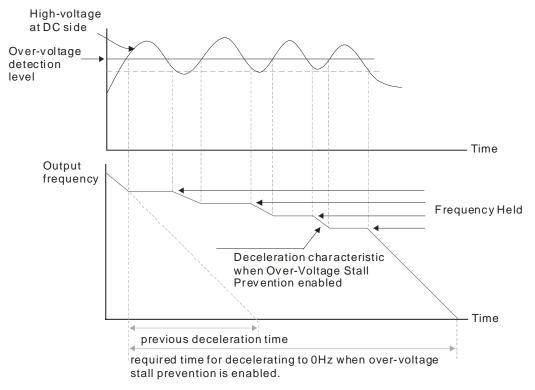
✓ 😘 - 🔐 Low Voltage Level	
	Default:
Settings 230V: 150.0-220.0 V _{DC}	180.0
460V: 300.0-440.0 Vpc	360.0

- Sets the Low Voltage (LV) level. When the DC BUS voltage is lower than Pr.06-00, the drive stops output and the motor free runs to a stop.
- If the LV fault is triggered during operation, the drive stops output and the motor free runs to a stop. There are three LV faults, LvA (LV during acceleration), Lvd (LV during deceleration), and Lvn (LV in constant speed) that are triggered according to the status of acceleration or deceleration. You must press RESET to clear the LV fault. The drive automatically restarts if you set to restart after momentary power loss (refer to Pr.07-06 Restart after Momentary Power Loss and Pr.07-07 Allowed Power Loss Duration for details).
- If the LV fault is triggered when the drive is in STOP status, the drive displays LvS (LV during stop), which is not recorded, and the drive restarts automatically when the input voltage is higher than the LV level of 30 V (230V series) or 60 V (460V series).

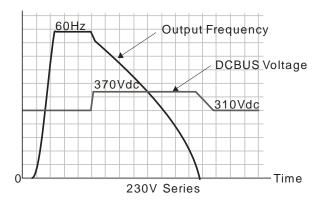
Settings	0: Disabled	Default:
	230V: 0.0-450.0 V _{DC}	380.0
	460V: 0.0–900.0 V _{DC}	760.0

- Setting Pr.06-01 to 0.0 disables the over-voltage stall prevention function (connected with braking unit or braking resistor). Use this setting when braking units or resistors are connected to the drive.
- Setting Pr.06-01 to a value > 0 enables the over-voltage stall prevention. This setting refers to the power supply system and loading. If the setting is too low, then over-voltage stall prevention is easily activated, which may increase deceleration time.
- Related parameters:

Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Deceleration Time 1–4, Pr.02-13 Multi-function Output 1 (Relay 1), Pr.02-16–Pr.02-17 Multi-function Output 2–3 (MO1, 2), and Pr.06-02 Selection for Over-voltage Stall Prevention.


Selection for Over-voltage Stall Prevention

Default: 0

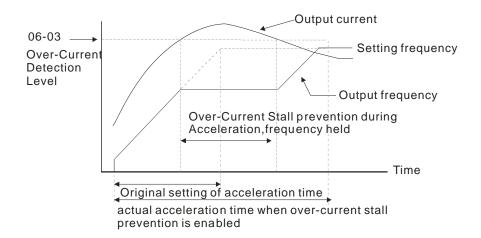

Settings 0: Traditional over-voltage stall prevention

1: Smart over-voltage stall prevention

- Use this function when you are unsure about the load inertia. When stopping under normal load, the over-voltage does not occur during deceleration and meet the deceleration time setting. Sometimes it may not stop due to over-voltage during decelerating to STOP when the load regenerative inertia increases. In this case, the AC motor drive extends the deceleration time automatically until the drive stops.
- When you set Pr.06-02 to 0, during deceleration the motor exceeds the synchronous speed due to load inertia. In this case, the motor becomes an electrical generator. The DC BUS voltage may exceed its maximum allowable value due to motor regeneration in some situations, such as loading inertia being too high or deceleration time being set too short. When you enable traditional over-voltage stall prevention and the DC BUS voltage detected is too high, the drive stops decelerating (output frequency remains unchanged) until the DC BUS voltage drops below the setting value.

When you set Pr.06-02 to 1, to use smart over-voltage stall prevention during deceleration, the drive maintains the DC BUS voltage when decelerating and prevents the drive from OV.

- When you enable the over-voltage stall prevention, the drive's deceleration time is longer than the setting. If you encounter any problem with deceleration time, refer to the following guides for troubleshooting.
 - 1. Increase the deceleration time to a suitable value.
 - 2. Install a brake resistor (refer to Section 7-1 All Brake Resistors and Brake Units Used in AC Motor Drives for details) to dissipate the electrical energy that is generated from the motor.
- Related parameters:

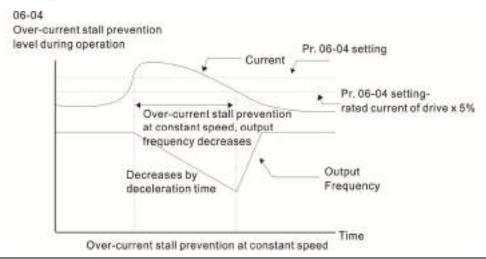

Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Deceleration Time 1–4, Pr.02-13 Multi-function Output 1 (Relay 1), Pr.02-16–Pr.02-17 Multi-function Output 2–3 (MO1, 2), and Pr.06-01 Over-voltage Stall Prevention.

✓ ☐ ☐ ☐ ☐ ☐ ☐ Over-current Stall Prevention during Acceleration

Default: 180

Settings 0–200% (100% corresponds to the rated current of the drive)

- This parameter only works in VF and SVC modes.
- If the motor load is too large or the drive's acceleration time is too short, the output current of the drive may be too high during acceleration, and it may cause motor damage or trigger protection functions (OL or OC). Use this parameter to prevent these situations.
- During acceleration, the output current of the drive may increase abruptly and exceed the setting value of Pr.06-03. In this case, the drive stops accelerating and keeps the output frequency constant, and then continues to accelerate until the output current decreases.
- When you enable the over-current stall prevention, the drive's acceleration time is longer than the setting.
- When the over-current stall prevention occurs because the motor capacity is too small or operates in the default, decrease the Pr.06-03 setting value.
- When you encounter any problem with the acceleration time, refer to the following guides for troubleshooting.
 - 1. Increase the deceleration time to a suitable value.
 - Related parameters: Pr.01-12, 01-14, 01-16, 01-18 Acceleration Time 1–4), Pr.02-13
 Multi-function Output 1 (Relay 1), Pr.02-16–02-17 Multi-function Output 2–3 (MO1, 2).



✓ # Over-current Stall Prevention during Operation

Default: 180

Settings 0–200% (100% corresponds to the rated current of the drive)

- This parameter only works in VF and SVC modes.
- This is a protection for the drive to decrease output frequency automatically when the motor overloads abruptly during constant motor operation.
- If the output current exceeds the setting value of Pr.06-04 when the drive is operating, the drive decreases output frequency (according to Pr.06-05) to prevent the motor from stalling. If the output current is lower than the setting value of Pr.06-04, the drive accelerates (according to Pr.06-05) again to the setting frequency.

★ 35 - 35 Accel. / Decel. Time Selection for Stall Prevention at Constant Speed

Default: 0

Settings

0: By current acceleration / deceleration time

1: By the 1st acceleration / deceleration time

2: By the 2nd acceleration / deceleration time

3: By the 3rd acceleration / deceleration time

4: By the 4th acceleration/ deceleration time

5: By auto-acceleration / auto-deceleration

Sets the acceleration/deceleration time selection when stall prevention occurs at constant speed.

✓ ☐ 6 - ☐ 6 Over-torque Detection Selection (Motor)

Default: 0

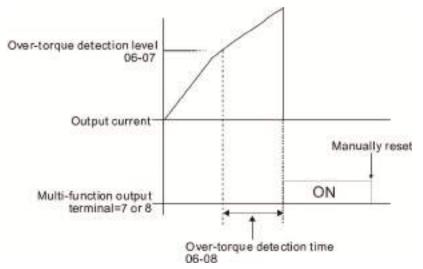
Settings

- 0: No function
- 1: Continue operation after over-torque detection during constant speed operation
- 2: Stop after over-torque detection during constant speed operation
- 3: Continue operation after over-torque detection during RUN
- 4: Stop after over-torque detection during RUN

✓ ☐5 - ☐ ☐ Over-torque Detection Level (Motor)

Default: 120

Settings 10–250% (100% corresponds to the rated current of the drive)


Default: 0.1

Settings 0.1–60.0 sec.

- When the output current exceeds over-torque detection level (Pr.06-07) and also exceeds over-torque detection time (Pr.06-08), the over-torque detection follows the settings for Pr.06-06.
- When you set Pr.06-06 to 1 or 3, an ot1 warning displays while the drive keeps running. The warning remains on until the output current is smaller than 5% of the over-torque detection level.

When you set Pr.06-06 to 2 or 4, an ot1 warning displays and the drive stops running after over-torque detection. The drive keeps running after you manually reset it.

✓ ☐ 6 - 12 Current Limit

Default: 150

Settings 0–250% (100% corresponds to the rated current of the drive)

Sets the maximum output current of the drive.

✓ ☐5 - / ∃ Electronic Thermal Relay Selection 1 (Motor)

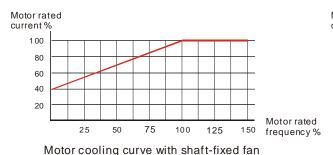
Default: 2

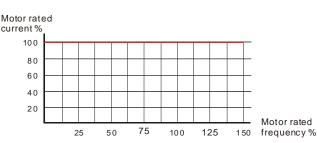
Settings 0: Inverter motor (with external forced cooling)

1: Standard motor (motor with fan on the shaft)

2: Disable

Chapter 12 Description of Parameter Settings | MH300-L


- Prevents self-cooled motor from overheating under low speed. Use an electronic thermal relay to limit the drive's output power.
- Setting the parameter to 0 is suitable for an inverter motor (motor fan using an independent power supply). For this kind of motor, there is no significant correlation between cooling capacity and motor speed. Therefore, the action of electronic thermal relays remain stable in low speed to ensure the load capability of the motor in low speed.
- Setting the parameter to 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is lower in low speed; therefore, the action of an electronic thermal relay reduces the action time to ensure the life of motor.
- When the power is cycled frequently, if the power is switched OFF, the electronic thermal relay protection is reset; therefore even setting the parameter to 0 or 1 may not protect the motor well. If there are several motors connected to one drive, install an electronic thermal relay in each motor.


Fig. 13 Electronic Thermal Relay Action Time 1 (Motor)

Default: 60.0

Settings 30.0-600.0 sec.

- Set the parameter to 150% of motor rated current and use with the setting of Pr.06-14 to prevent motor damage due to overheating. When it reaches the setting, the drive displays "EoL1", and the motor free runs to stop.
- Use this parameter to set the action time of the electronic thermal relay. It works based on the I2t characteristic curve of electronic thermal relay, the output frequency and current of the drive, and the operation time to prevent the motor from overheating.

Motor cooling curve with independent fan


- The action of electronic thermal relay depends on the settings of Pr.06-13.
 - 1. Pr.06-13 is set to 0 (using inverter motor):

When output current of drive is higher than 150% of motor rated current (refer to motor cooling curve with independent fan), the drive will starts to count the time. The electronic thermal relay will acts when the accumulated time exceeds Pr.06-14.

2. Pr.06-13 is set to 1 (using standard motor):

When the output current of the drive is higher than 150% of the motor rated current (refer to the motor cooling curve with shaft-fixed fan), the drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr.06-14.

The actual electronic thermal relay action time adjusts according to the drive output current (shown as the motor loading rate %). The action time is short when the current is high, and the action time is long when the current is low. Refer to the following chart:

★ 36 - 15 Temperature Level Overheat (OH) Warning

Default: 105.0

Settings 0.0-110.0 °C

The default of this parameter is 105°C. When using Sensorless control mode, the OH warning is disabled if Pr.06-15 is not reduced. When the temperature reaches 100°C, the drive stops with an IGBT overheat fault.

★ □

Default: 100

Settings 0–100% (Refer to Pr.06-03, Pr.06-04)

Sets the over-current stall prevention level when operation frequency is larger than Pr.01-01.

Example: When Pr.06-03 = 150%, Pr.06-04 = 100% and Pr.06-16 = 80%.

The over-current stall prevention level during acceleration:

Pr.06-03 * Pr.06-16 = 150 x 80% = 120%.

The over-current stall prevention level during operation:

Pr.06-04 * Pr.06-16 = 100 x 80% = 80%.

## Fault Record 1	
### Fault Record 2	
## Fault Record 3	
\$\text{\$\text{\$\text{\$\geqref{0.5}}}}\$ Fault Record 4	
35 - 2 : Fault Record 5	
₽5 - 2 2 Fault Record 6	

Default: 0

Settings 0: No fault record

1: Over-current during acceleration (ocA)

2: Over-current during deceleration (ocd)

3: Over-current during constant speed (ocn)

4: Ground fault (GFF)

6: Over-current at stop (ocS)

- 7: Over-voltage during acceleration (ovA)
- 8: Over-voltage during deceleration (ovd)
- 9: Over-voltage during constant speed (ovn)
- 10: Over-voltage at stop (ovS)
- 11: Low-voltage during acceleration (LvA)
- 12: Low-voltage during deceleration (Lvd)
- 13: Low-voltage during constant speed (Lvn)
- 14: Low-voltage at stop (LvS)
- 15: Phase loss protection (orP)
- 16: IGBT overheat (oH1)
- 18: TH1 open: IGBT overheat protection error(tH1o)
- 21: Drive overload (oL)
- 22: Electronic thermal relay protection 1 (EoL1)
- 26: Over-torque 1 (ot1)
- 28: Low current (uC)
- 31: Memory read-out error (cF2)
- 33: U-phase current detection error (cd1)
- 34: V-phase current detection error (cd2)
- 35: W-phase current detection error (cd3)
- 36: Clamp current detection error (Hd0)
- 37: Over-current detection error (Hd1)
- 40: Auto-tuning error (AUE)
- 41: PID feedback loss (AFE)
- 48: Analog current input loss (ACE)
- 49: External fault input (EF)
- 50: Emergency stop (EF1)
- 51: External Base Block (B.B.)
- 52: Password error (Pcod)
- 54: Communication error (CE1)
- 55: Communication error (CE2)
- 56: Communication error (CE3)
- 57: Communication error (CE4)
- 58: Communication time-out (CE10)
- 61: Y-connection / Δ -connection switch error (ydc)
- 62: Deceleration Energy Backup Error (dEb)
- 63: Slip error (oSL)
- 71: Mechanical brake error 2 (MBF2)
- 72: Channel 1 (S1–DCM) safety loop error (STL1)
- 74: Magnetic contactor error (MCF)
- 75: Mechanical brake error (MBF)
- 76: Safe Torque Off (STo)
- 77: Channel 2 (S2–DCM) safety loop error (STL2)

- 78: Internal loop error (STL3)
- 79: U-phase over-current before run (Uoc)
- 80: V-phase over-current before run (Voc)
- 81: W-phase over-current before run (Woc)
- 82: U-phase output phase loss (OPHL)
- 83: V-phase output phase loss (OPHL)
- 84: W-phase output phase loss (OPHL)
- 87: Drive overload in low frequency (oL3)
- 101: CANopen software disconnect 1 (CGdE)
- 102: CANopen software disconnect 2 (CHbE)
- 104: CANopen hardware disconnect (CbFE)
- 105: CANopen index setting error (CldE)
- 106: CANopen station number setting error (CAdE)
- 107: CANopen memory error (CFrE)
- 127: Software version error (CP33)
- 140: GFF detected when power on (Hd6)
- 141: GFF before run (BGFF)
- 142: Auto-tuning error 1 (DC test stage) (AUE1)
- 143: Auto-tuning error 2 (High frequency test stage) (AUE2)
- 144: Auto-tuning error 3 (Rotary test stage) (AUE3)
- When the fault occurs and forces stopping, the fault is recorded in this parameter.
- During stop with low voltage Lv (LvS warning), there is no error record. During operation with mid-low voltage Lv (LvA, Lvd, Lvn error), there is a record.
- When dEb function is valid and enabled, the drive executes dEb and record fault code 62 to Pr.06-17–Pr.06-22 simultaneously.
- **№ 日本 Pault Output Option 2**
- ★ \$\int \text{\$\text{0}} \ \text{\$\text{0}\$ \ \text{\$\text{Fault Output Option 4}}\$

Default: 0

Settings 0–65535 (refer to bit table for fault code)

Use these parameters with multi-function output terminal (set to 35–38) for the specific requirement. When the fault occurs, the corresponding terminals activate. Convert the binary value to decimal value before you enter the value for Pr.06-23–Pr.06-26.

	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
Fault Code	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault record							
1: Over-current during acceleration (ocA)	•						
2: Over-current during deceleration (ocd)	•						
3: Over-current during constant speed (ocn)	•						

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
Fault Code	current	Volt.	OL	SYS	FBK	EXI	CE
4: Ground fault (GFF)	•						
6: Over-current at stop (ocS)	•						
7: Over-voltage during acceleration (ovA)		•					
8: Over-voltage during deceleration (ovd)		•					
9: Over-voltage during constant speed (ovn)		•					
10: Over-voltage at stop (ovS)		•					
11: Low-voltage during acceleration (LvA)		•					
12: Low-voltage during deceleration (Lvd)		•					
13: Low-voltage during constant speed (Lvn)		•					
14: Low-voltage at stop (LvS)		•					
15: Phase loss protection (orP)		•					
16: IGBT overheat (oH1)			•				
18: TH1 open: IGBT overheat protection error							
(tH1o)			•				
21: Drive overload (oL)			•				
22: Electronic thermal relay protection 1 (EoL1)			•				
26: Over-torque 1 (ot1)			•				
28: Low current (uC)	•						
31: Memory read-out error (cF2)				•			
33: U-phase current detection error (cd1)				•			
34: V-phase current detection error (cd2)				•			
35: W-phase current detection error (cd3)				•			
36: Clamp current detection error (Hd0)				•			
37: Over-current detection error (Hd1)				•			
40: Auto-tuning error (AUE)				•			
41: PID feedback loss (AFE)					•		
48: Analog current input loss (ACE)					•		
49: External fault input (EF)						•	
50: Emergency stop (EF1)						•	
51: External Base Block (B.B.)						•	
52: Password error (Pcod)				•			
54: Communication error (CE1)							•
55: Communication error (CE2)							•
56: Communication error (CE3)							•
57: Communication error (CE4)							•
58: Communication time-out (CE10)							•
61: Y-connection / Δ-connection switch error (ydc)						•	
62: Deceleration Energy Backup Error (dEb)		•					

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
Fault Code	current	Volt.	OL	SYS	FBK	EXI	CE
63: Slip error (oSL)						•	
71: Mechanical brake error 2 (MBF2)				•			
72: Channel 1 (S1–DCM) safety loop error							
(STL1)							
74: Magnetic contactor error (MCF)				•			
75: Mechanical brake error (MBF)				•			
76: Safe Torque Off (STo)				•			
77: Channel 2 (S2–DCM) safety loop error (STL2)				•			
78: Internal loop error (STL3)				•			
79: U-phase over-current before run (Uoc)	•						
80: V-phase over-current before run (Voc)	•						
81: W-phase over-current before run (Woc)	•						
82: U-phase output phase loss (OPHL)	•						
83: V-phase output phase loss (OPHL)	•						
84: W-phase output phase loss (OPHL)	•						
87: Drive overload in low frequency (oL3)			•				
101: CANopen software disconnect 1 (CGdE)							•
102: CANopen software disconnect 2 (CHbE)							•
104: CANopen hardware disconnect (CbFE)							•
105: CANopen index setting error (CldE)							•
106: CANopen station number setting error (CAdE)							•
107: CANopen memory error (CFrE)							•
127: Software version error (CP33)				•			
140: GFF detected when power on (Hd6)				•			
141: GFF before run (BGFF)				•			
142: Auto-tuning error 1 (DC test stage) (AUE1)				•			
143: Auto-tuning error 2 (High frequency test stage)				•			
(AUE2)							
144: Auto-tuning error 3 (Rotary test stage) (AUE3)				•			

Default: Read only

Settings 0.00-599.00 Hz

When a malfunction occurs, check the current Frequency command. If it happens again, it overwrites the previous record.

Default: Read only

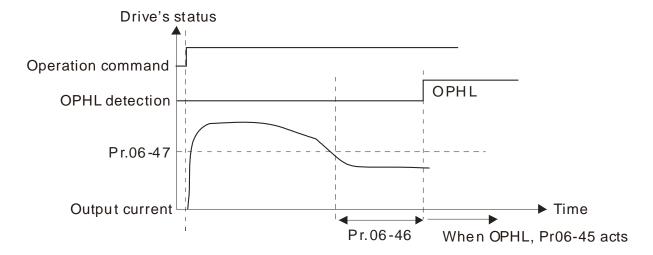
Settings 0.00-599.00 Hz

Chapter 12 Description of Parameter Settings | MH300-L

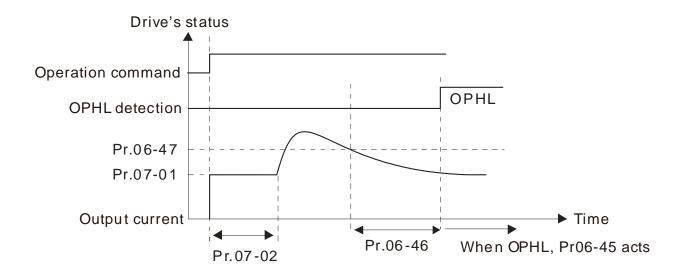
When a malfunction occurs, check the current output frequency. If it happens again, it overwrites the previous record. **Output Voltage at Malfunction** Default: Read only Settings 0.0–6553.5 V When a malfunction occurs, check the current output voltage. If it happens again, it overwrites the previous record. Default: Read only Settings 0.0-6553.5 V When a malfunction occurs, check the current DC voltage. If it happens again, it overwrites the previous record. **Output Current at Malfunction** Default: Read only Settings 0.00-655.35 Amp When a malfunction occurs, check the current output current. If it happens again, it overwrites the previous record. IGBT Temperature at Malfunction Default: Read only Settings -3276.7-3276.7 °C When a malfunction occurs, check the current IGBT temperature. If it happens again, it overwrites the previous record. Capacitance Temperature at Malfunction Default: Read only Settings -3276.7-3276.7 °C When a malfunction occurs, check the current capacitance temperature. If it happens again, it overwrites the previous record. Default: Read only Settings -3276.7-3276.7 rpm When a malfunction occurs, check the current motor speed in rpm. If it happens again, it overwrites the previous record. Status of the Multi-function Input Terminal at Malfunction Default: Read only Settings 0000h-FFFFh

Default: Read only

Status of the Multi-function Output Terminal at Malfunction

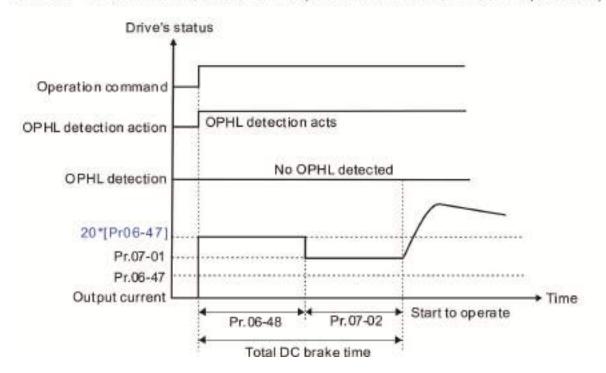

		Settings	0000h-FFFFh	
		malfunction	on occurs, check the current status of the multi-fu	inction input/output terminals. If i
	happens	again, it o	overwrites the previous record.	, ,
	98-42	Drive Sta	atus at Malfunction	
				Default: Read only
		Settings	0000h-FFFFh	
		malfuncti	on occurs, check the current drive status (com	munication address 2101H). If it
	happens	again, it o	overwrites the previous record.	
N	08-44	STO Late	ch Selection	
				Default: 0
		Settings	0: STO Latch	
			1: STO no Latch	
	Pr.06-44	= 0: STO	Alarm Latch. After you clear the cause of the STC	Alarm, use a Reset command to
	clear the	STO Alar	m.	
	Pr.06-44	= 1: STO	Alarm no Latch. After you clear the cause of the	STO Alarm, the STO Alarm clears
	automati	ically.		
	All of the	STL1-ST	L3 errors are "Alarm Latch" mode (in STL1-STL3	mode, the Pr.06-44 function is no
	effective).		
N	08-45	Output P	Phase Loss Detection Action (OPHL)	
				Default: 3
		Settings	0: Warn and continue operation	
			1: Warn and ramp to stop	
			2: Warn and coast to stop	
			3: No warning	
	The OPI	HL protect	function is active when the setting is not 3.	
N	88-48	Detection	n Time for Output Phase Loss	
				Default: 0.500
		Settings	0.000-65.535 sec.	
N	86-47	Current I	Detection Level for Output Phase Loss	
				Default: 1.00
		Settings	0.00-100.00 %	
N	88-48	DC Brak	e Time for Output Phase Loss	
			·	Default: 0.000
		Settings	0.000-65.535 sec.	
	□ Sotting I	 Dr 06_48 +/	O disables the OPHI detection function	

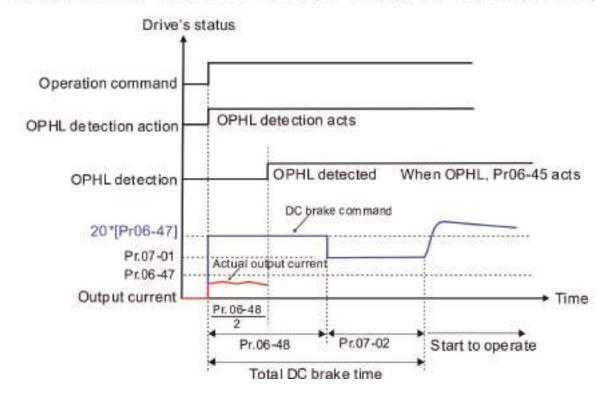
When any phase is less than the Pr.06-47 setting, and exceeds the Pr.06-46 setting time, the drive


Status 1: The drive is in operation

executes according to the Pr.06-45 setting.

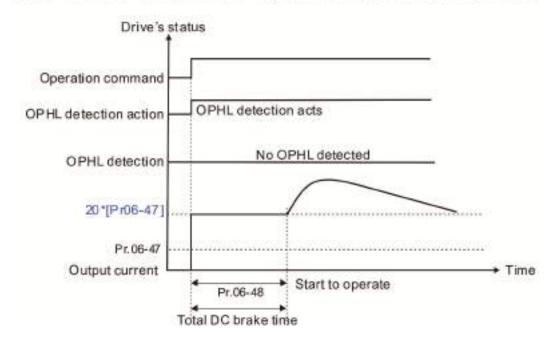
Chapter 12 Description of Parameter Settings | MH300-L

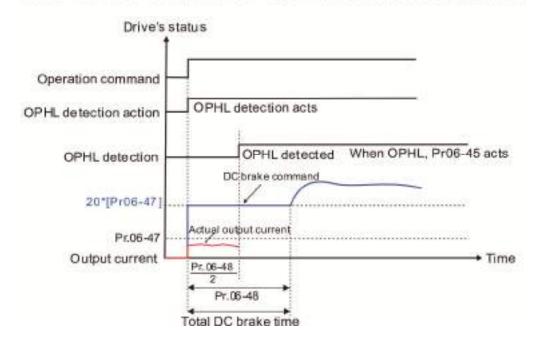

Status 2: The drive is in STOP; Pr.06-48 = 0; Pr.07-02 ≠ 0 After the drive starts, the DC brake operates according to Pr.07-01 and Pr.07-02. During this period, OPHL detection is not active. After the DC brake action is completed, the drive starts to run, and enables the OPHL protection as mentioned above for status 1.


\square Status 3: The drive is in STOP; Pr.06-48 \neq 0; Pr.07-02 \neq 0

When the drive starts, it executes Pr.06-48 first, and then executes Pr.07-02 (DC brake). The DC brake current level in this state includes two parts: one is 20 times the Pr.06-47 setting value in Pr.06-48 setting time; the other is the Pr.07-01 setting value in Pr.07-02 setting time. In this period, if an OPHL happens within the time for Pr.06-48, the drive executes the Pr.06-45 setting after the drive starts counting for half the time of Pr.06-48.

Status 3-1: Pr.06-48 \neq 0, Pr.07-02 \neq 0 (No OPHL detected before operation)


Status 3-2: Pr.06-48 ≠0, Pr.07-02 ≠ 0 (OPHL detected before operation)


Status 4: The drive is in STOP; Pr.06-48 ≠ 0; Pr.07-02 = 0

When the drive starts, it executes Pr.06-48 as the DC brake. The DC brake current level is 20 times the Pr.06-47 setting value. In this period, if an OPHL happens within the time for Pr.06-48, the drive executes the Pr.06-45 setting after the drive starts counting for half the time of Pr.06-48.

Status 4-1: Pr.06-48 ±0, Pr.07-02 = 0 (No OPHL detected before operation)

Status 4-2: Pr.06-48 ≠0, Pr.07-02 = 0 (OPHL detected before operation)

LvX Auto-reset

Default: 0

Settings 0: Disable

1: Enable

✓ G8 - 53 Detected Input Phase Loss Action (OrP)

Default: 0

Settings 0: Warn and ramp to stop

1: Warn and coast to stop

The drive executes the input phase loss protection according to Pr.06-53.

Default: 0

Settings 0: Constant rated current and limit carrier wave by load current and temperature

1: Constant carrier frequency and limit load current by setting carrier wave

2: Constant rated current (same as setting 0), but close current limit

Allowable maximum output frequency and the minimum carrier wave limit in control mode:

For VF and SVC modes:

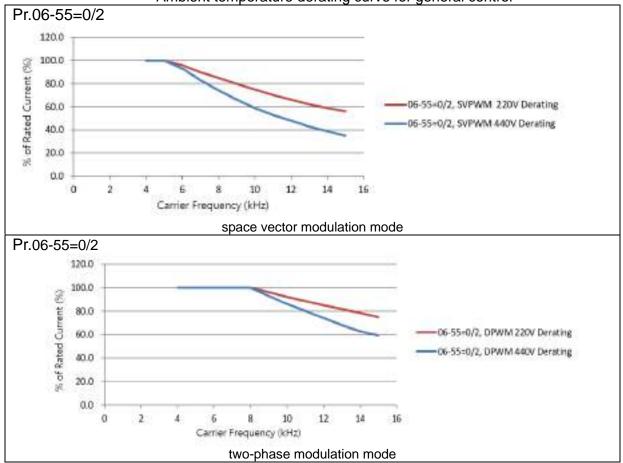
When the maximum output frequency is 599 Hz, the minimum carrier wave is 6 k.

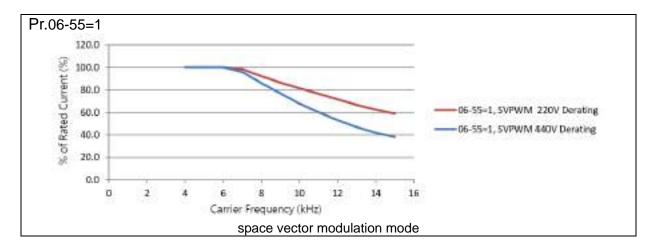
Setting 0:

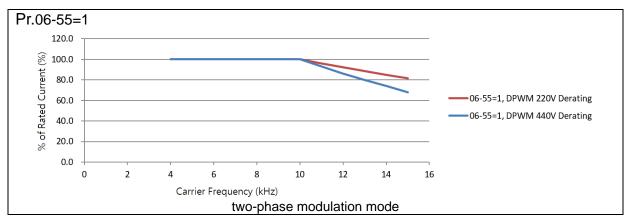
When the operating point is greater than the derating curve (when the operating carrier wave is greater than the rated carrier wave), the rated current is constant, and carrier frequency (Fc) output by the drive decreases automatically according to the ambient temperature, overload output current and overload time. If overloads are not frequent, and the concern is only about the carrier frequency operating with the rated current for a long time, and changes to the carrier wave due to short overload are acceptable, set to 0. Refer to the following diagram for the level of carrier frequency.

Setting 1:

When the operating point exceeds derating curve 1, the carrier frequency is fixed to the set value. Select this mode if the change of carrier wave and motor noise caused by ambient temperature and frequent overload are not acceptable. Refer to Pr.00-17.


Setting 2:


The protection method and action are the same as setting it to 0, but this disables the current limit when output current is the derating ratio ×180 % (default value).


The advantage is that this can provide a higher starting output current when the carrier frequency setting is higher than the default. The disadvantage is that the carrier wave derates easily when it overloads.

- Example: when Pr.06-55 = 0 or 1, over-current stall prevention level = ratio*Pr.06-03. When Pr.06-55 = 2, over-current stall prevention level = Pr.06-03. Use with the setting for Pr.00-17.
- The derating is also affected by the ambient temperature. Refer to the ambient temperature derating curve.

Default: 60.0

Settings 0.0-6553.5 %

★ 36 - 6 | Software Detection GFF Filter Time

Default: 0.10

Settings 0.00-655.35 sec.

When the drive detects the unbalanced three-phase output current is higher than the setting for Pr.06-60, GFF protection activates. The drive then stops output.

G5 - 53 Operation Time of Fault Record 1 (Day)
G8 - 85 Operation Time of Fault Record 2 (Day)
Operation Time of Fault Record 3 (Day)
G8 - 69 Operation Time of Fault Record 4 (Day)
Operation Time of Fault Record 5 (Day)
☐ 6 - ☐ 7 Operation Time of Fault Record 6 (Day)

Default: Read only

Settings 0-65535 days

G8 - 84 Operation Time of Fault Record 1 (Min.)
GS-55 Operation Time of Fault Record 2 (Min.)
GS-58 Operation Time of Fault Record 3 (Min.)
GS-76 Operation Time of Fault Record 4 (Min.)
☐ 6 - 7 Coperation Time of Fault Record 5 (Min.)
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐

Default: Read only

Settings 0–65535 min.

If there is any malfunction when the drive operates, Pr.06-17–06-22 records the malfunctions, and Pr.06-63–06-70 records the operation time for four sequential malfunctions. Check if there is any problem with the drive according to the interval of the recorded fault.

Example:

The first error: ocA occurs after motor drive operates for 1000 minutes.

The second error: ocd occurs after another 1000 minutes.

The third error: ocn occurs after another 1000 minutes.

The fourth error: ocA occurs after another 1000 minutes.

The fifth error: ocd occurs after another 1000 minutes.

The sixth error: ocn occurs after another 1000 minutes.

Then Pr.06-17-06-22 and Pr.06-63-06-70 are recorded as follows:

	1st fault	2 nd fault	3 rd fault	4 th fault	5 th fault	6 th fault
Pr.06-17	ocA	ocd	ocn	ocA	ocd	ocn
Pr.06-18	0	ocA	ocd	ocn	ocA	ocd
Pr.06-19	0	0	ocA	ocd	ocn	ocA

	1st fault	2 nd fault	3 rd fault	4 th fault	5 th fault	6 th fault
Pr.06-20	0	0	0	ocA	ocd	ocn
Pr.06-21	0	0	0	0	ocA	ocd
Pr.06-22	0	0	0	0	0	ocA
Pr.06-63	1000	560	120	1120	680	240
Pr.06-64	0	1	2	2	3	4
Pr.06-65	0	1000	560	120	1120	680
Pr.06-66	0	0	1	2	2	3
Pr.06-67	0	0	1000	560	120	1120
Pr.06-68	0	0	0	1	2	2
Pr.06-69	0	0	0	1000	560	120
Pr.06-70	0	0	0	0	1	2

[※] By examining the time record, you can see that that the last fault (Pr.06-17) happened after the drive ran for 4 days and 240 minutes.

★ ☐ ☐ ☐ ☐ ☐ Low Current Setting Level

Default: 0.0

Settings 0.0-100.0 %

★ 35 - 72 Low Current Detection Time

Default: 0.00

Settings 0.00-360.00 sec.

★ ISS - TB Low Current Action

Default: 0

Settings 0: No function

1: Warn and coast to stop

2: Warn and ramp to stop by the second deceleration time

3: Warn and continue operation

- The drive operates according to the setting for Pr.06-73 when the output current is lower than the setting for Pr.06-71 and when the time of the low current exceeds the detection time for Pr.06-72. Use this parameter with the external multi-function output terminal 44 (for low current output).
- The low current detection function does not execute when drive is in sleep or standby status.

★ 88 Emergency Power Voltage in Operation

Default: 300.0

Settings 280.0–537.0 V_{DC}

The output voltage for the external emergency power.

#5 8 Femergency Power Speed in Operation

Default: Read only

Settings 0.00-599.00 Hz

Sets the elevator's maximum running speed when using Emergency Power Supply (EPS).

You can set the elevator's running speed during EPS by using Pr.02-83, but the running speed should not be larger than Pr.06-81 setting value.

Emergency Power Capacity in Operation

Default: 0.0

Settings 0.0-100.0 kVA

- ☐ The power capacity for the external emergency power.
- When using EPS as an emergency power system, you must enter the power capacity of emergency power. When using emergency power, the drive calculates elevators' running speed according to the calculation formula below.

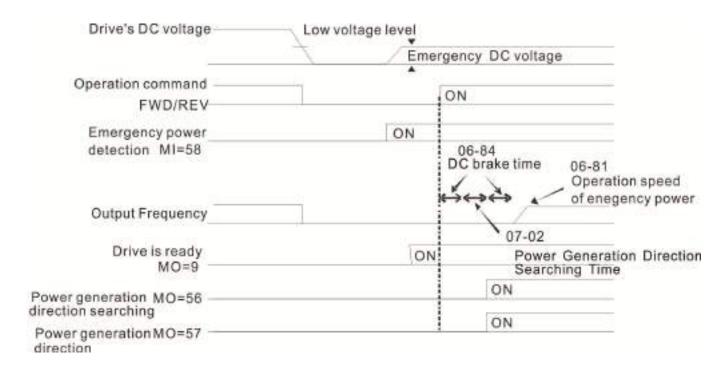
$$\begin{split} V_{eps_max} &= \frac{06 - 82 \times 0.5}{\sqrt{3} \times I_{motor_rated}} \\ f_{eps_limit} &= \frac{V_{eps_max}}{01 - 02} \times 01 - 01 \times 0.5 \\ I_{motor_rated} &= 05 - 01 \text{ (Induction Motor)} \end{split}$$

When Frequency command > fEPS, the running speed of EPS emergency power: fEPS.

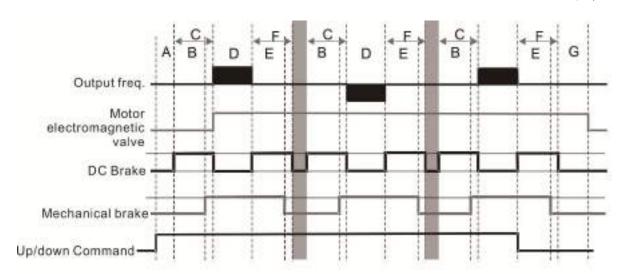
When Frequency command ≤ fEPS, the running speed of EPS emergency power: runs according to the current Frequency command.

Default: 0

Settings


- 0: Operate by current command direction.
- 1: Run in the running direction of power generation mode. Execute the power generation direction detection when running in power generation mode.
- 2: After determining the power generation direction, the host controller sends a running direction command. (When at STOP, the direction of power generation mode (MO = 57) confirmation and the direction of power generation does not maintain.) Execute the power generation direction detection each time whenever running.
- 3: After determining the power generation direction, the host controller sends a running direction command. (When at STOP, the direction of power generation mode (MO = 57) confirmation and the direction of the power generation maintain.) Execute the power generation direction detection only one time when running.
- 4: Run by the direction of power generation mode. Execute the power generation direction detection when running in normal mode.
- This parameter is enabled when the EPS function at the external terminal is activated.
- 4: (the motor has a gear box.)
 - 1. Run in normal mode and when reaching the largest power factor, the value of this power factor is recorded in Pr.06-87.

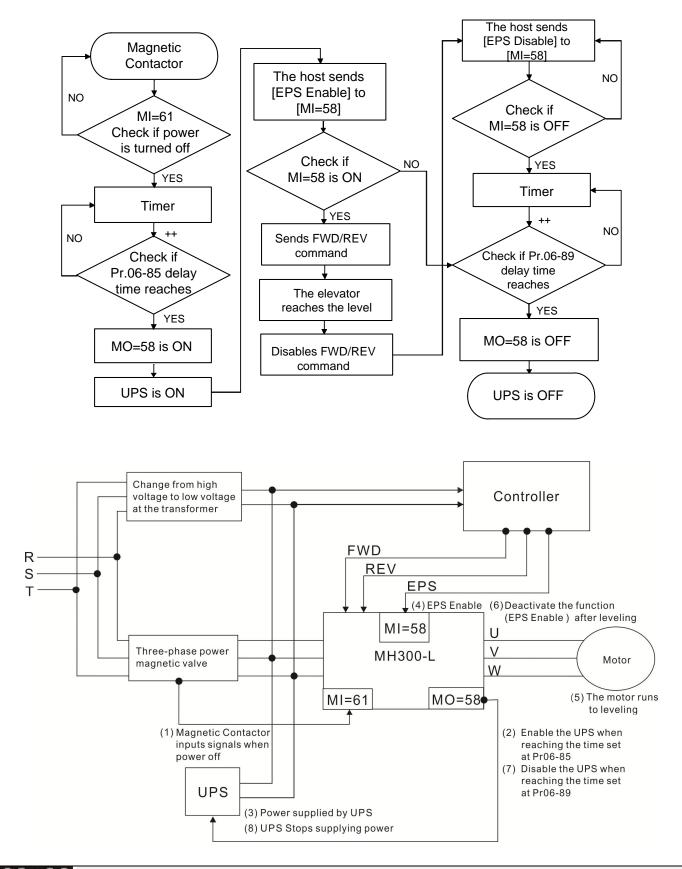
- 2. The value of the power factor detected at the direction of the power generation is compared to the setting value at Pr.06-86. If the detected power factor is larger than Pr.06-86, the current moving direction (upward or downward) is recorded in Pr.06-88
- 3. Therefore, when in EPS mode, the elevator moves in the direction stored in Pr.06-88.


Related parameters: Pr.02-01–Pr.02-07 multi-function input terminal (58: Emergency power mode detection), Pr.02-16–Pr.02-17 multi-function output terminals (56: Power generation direction and status verification, 57: Power generation direction), Pr.02-30 Turn On Delay of Magnetic Contactor between Drive and Motor, Pr.02-31 Turn Off Delay of Magnetic Contactor between Drive and Motor, Pr.02-39 Brake Release Delay Time When Elevator Starts, Pr.02-40 Brake Contracting Delay Time When Elevator Stops, Pr.07-01 DC Brake Current Level, Pr.07-02 DC Brake Time at Start-up and Pr.07-03 DC Brake Time at Stop.

If parameter = 1, when you enter FWD or REV running signal, the drive automatically detects the elevator's load status to make the elevator run in power re-generation direction (motor is the electricity generator) according to the running direction after detection rather than the user's current command direction in order to avoid voltage decrease in EPS emergency power.

V/F and SVC control mode: within the time limit for Pr.06-84, the drive uses FWD and REV to determine the elevator's load status to make the elevator run in power re-generation direction (motor is the electricity generator). (Refer to the auto-detection time sequence diagram below)

Time Sequence Diagram for Elevators' Emergency Power Supply and Power Generation



- A 02-30: Magnetic Contactor (MC) ON Delay Time Between Drive and Motor;
- B 02-39: Mechanical Brake Release Delay Time When Elevator Starts;
- C 07-02: DC Brake Time at RUN;
- D 06-84: Electricity Generation Direction Search Time;
- E 02-40: Mechanical Brake Contracting Delay Time When Elevator Stops;
- F 07-03: DC Brake Time at Stop;
- G 02-31: Magnetic Contactor (MC) OFF Delay Time Between Drive and Motor

Auto-detection Time Sequence Diagram

Power Generation Direction Search Time Default: 1.0 Settings 0.0–5.0 sec. Time for detecting power generation direction. #6-85 UPS Output Delay Time Default: 1.0 Settings 0.0-10.0 sec. Delay Time on Stopping UPS Output Default: 3.0 Settings 0.0–60.0 sec. Pr.06-85: When the power loses, the magnetic contactor outputs a MI signal to notify the motor drive to

- enable UPS function. After Pr.06-85 delay time, a MO signal activates the UPS magnetic contactor.
- Pr.06-89: When the controller disables the emergency power mode, the MO signal stops outputting after Pr.06-89 delay time to deactivate the UPS function.
- Related parameters: Pr.02-01-Pr.02-07 multi-function input terminal (61: Power loss signal), Pr.02-16-Pr.02-17 multi-function output terminal (58: EPS mode).

Default: 70.0

Settings 0.0-150.0°

If power factor is larger than the setting value in this parameter when running, the power generation direction is the running direction.

86-87 Reference	ce Level of the Power	Factor when Running
		Default: Read only
Settings	0.0–200.0°	
The largest power f	actor when running.	
95-88 Power G	eneration Direction	
		Default: Read only
Settings	0: Forward running	
	1: Reverse running	

[This page intentionally left blank]

07 Special Parameters

✓ You can set this parameter during operation.

	tware Brake Level	
		Default:
Sett	tings 230 V: 350.0–450.0 V _{DC}	370.0
	460 V: 700.0–900.0 V _{DC}	740.0
<u> </u>		

Sets the brake transistor level for the DC BUS voltage. Choose a suitable brake resistor to achieve the best deceleration. Refer to Chapter 7 Optional Accessories for information about brake resistors.

Default: 30

Settings 0–100 %

Sets the level of the DC brake current output to the motor during start-up and stop. When you set the DC brake current percentage, the rated current is regarded as 100%. Start with a low DC brake current level, and increase it slowly until the proper brake torque is reached. However, to avoid burning the motor, the DC brake current can NOT exceed the rated current. Therefore, DO NOT use the DC brake for mechanical retention, otherwise injury or accident may occur.

Default: 0.7

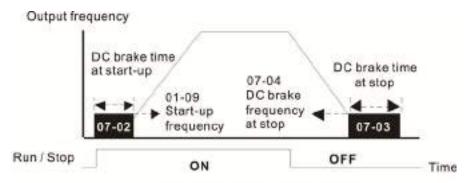
Settings 0.0-60.0 sec.

The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. If you use the drive with the motor rotating, it may cause motor damage or trigger drive protection due to over-current. This parameter outputs DC current, generating torque to force the motor stop to get a stable start before motor operation. This parameter determines the duration of the DC brake current output to the motor when the drive starts up. Setting this parameter to 0.0 disables the DC brake at start-up.

✓ ☐ 7 - ☐ 3 DC Brake Time at Stop

Default: 0.7

Settings 0.0–60.0 sec.


The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. This parameter outputs DC current, generating torque to force the drive stop after the drive stops output to make sure that the motor stops.

Default: 0.00

Settings 0.00-599.00 Hz

This parameter determines the start frequency of the DC brake before the drive ramps to stop. When this setting is less than Pr.01-09 (Start-up Frequency), the start frequency of the DC brake starts from the minimum frequency.

DC Brake Output Timing Diagram

- Use the DC brake before running the motor when the load is movable at stop, such as with fans and pumps. The motor is in free operating status and in unknown rotation direction before the drive starts up. Execute the DC brake before you start the motor.
- Use DC Brake at STOP when you need to brake the motor quickly or to control the positioning, such as with cranes or cutting machines.

✓ ☐ 7 - ☐ 5 Voltage Increasing Gain

Default: 100

Settings 1-200 %

When using speed tracking, adjust Pr.07-05 to slow down the increasing voltage gain if there are errors such as oL or oc; however, the speed tracking time will be longer.

Restart after Momentary Power Loss

Default: 0

Settings 0: Stop operation

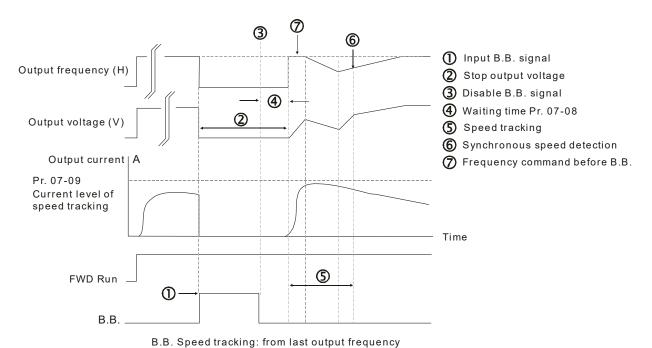
- 1: Speed tracking by the speed before the power loss
- 2: Speed tracking by the minimum output frequency
- Determines the operation mode when the drive restarts from a momentary power loss.
- The power system connected to the drive may power off momentarily for many reasons. This function allows the drive to keep outputting after the drive is repowered and does not cause the drive to stop.
- 1: Frequency tracking begins before momentary power loss and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous.
- Use this setting when there is a lot of inertia with little resistance on the motor load. For example, in equipment with a large inertia flywheel, there is NO need to wait until the flywheel stops completely after a restart to execute the operation command; therefore, it saves time.
- 2: Frequency tracking starts from the minimum output frequency and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is little inertia and large resistance.

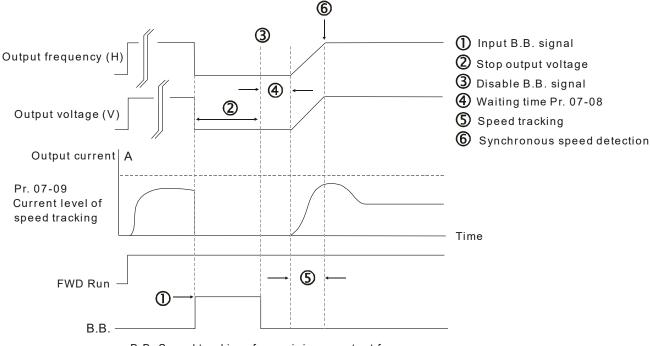
Allowed Power Loss Duration

Default: 2.0

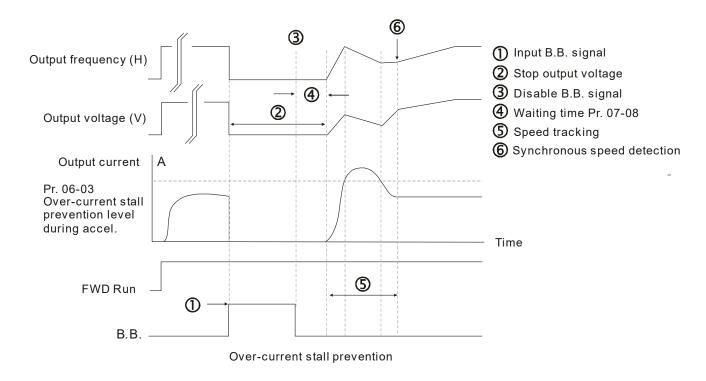
Settings 0.0–20.0 sec.

- Determines the maximum time of allowable power loss. If the duration of a power loss exceeds this parameter setting, the AC motor drive stops output.
- Pr.07-06 is valid when the maximum allowable power loss time is ≤ 20 seconds and the AC motor drive


displays "LU". If the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is \leq 20 seconds, the operation mode set in Pr.07-06 does not execute.



Default: 0.5


Settings 0.1-5.0 sec.

When momentary power loss is detected, the AC motor drive blocks its output and then waits for a specified period of time (determined by Pr.07-08, called Base Block Time) before resuming operation. Set this parameter to the time that allows the residual voltage at the output side to decrease to 0 V before activating the drive again.

B.B. Speed tracking: from minimum output frequency

✓ ☐ 7 - ☐ ☐ Current Limit of Speed Tracking

Default: 100

Settings 20-200 %

- The AC motor drive executes speed tracking only if the output current is greater than the value set in Pr.07-09.
- The maximum current for speed tracking affects the synchronous time. The larger the parameter setting is, the faster the synchronization occurs. However, if the parameter setting is too large, the overload protection function may be activated.

Restart after Fault Action

Default: 0

Settings 0: Stop operation

1: Speed tracking by current speed

2: Speed tracking by minimum output frequency

Faults include bb, oc, ov, occ. To restart after oc, ov, occ, you can NOT set Pr.07-11 to 0.

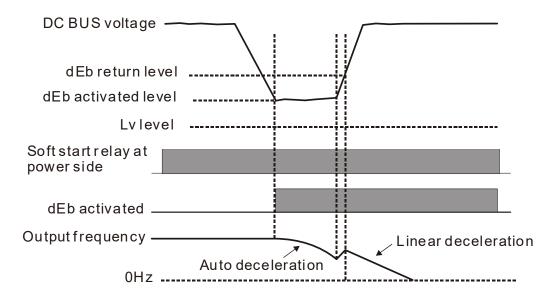
Number of Times of Auto-restart after Fault

Default: 0

Settings 0-10

- After fault (allowed fault: oc, ov, occ) occurs, the AC motor drive can be reset / restarted automatically up to 10 times.
- If the number of faults exceeds the Pr.07-11 setting, the drive does not reset and restart until you press "RESET" manually and execute the operation command again.

	├- ├⋛ Speed Tracking during Start-up
	Default: 0
	Settings 0: Disable
	1: Speed tracking by maximum output frequency
	2: Speed tracking by motor frequency at start
	3: Speed tracking by minimum output frequency
	Speed tracking is suitable for punch, fans and other large inertia loads. For example, a mechanical
	punch usually has a large inertia flywheel, and the general stop method is coast to stop. If it needs to be
	restarted again, the flywheel may take 2-5 minutes or longer to stop. This parameter setting allows you
	to start the flywheel operating again without waiting until the flywheel stops completely.
0	?- ;} dEb Function Selection
	Default: 0
	Settings 0: Disable
	1: dEb with auto-acceleration/auto-deceleration, the drive does not output the
	frequency after the power is restored.
	2: dEb with auto-acceleration/ auto-deceleration, the drive outputs the frequency
	after the power is restored.
	dEb (Deceleration Energy Backup) lets the motor decelerate to stop when momentary power loss
	occurs. When the power loss is instantaneous, use this function to let the motor decelerate to zero
	speed. If the power recovers at this time, the drive restarts the motor after the dEb return time.
	Lv return level: Default value depends on the drive power model.
	Frame C, D = Pr.06-00 + 60 V / 30 V (220V series)
	Frame E and above = Pr.06-00 + 80 V / 40 V (220V series)
Ŋ	Lv level: Default is Pr.06-00.
	During dEb operation, other protection, such as ryF, ov, oc, occ, and EF may interrupt it, and these
	error codes are recorded.
	The STOP (RESET) command does not work during the dEb auto-deceleration, and the drive
	continues decelerating to stop. To make the drive coast to stop immediately, use another function (EF)
	instead.
	The B.B. function does not work when executing dEb. The B.B. function is enabled after the dEb
	function finishes.
	Even though the Lv warning does not display during the dEb operation, if the DC BUS voltage is lower
	than the Lv level, MO = 10 (Low voltage warning) still operates.
	The following explains the dEb action:
	When the DC voltage drops below dEb setting level, the dEb function starts to work (soft start relay

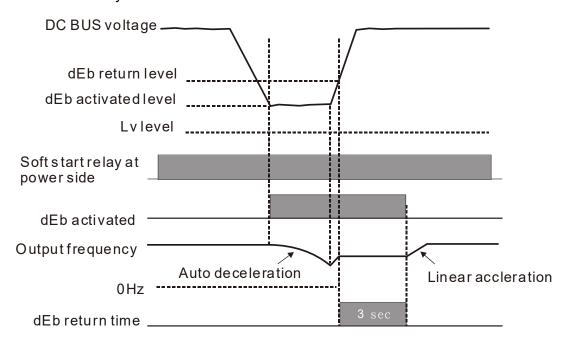

remains closed), and the drive executes auto-deceleration.

• Situation 1:

Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.

Pr.07-13 = 1 and power recovers.

When the power recovers and DC BUS voltage exceeds the dEb return level, the drive linearly decelerates to 0 Hz and stops. The keypad displays the "dEb" warning until you manually reset it, so that you can see the reason for the stop.

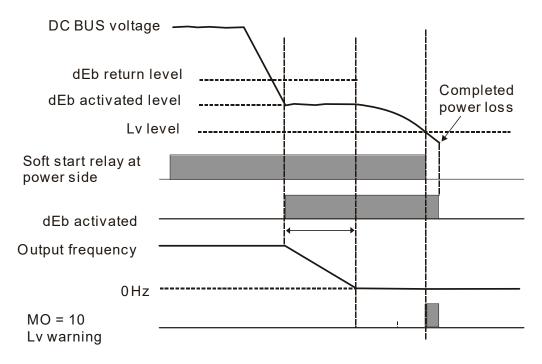


Situation 2:

Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.

Pr.07-13 = 2 and power recovers.

During the dEb deceleration (includes 0 Hz run), if the power recovers higher than dEb return level, the drive maintains the frequency for three seconds and then accelerates again. The dEb warning on the keypad clears automatically.



• Situation 3:

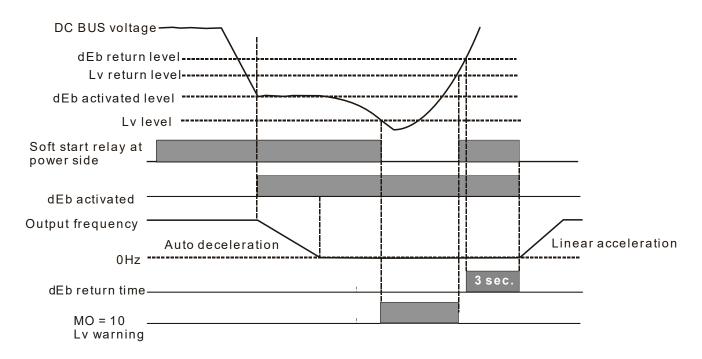
Power supply unexpected shut down / power loss.

Pr.07-13 = 1 and power does not recover.

The keypad displays the "dEb" warning and stops after decelerating to the lowest running frequency. When the DC BUS voltage is lower than the Lv level, the drive disconnects the soft start relay until the power completely runs out.

• Situation 4:

Power supply unexpected shut down / power loss.


Pr.07-13 = 2 and power does not recover.

The drive decelerates to 0 Hz. The DC BUS voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft start relay. The keypad displays "dEb" warning until the drive completely runs out of power.

Situation 5:

Pr.07-13 = 2 and power recovers after the DC BUS voltage is lower than the Lv level.

The drive decelerates to 0 Hz. The DC BUS voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft start relay. The soft start relay closes again after the power recovers and the DC BUS voltage is higher than the Lv return level. When the DC BUS voltage is higher than the dEb return level, the drive maintains the frequency for three seconds and starts to accelerate linearly, and the dEb warning on the keypad clears automatically.

Market State Dwell Time at Acceleration

Default: 0.00

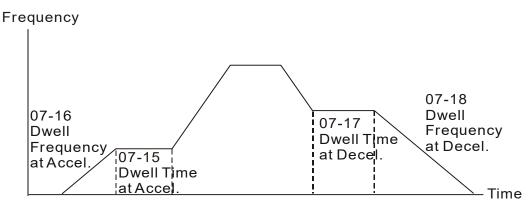
Settings 0.00-600.00 sec.

Dwell Time at Deceleration

Default: 0.00

Settings 0.00-600.00 sec.

Default: 0.00


Settings 0.00-599.00 Hz

Default: 0.00

Settings 0.00-599.00 Hz

- The Dwell temporarily maintains stable output frequency. Use this parameter for cranes, elevators, and so on.
- When the load is heavier, use Pr.07-15–Pr.07-18 to avoid OV or OC protection.

Dwell at accel./decel.

N	## Fan Cod	oling Control
		Default: 3
	Settings	0: Fan always ON
		1: Fan is OFF after the AC motor drive stops for one minute.
		2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF.
		3: Fan turns ON when the temperature reaches around 60°C
	Use this paramete	er to control the fan.
	•	diately when the drive power is turned ON.
		AC motor drive runs. One minute after AC motor drive stops, the fan is OFF.
		AC motor drive runs and stops immediately when AC motor drive stops.
		ure of the IGBT or capacitance is higher than 60°C, the fan runs.
	•	erature of the IGBT and capacitance both are lower than 40°C, the fan stops.
		statute of the 10B1 and capacitance both are lower than 40 C, the fair stops.
N	□ 7 - 2	ation of Emergency or Forced Stop
		Default: 0
	Settings	0: Coast to stop
		1: Stop by the first deceleration time
		2: Stop by the second deceleration time
		3: Stop by the third deceleration time
		4: Stop by the fourth deceleration time
		5: System deceleration
		6: Automatic deceleration
	When the multi-fu	nction input terminal is set to EF input (setting 10) or forced to stop (setting 18) and
	the terminal conta	ct is ON, the drive stops according to the setting of this parameter.
N	## Automat	ic Energy-saving Setting
		Default: 0
	Settings	0: Disable
		1: Enable
	When energy-sav	ring is enabled, the motor acceleration operates with full voltage. During constan
	speed operation,	it automatically calculates the best voltage value according to the load power. This
	function is not suit	able for fluctuating loads or loads which are nearly full during operation.
		frequency is constant (that is, constant operation), the output voltage decreases
	automatically as	the load decreases. Therefore, the drive operates with minimum multiplication o
	voltage and curre	nt (electric power).
N	B7-22 Energy-	saving Gain
		Default: 100
	Settings	10–1000 %
	When Pr.07-21 is	set to 1, use this parameter to adjust the energy-saving gain. The default is 100%. I

increase the setting value.

the result is not satisfactory, adjust it by decreasing the setting value. If the motor oscillates, then

In certain applications such as high speed spindles, the temperature rise in the motor is a major concern. When the motor is not in working state, reduce the motor current to a lower level. Reduce this parameter setting to meet this requirement.
Automatic Voltage Regulation (AVR) Function
Default: 0
Settings 0: Enable AVR
1: Disable AVR
2: Disable AVR during deceleration
The rated voltage of a 220V motor is usually AC 200 V, 60 Hz / 50 Hz, and the input voltage of the AC
motor drive may vary from AC 180 V to 264 V, 50 Hz / 60 Hz. Therefore, when the AC motor drive is
used without the AVR function, the output voltage is the same as the input voltage. When the moto
runs at the voltage exceeding 12%-20% of the rated voltage, it causes higher temperatures, damaged
insulation, and unstable torque output, which result in losses due to shorter motor lifetime.
The AVR function automatically regulates the output voltage of the AC motor drive to the motor rated
voltage. For example, if the V/F curve is set at AC 200 V, 50 Hz and the input voltage is at AC 200–264
V, then the drive automatically reduces the output voltage to the motor to a maximum of AC 200 V, 50
Hz. If the input voltage is at AC 180–200 V, the output voltage to motor and input power are in direc
proportion.
0: When the AVR function is enabled, the drive calculates the output voltage according to the actual DC
BUS voltage. The output voltage does NOT change when the DC BUS voltage changes.
1: When the AVR function is disabled, the drive calculates the output voltage according to the actual DC
BUS voltage. The DC BUS voltage changes the output voltage, and may cause insufficient o
over-current or shock.
2: The drive disables the AVR function when decelerating to stop, and may accelerate to brake.
When the motor ramps to stop, the deceleration time is shorter when setting this parameter to 2 with
auto-acceleration and deceleration, and the deceleration is quicker and more stable.
☐ ? - 군 Ч Torque Command Filter Time (V/F and SVC Control Mode)
Default: 0.050
Settings 0.001-10.000 sec.
When the setting is too long, the control is stable but the control response is delayed. When the setting
is too short, the response is quicker but the control may be unstable. Adjust the setting according to the
stability of the control and response time.
Slip Compensation Filter Time (V/F and SVC Control Mode)
Default: 0.100
Settings 0.001-10.000 sec.
Change the compensation response time with Pr.07-24 and Pr.07-25.

☐ If you set Pr.07-24 and Pr.07-25 to 10 seconds, the compensation response time is the slowest;

however, the system may be unstable if you set the time too short.

N	\overline{U}	7 - 25 Torque (Compensation Gain			
•					Default: 1	
		Settings	0–10			
		With a large motor	or load, a part of drive out	tput voltage is at	sorbed by the stator winding re	esistor;
		therefore, the air of	gap magnetic field is insuffi	cient. This cause:	s insufficient voltage at motor inc	duction
		and results in exc	essive output current but ir	nsufficient output	torque. Auto-torque compensation	on can
		automatically adju	st the output voltage acco	rding to the load	and keep the air gap magnetic	fields
		stable to get the o	ptimal operation.			
		In the V/F control,	the voltage decreases in di	irect proportion w	th decreasing frequency. It reduc	es the
		torque decrease a	at low speed due to the AG	C while the DC r	esistor is unchanged. The auto-	torque
		compensation fund	ction increases the output vo	oltage at low frequ	uency to get a higher starting torq	ue.
		When the compen	sation gain is set too high, i	t may cause moto	or over-flux and result in a too larg	ge
		output current, over	erheating the motor or trigge	ering the protectio	n function.	
N	\Box	7-27 Slip Com	npensation Gain (V/F and	SVC Control M	ode)	
					Default: 0.00	
		Settings	0.00–10.00		(Default value is 1 in SVC mode))
			• •	•	orque. It can be ignored at higher	motor
		speeds, such as ra	ated speed or 2–3 % of slip.			
		In operation, the s	slip and the synchronous fr	requency are in re	everse proportion to produce the	same
		magnetic torque.	The slip is larger with the r	reduction of the s	ynchronous frequency. The moto	or may
		stop when the sy	nchronous frequency decre	eases to a speci	fic value. Therefore, the slip se	riously
		affects the motor s	speed accuracy at low speed	d.		
		In another situatio	n, when you use an induction	on motor with the	drive, the slip increases when the	e load
			affects the motor speed accu	•		
	Ш	•	·		uce the slip to maintain the synchr	
		•		•	ove the accuracy of the drive. Wh	
		-	-	•	for an Induction Motor (A)), the	e drive
		•	frequency with this paramete			
					eed Control Mode) is changed fro	
				•	load and acceleration. Increas	
		·	3 3	•	utput frequency with motor rated	•
		` .			rated load. If the actual speed r	ratio is
		slower than expec	ted, increase the parameter	setting value; oth	nerwise, decrease it	
×	B	7-29 Slip Dev	iation Level			
					Default: 0	
		Settings	0.0–100.0 %			
			0: No detection			

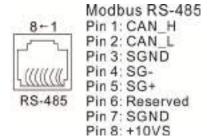
N	8	7-30	Slip Dev	iation Detection Tim	ne	
•						Default: 1.0
			Settings	0.0-10.0 sec.		
N	8	7-3:	Slip Dev	iation Action		
•						Default: 0
			Settings	0: Warn and continu	ie operation	
				1: Warn and ramp to	stop	
				2: Warn and coast to	o stop	
				3: No warning		
		Parame	ters Pr.07-	29–Pr.07-31 set the a	allowable slip level/time and th	e over-slip action when the drive
		is runnir	ng.			
N	0	7-32	Motor Sh	nock Compensation	Factor	
•						Default: 1000
			Settings	0–10000		
		If there	are current	t wave motions in the	motor in some specific area,	setting this parameter can
		effective	ely improve	this situation.		
×	0	7-33	Auto-res	tart Interval of Fault		
•						Default: 60.0
			Settings	0.0-6000.0 sec.		
		When a	reset/resta	art occurs after a fault	t, the drive uses Pr.07-33 as a	timer and starts counting the
		number	of faults w	ithin this time period.	Within this period, if the number	per of faults does not exceed the
		setting f	or Pr.07-1	1, the counting clears	and starts from 0 when the ne	ext fault occurs.
N	θ	7-34	Slip Com	npensation Gain %	(power generation mode)	
N	θ	7-35	Slip Com	pensation Gain %	(electricity mode)	
•						Default: 0.0
			Settings	0.0–100.0 %		
		In V/F n	node, you	do not have to set Pr	.07-27. You can set Pr.07-34	and Pr.07-35 directly according to
		different	compens	ation needs for power	generation mode and electric	city mode.
		In SVC	mode, you	u must set Pr.07-27 f	irst, and then set Pr.07-34 ar	nd Pr.07-35 according to different
		compen	sation nee	ds for power generat	ion mode and electricity mode).
		In V/F m	node, multi	iply the result from div	viding the output current and r	rated current by the slip level, and
		then mu	ıltiply this r	esult by the percenta	ge of Pr.07-34 and Pr.07-35 a	gain to gain the slip level. In SVC
		mode, r	nultiply the	e slip compensation (generating from parameters f	or motor winding, output current,
		rated co	urrent and	I no-load current by	the percentage of Pr.07-34	and Pr.07-35 to gain the slip
		compen	sation leve	el.		
		Related	parametei	rs:		
		■ Pr.	05-05 No-l	oad Current for an Inc	duction Motor (A)	

Pr.07-27 Slip Compensation Gain

№ 17-35 Maximum Slip Frequency

Default: 0.00

Settings 0.00–200.0 Hz


- Limits the upper limits for the slip.
- lf the settings for this parameter are too high, the feedback error malfunctions.

[This page intentionally left blank]

09 Communication Parameters

✓ You can set this parameter during operation.

When using communication devices, connect AC drive with PC by using Delta IFD6530 or IFD 6500.

✓ ☐ ☐ ☐ Communication Address

Default: 1

Settings 1-254

If RS-485 serial communication controls the AC motor drive, you must set the communication address for this drive in this parameter. Each AC motor drive's communication address must be different.

✓ ☐ ☐ ☐ COM1 Transmission Speed

Default: 9.6

Settings 4.8–115.2 Kbps

- Sets the transmission speed of the computer and the drive.
- Options are 4.8 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps, or 115.2 Kbps; otherwise, the transmission speed is set to the default 9.6 Kbps.

✓ ☐ ☐ ☐ COM1 Transmission Fault Treatment

Default: 3

Settings 0: Warn and continue operation

1: Display error and ramp to stop

2: Display error and coast to stop

3: No warning, no error displayed and continue operation

- Sets the response for Modbus communication errors in with the host. Set the detection time in Pr.09-03.
- When a transmission error occurs (for example, the error code CE10 is displayed), the error remains even if the transmission status returns to normal, and does not clear automatically. In this case, set a reset command (Reset) to clear the error.

COM1 Time-out Detection

Default: 0.0

Settings 0.0–100.0 sec.

Sets the communication time-out.

★ # GOM1 Communication Protocol

Default: 1

Settings 1: 7N2 (ASCII)

2: 7E1 (ASCII)

3: 701 (ASCII)

4: 7E2 (ASCII)

5: 702 (ASCII)

6: 8N1 (ASCII)

7: 8N2 (ASCII)

8: 8E1 (ASCII)

9: 8O1 (ASCII)

10: 8E2 (ASCII)

11: 802 (ASCII)

12: 8N1 (RTU)

13: 8N2 (RTU)

14: 8E1 (RTU)

15: 8O1 (RTU)

16: 8E2 (RTU)

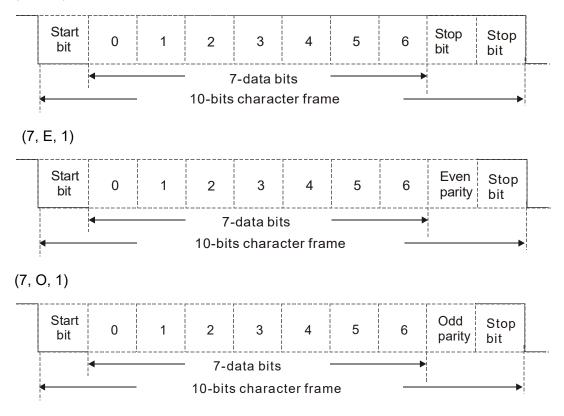
17: 802 (RTU)

Control by PC (Computer Link)

When using the RS-485 serial communication interface, you must specify each drive's communication address in Pr.09-00. The computer then implements control using the drives' individual address.

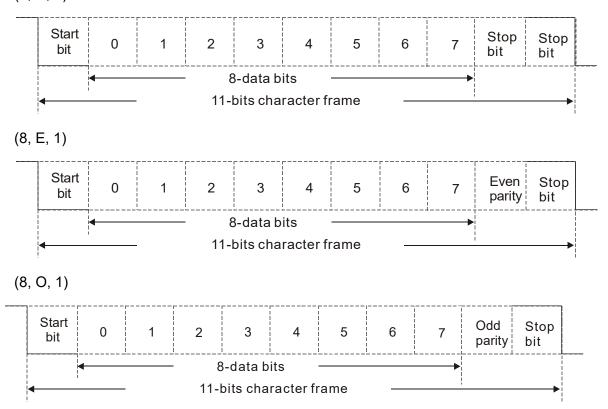
Modbus ASCII (American Standard Code for Information Interchange): Each byte data is the combination of two ASCII characters. For example, one byte of data: 64 Hex, shown as '64' in ASCII, consists of '6' (36Hex) and '4' (34Hex).

1. Code Description


Communication protocol is in hexadecimal, ASCII: "0" ... "9", "A" ... "F", every hexadecimal value represent an ASCII code. For example:

Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H
Character	'8'	'9'	'A'	'B'	C,	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H

2. Data Format


10-bit character frame (For ASCII):

(7, N, 2)

11-bit character frame (For RTU):

(8, N, 2)

3. Communication Protocol

Communication Data Frame

ASCII mode:

STX	Start character = ':'(3AH)
Address Hi	Communication address:
Address Lo	one 8-bit address consists of 2 ASCII codes
Function Hi	Command code:
Function Lo	one 8-bit command consists of 2 ASCII codes
DATA (n-1)	Contents of data:
	N x 8-bit data consists of 2n ASCII codes
DATA 0	N ≤ 16, maximum of 32 ASCII codes (20 sets of data)
LRC CHK Hi	LRC checksum:
LRC CHK Lo	one 8-bit checksum consists of 2 ASCII codes
END Hi	End characters:
END Lo	END Hi = CR (0DH), END Lo = LF (0AH)

RTU mode:

Defined by a silent interval of more than 10 ms	
Communication address: 8-bit address	
Command code: 8-bit command	
Contents of data:	
Contents of data:	
N × 8-bit data, n ≤16	
5 2.1 22.2, = . 5	
CRC checksum:	
one 16-bit checksum consists of 2 8-bit characters	
Defined by a silent interval of more than 10 ms	

Communication Address (Address)

00H: broadcast to all AC motor drives

01H: AC motor drive of address 01

0FH: AC motor drive of address 15

10H: AC motor drive of address 16

:

FEH: AC motor drive of address 254

Function code (Function) and DATA (Data characters)

03H: read data from a register 06H: write to a single register

Example: Reading two continuous data from register address 2102H. AMD address is 01H.

ASCII mode:

Command Message

STX	·.,
Address	'0'
Address	'1'
Function	'0'
Function	'3'
	'2'
Starting register	'1'
Starting register	'0'
	'2'
	'0'
Number of register	'0'
(count by word)	'0'
	'2'
LRC Check	'D'
LRC Check	'7'
END	CR
EIND	LF

Response Message

STX	·.,
Address	'0'
Address	'1'
Function	'0'
1 diletion	'3'
Number of register	'0'
(count by byte)	'4'
	'1'
Content of starting	'7'
register 2102H	'7'
	'0'
	'0'
Content of register 2103H	'0'
Content of register 2 10311	'0'
	'0'
LRC Check	'7'
LIVO OHECK	'1'
END	CR
LIND	LF

RTU mode:

Command Message

Address	01H
Function	03H
Ctarting data register	21H
Starting data register	02H
Number of register	00H
(count by world)	02H
CRC CHK Low	6FH
CRC CHK High	F7H

Response Message

01H
03H
04H
17H
70H
00H
00H
FEH
5CH

06H: single write, write single data to a register.

Example: Writing data 6000 (1770H) to a register 0100H. AMD address is 01H.

ASCII mode:

Command Message

STX	·.,
Address	'0'
Address	'1'
Function	'0'
Function	'6'
	'0'
Target register	'1'
raiget register	'0'
	'0'
	'1'
Register content	'7'
	'7'
	'0'

Response Message

STX	í.,·
Address	'0'
Address	'1'
Function	'0'
	' 6'
	'0'
Torget register	'1'
Target register	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'

Chapter 12 Description of Parameter Settings | MH300-L

LRC Check	'7'	
	'1'	
END	CR	
	I F	

I DC Chaol	'7'
LRC Check	'1'
FND	CR
END	LF

RTU mode:

Command Message

	•
Address	01H
Function	06H
Torgot register	01H
Target register	00H
Degister centent	17H
Register content	70H
CRC CHK Low	86H
CRC CHK High	22H

Response Message

Address	01H
Function	06H
Torget register	01H
Target register	00H
Pogistor content	17H
Register content	70H
CRC CHK Low	86H
CRC CHK High	22H

10H: write multiple registers (write multiple data to registers) The system can write up to 20 sets of data simultaneously.

Example: Set the multi-step speed of an AC motor drive (address is 01H):

Pr.04-00 = 50.00 (1388H), Pr.04-01 = 40.00 (0FA0H)

ASCII Mode:

STX

END

Command Message

ADR 1	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
	'0'
Torget register	' 5'
Target register	'0'
	'0'
	'0'
Number of register	'0'
(count by word)	'0'
	'2'
Number of register	'0'
(count by Byte)	'4'
	'1'
The first data content	'3'
The first data content	'8'
	'8'
	'0'
The second data content	'F'
	'A'
	'0'
LRC Check	' 9'
LKC CHECK	'A'

Response Message

SIX		
ADR 1	'0'	
ADR 0	'1'	
CMD 1	'1'	
CMD 0	'0'	
	'0'	
Torget register	'5'	
Target register	'0'	
	'0'	
	'0'	
Number of register	'0'	
(count by word)	'0'	
	'2'	
LRC Check	'E'	
LKC Check	'8'	
END	CR	
END	LF	

CR

LF

RTU mode:

Command Message:

ADR	01H
CMD	10H
Torget register	05H
Target register	00H
Number of register	00H
(count by word)	02H
Quantity of data (bytes)	04
The first data content	13H
The first data content	88H
The second data content	0FH
	A0H
CRC Check Low	'9'
CRC Check High	'A'

Response Message

ADR	01H
CMD 1	10H
Torget register	05H
Target register	00H
Number of register	00H
(count by word)	02H
CRC Check Low	41H
CRC Check High	04H

Checksum

ASCII mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up, the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

Example:

01H + 03H + 21H + 02H + 00H + 02H = 29H, the 2's-complement negation of 29H is **D7**H.

RTU mode:

CRC (Cyclical Redundancy Check) is calculated by the following steps:

- **Step 1:** Load a 16-bit register (called CRC register) with FFFFH.
- **Step 2:** Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
- Step 3: Examine the LSB of CRC register.
- **Step 4:** If the LSB of CRC register is 0, shift the CRC register one bit to the right, fill MSB with zero filling, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right, fill MSB with zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.
- **Step 5:** Repeat step 3 and 4 until you perform eight shifts. This processes a complete 8-bit byte will have been processed.
- **Step 6:** Repeat step 2 through 5 for the next 8-bit byte of the command message. Continue doing this until all bytes are processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, that is. the lower order byte is transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

```
Unsigned char* data ← a pointer to the message buffer
Unsigned char length ← the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)
{
      int j;
      unsigned int reg_crc=0Xffff;
      while(length--){
           reg_crc ^= *data++;
           for(j=0;j<8;j++){
                if(reg_crc & 0x01){ /* LSB(b0)=1 */
                     reg_crc=(reg_crc>>1) ^ 0Xa001;
                }else{
                     reg_crc=reg_crc >>1;
                }
           }
      }
      return reg_crc;
                                        // return register CRC
 }
```

4. Address list

Content	Register	Function	
AC motor drive parameters	GGnnH	GG is the parameter group, nn is the parameter number, for example, the address of Pr.04-01 is 0401H.	
Command write only 2000H		H bit 1–0	00B: No function
			01B: Stop
			10B: Run
			11B: JOG + RUN
		bit 5–4	00B: No function
			01B: FWD
			10B: REV
			11B: Change direction
		bit 7–6	00B: 1st acceleration / deceleration
			01B: 2 nd acceleration / deceleration
		10B: 3 rd acceleration / deceleration	
			11B: 4 th acceleration / deceleration
		bit 11–8	000B: Master speed
			0001B: 1st Step speed frequency
			0010B: 2 nd Step speed frequency
			0011B: 3 rd Step speed frequency
			0100B: 4 th Step speed frequency
			0101B: 5 th Step speed frequency
			0110B: 6 th Step speed frequency
			0111B: 7 th Step speed frequency
			1000B: 8 th Step speed frequency

Content	Pegister		Function
Content	Register		1001B: 9th Step speed frequency
			1010B: 10th Step speed frequency
			1011B: 11 th Step speed frequency
		I -	1100B: 12 th Step speed frequency
		I	1101B: 13 th Step speed frequency
			1110B: 14 th Step speed frequency
		I -	1111B: 15 th Step speed frequency
			1: Enable bit 06–11 function
	2001H		command (XXX.XX Hz)
	2001H		1: EF (external fault) on
	200211		1: Reset
			1: B.B. ON
Status monitor read			Warn code
only	2100H	Low Byte: I	
J,	2101H		AC motor drive operation status
		I DIT I	00B: Drive stops
			01B: Drive decelerating
		1	10B: Drive standby
			11B: Drive operating
			1: JOG command
		bit 4-3	Operation direction
			00B: FWD run
			01B: From REV run to FWD run
			10B: From FWD run to REV run
			11B: REV run
			1: Master frequency controlled by communication interface
			1: Master frequency controlled by analog signal
		bit 10	Operation command controlled by communication interface
		bit 11	1: Parameter locked
			1: Enable to copy parameters from keypad
	2102H		command (XXX.XX Hz)
	2103H		quency (XXX.XX Hz)
			rent (XX.XX A). When current is higher than 655.35, it shifts
	2104H		Il as (XXX.X A). The decimal can refer to High byte of 211F.
	2105H		oltage (XXX.X V)
	2106H		age (XXX.X V)
	2107H		ep number of multi-step speed operation
	2109H	Counter va	
	210AH		or angle (XXX.X)
	210FH		out (X.XXX kWH)
	2116H		on display (Pr.00-04)
			Operation Frequency (Pr.01-00) or Maximum User-defined
		Value (Pr.0	' ' ' '
		When Pr.00	0-26 is 0, this value is equal to Pr.01-00 setting
	211BH	When Pr.00	0-26 is not 0, and the command source is keypad, this value
			* Pr.00-26 / Pr. 01-00.
			0-26 is not 0, and the command source is 485, this value =
			Pr.00-26 / Pr.01-00.
	211FH		decimal of current value (display)
	0000::		tput current (A). When current is higher than 655.35, it
	2200H	shifts the d	ecimal as (XXX.X A). The decimal can refer to High byte of
	2201H		inter value (c)
			unter value (c)
	2202H 2203H		out frequency (XXXXX Hz) oltage (XXX.X V)
	2203H 2204H		age (XXX.X V)
I	∠∠∪4∏	Output voit	

Content	Register	Function
	2205H	Power angle (XXX.X)
	2206H	Display actual motor speed kW of U, V, W (XXXXX kW)
	220BH	Display signal of AVI analog input terminal, 0–10 V corresponds to 0.00–100.00% (2.) (see NOTE 2 in Pr.00-04)
	220CH	Display signal of ACI analog input terminal, 4–20 mA / 0–10 V corresponds to 0.00–100.00% (2.) (as Pr.00-04 NOTE 2)
	220EH	IGBT temperature of drive power module (XXX.X °C)
	2210H	The status of digital input (ON / OFF), refer to Pr.02-12 (see NOTE 3 in Pr.00-04)
	2211H	The status of digital output (ON / OFF), refer to Pr.02-18 (see NOTE 4 in Pr.00-04)
	2212H	The multi-step speed that is executing (S)
	2213H	The corresponding CPU pin status of digital input (d.) (see NOTE 3 in Pr.00-04)
	2214H	The corresponding CPU pin status of digital output (O.) (see NOTE 4 in Pr.00-04)
	221AH	GFF (XXX.XX %)
	221BH	DC BUS voltage ripples (XXX.X V)
	221CH	PLC register D1043 data (C)
	221DH	Number of poles of a permanent magnet motor
	221EH	User page displays the value in physical measure
	221FH	Output value of Pr.00-05 (XXX.XX Hz)
	2220H	Number of motor turns when drive operates (saves when drive stops, and resets to zero when operating)
	2221H	Operating position of the motor (saves when drive stops, and resets to zero when operating)
	2222H	Reserved
	2223H	Control mode of the drive 0: speed mode
	2224H	Carrier frequency of the drive (XX kHZ)
		Drive status bit 1–0 00b: No direction 01b: Forward 10b: Reverse
	2226H	bit 3–2 01b: Drive ready 10b: Error bit 4 00b: Motor drive did not output
		01b: Motor drive did output
		bit 5 00b: No alarm 01b: Alarm
	2229H	kWH display (XXXX.X)

5. Exception response:

When the drive is using the communication connection, if an error occurs, the drive responds to the error code and sets the highest bit (bit 7) of code to 1 (function code AND 80H) then responds to the control system to signal that an error occurred.

If the keypad displays "CE-XX" as a warning message, "XX" is the error code at that time. Refer to the table of error codes for communication error for reference.

Example:

ASCII mode:

RTU mode:

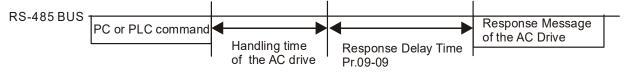
STX	4.7	Address	01H
Address	'0'	Function	86H
Address	'1'	Exception code	02H
Function	'8'	CRC CHK Low	C3H
Function	'6'	CRC CHK High	A1H

ASCII mode:

RTU mode:

Evention and	'0'
Exception code	'2'
LRC CHK	'7'
LRC CHK	'7'
END	CR
EIND	LF

The explanation of error codes


Error code	Explanation
1	Function code is not supported or unrecognized.
2	Address is not supported or unrecognized.
3	Data is not correct or unrecognized.
4	Failure to execute this function code

★ \$\frac{13}{3} = \frac{13}{3}\$ Communication Response Delay Time

Default: 2.0

Settings 0.0–200.0 ms

Sets the response delay time after the AC motor drive receives a communication command as shown in the following.

★ 33 - 33 PLC Command Force to 0

Default: 0

Setting 0-65535

Defines whether the Frequency command or the Speed command must be cleared to zero or not before the PLC starts the next scan.

bit	Explanation
bit 0	Before PLC scan, set the PLC target frequency = 0
bit 1	Before PLC scan, set the PLC target torque = 0
bit 2	Before PLC scan, set the speed limit of torque control mode = 0

PLC Address Default: 2 Settings 1–254 **CANopen Slave Address** Default: 0 Settings 0: Disable 1-127 **CANopen Speed** Default: 0 Settings 0: 1 Mbps 1: 500 kbps 2: 250 kbps 3: 125 kbps 4: 100 kbps (Delta only) 5: 50 kbps Default: 0 Settings bit 0: CANopen software disconnection 1 (CANopen Guarding Time-out) bit 1: CANopen software disconnection 2 (CANopen Heartbeat Time-out) bit 3: CANopen SDO time-out bit 4: CANopen SDO buffer overflow bit 5: CANopen hardware disconnection warning (Can Bus OFF) bit 6: Error protocol for CANopen **CANopen Decoding Method** Default: 1 Settings 0: Use Delta-defined decoding method 1: Use CANopen Standard DS402 protocol **CANopen Communication Status** Default: Read Only 0: Node Reset State Settings

1: Com Reset State

2: Boot up State

3: Pre-operation State

4: Operation State

5: Stop State

Default: Read Only

CANopen Control Status

Settings 0: Not ready for use state

1: Inhibit start state

2: Ready to switch on state

3: Switched on state

4: Enable operation state

7: Quick stop active state

13: Error reaction activation state

14: Error state

CANopen Reset Index

Default: 65535

Settings bit 0: CANopen reset, the internal address 20XX is 0

bit 1: CANopen reset, the internal address 264X is 0

bit 2: CANopen reset, the internal address 26AX is 0

bit 3: CANopen reset, the internal address 60XX is 0

[This page intentionally left blank]

11 Advanced Parameters

✓ You can set this parameter during operation.

In this parameter group, ASR stands for Adjust Speed Regulator

PWM Mode Selection
Default: 0
Settings 0: Two-phase
2: Space vector
Two-phase mode: effectively reduces the drive power component losses and provides better
performance in long wire applications.
Space vector mode: effectively reduces the power loss and electromagnetic noise of the motor.
↓
Default: 0000
Settings 0000–FFFFh

bit No.	Function	Description
0	Reserved	
1	FWD / REV action control	0: FWD / REV cannot be controlled by Pr.02-12 bit 0 & 1. 1: FWD / REV can be controlled by Pr.02-12 bit 0 & 1.
2–15	Reserved	

[This page intentionally left blank]

Chapter 13 Warning Codes

KPMH-LC01 digital keypad

ID No.	Display	Descriptions
1	EE I	Modbus function code error (illegal function code) Corrective Actions ■ Check if the function code is correct. (function code must be 03, 06, 10, 63)
2	CEZ	Modbus data address error (illegal data address (00 H to 254 H)) Corrective Actions ■ Check if the communication address is correct.
3	E33	Modbus data error (illegal data value) Corrective Actions Check if the data value exceeds the maximum or minimum value.
4	CEH	Modbus communication error (data is written to read-only address) Corrective Actions Check if the communication address is correct.
5	EE ID	Modbus transmission time-out
6	CP (0	Keypad transmission time-out
7	5E I	Keypad COPY error 1 Keypad simulation error: includes communication delays, communication error (keypad received error FF86) and parameter value error.
8	5E2	Keypad COPY error 2 Keypad simulation done: parameter write error.

ID No.	Display	Descriptions		
		IGBT is over-heated above protection level 3~10	HP: 90°C	
		Frame MH300-L	OH1	
		C VFD11AMH23ANSLA	100	
		C VFD17AMH23ANSLA	105	
		D VFD25AMH23ANSLA	105	
		E VFD33AMH23ANSLA		
		E VFD49AMH23ANSLA	115	
		F VFD65AMH23ANSLA		
		C VFD9A0MH43ANSLA	115	
		C VFD9A0MH43AFSLA	113	
		D VFD13AMH43ANSLA	105	
		D VFD13AMH43AFSLA	100	
9	11.1	D VFD17AMH43ANSLA	110	
9	ı Ha	D VFD17AMH43AFSLA	110	
		E VFD25AMH43ANSLA		
		E VFD25AMH43AFSLA	115	
		E VFD32AMH43ANSLA		
		E VFD32AMH43AFSLA		
		 Corrective Actions Ensure that the ambient temperature far temperature range. Make sure the ventilation holes are not obstruction. Remove any foreign objects from the heat sing the heat sink. Check the fan and clean it. Provide enough space for adequate ventilation. 	ucted. nk and check for possible dirt in	
		- Fronde enough space for adequate ventiliation	л.	
12	RnL	ACI signal loss when Pr.03-19 is set to 1 or 2.		
13	uĽ	Low current		
14	RUE	Motor parameters auto-tuning error Corrective Actions Verify that the motor wiring is correct. Verify that the motor capacity and parameters are correct.		
19	PHL	Input phase loss		

ID No.	Display	Descriptions
20	ot l	When the output current exceeds the over-torque detection level (Pr.06-07) and also exceeds Pr.06-08; when Pr.06-06 is set as 1 or 3, the keypad displays a warning without an error record; when Pr.06-06 is set as 2 or 4, it displays an error, stops running and displays an error record. Corrective Actions Check if the motor is overloaded. Verify that the motor rated current in Pr.05-01 is correct. Increase the motor capacity.
22	ЕНа	Motor over-heating
24	.5L	Over-slip
25	Flln	Auto tuning processing
28	OPHL	Output phase loss
30	5E B	Keypad COPY error 3 Keypad copy between different power range drives
36	E G d n	CANopen guarding time-out 1
37	[Hbn	CANopen heartbeat time-out 2
39	[bFn	CANopen bus off
40	Eldn	CANopen index error
41	[Adn	CANopen station address error
42	[Frn	CANopen memory error
43	[5dn	CANopen SDO transmission time-out
44	[5bn	CANopen SDO received register overflow
45	Ebtn	CANopen boot up fault
46	[PEn	CANopen protocol format error

ID No.	Display	Descriptions
50	PLad	PLC download error, opposite data defect.
51	PL 5u	PLC download and save error
52	PLdA	Data error during PLC operation
53	PLFn	PLC download function code error
54	PLar	PLC register overflow
55	PLFF	PLC operation function code error
56	PL5n	PLC check_sum error
57	PLEd	PLC end command is missing
58	PL[r	PLC MCR command error
59	PLdF	PLC download failure
60	PLSF	PLC scan time failure
75	EEFF	Default setting error
76	EETF	Serious internal error
90	[[PLP	Copy PLC: password error
91	CPLO	Copy PLC: read mode error
92	EPL I	Copy PLC: write mode error
93	[PLi	Copy PLC: version error
94	CPLS	Copy PLC: capacity size error
95	[[PLF	Copy PLC: you must disable the PLC function.
96	CPLE	Copy PLC: time-out

Chapter 14 Error Codes

KPMH-LC01 digital keypad

* Refer to settings for Pr.06-17-Pr.06-22

	Refer to settings for Pr.06-17—Pr.06-22.		
ID No.	Display	Descriptions	
	Over-current during acceleration		
		(output current exceeds triple the rated current during acceleration).	
		Corrective Actions	
1	acA	■ Short-circuit at motor output: check for possible poor insulation at the output.	
	5 d 5 a 7 1	■ Acceleration time is too short: increase acceleration time.	
		■ AC motor drive output power is too low: replace the AC motor drive with a higher	
		power model.	
		Over-current during deceleration	
		(output current exceeds triple the rated current during deceleration).	
		Corrective Actions	
2	aad	■ Short-circuit at motor output: check for possible poor insulation at the output.	
	6d 6a 6d	■ Deceleration time is too short: increase the deceleration time.	
		■ AC motor drive output power is too low: replace the AC motor drive with a higher	
		power model.	
		Over-current during steady operation	
		(output current exceeds triple the rated current during constant speed).	
	3 DCN	Corrective Actions	
3		■ Short-circuit at motor output: check for possible poor insulation at the output.	
		■ AC motor drive output power is too low: replace the AC motor drive with a higher	
		power model.	
		power model.	

ID No.	Display	Descriptions
4	[5FF	Ground fault. When one of the output terminal(s) is grounded, the short circuit current is more than 50% of the AC motor drive rated current. NOTE: the short circuit protection is provided for the AC motor drive protection, not to protect you. Corrective Actions Check the wiring connections between the AC motor drive and the motor for possible short circuits, as well as the connections to ground. Check whether the IGBT power module is damaged. Check for possible poor insulation at the output.
6	oc 5	Over-current at stop. Hardware failure in current detection. Corrective Actions Return the unit to the default.
7	Rüa	 DC BUS over-voltage during acceleration (230V: 450 V_{DC}; 460V: 900 V_{DC}) Corrective Actions ■ Check if the input voltage spiked above the rated AC motor drive input voltage range. ■ Check for possible voltage transients. ■ If the DC BUS is over-voltage due to the regenerative voltage, increase the acceleration time or add an optional brake resistor.
8	ميّو	DC BUS over-voltage during deceleration (230V: 450 V _{DC} ; 460V: 900 V _{DC}) Corrective Actions ■ Check if the input voltage spiked above the rated AC motor drive input voltage range. ■ Check for possible voltage transients. ■ If the DC BUS is over-voltage due to regenerative voltage, increase the deceleration time or add an optional brake resistor.
9	aŭn	DC BUS over-voltage at constant speed (230V: 450 V _{DC} ; 460V: 900 V _{DC}) Corrective Actions ■ Check if the input voltage spiked above the rated AC motor drive input voltage range. ■ Check for possible voltage transients.
10	oŭ5	Over-voltage at stop. Hardware failure in voltage detection. Corrective Actions Check if the input voltage spiked above the rated AC motor drive input voltage range. Check for possible voltage transients.

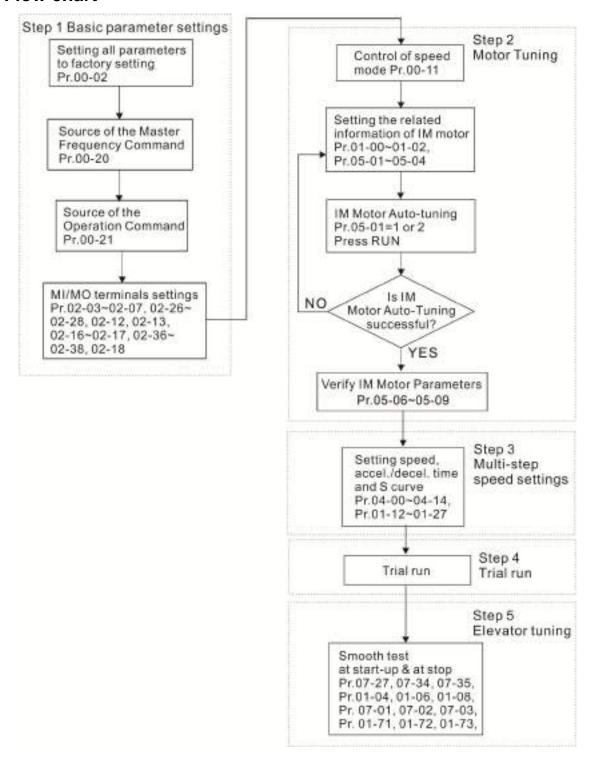
ID No.	Display	Descriptions
11	LJA	DC BUS voltage is less than Pr.06-00 during acceleration. Corrective Actions Check if the input voltage is normal. Check for possible sudden changes in load. Check the setting of Pr.06-00.
12	Lūd	DC BUS voltage is less than Pr.06-00 during deceleration. Corrective Actions Check if the input voltage is normal. Check for possible sudden changes in load. Check the setting of Pr.06-00.
13	Lün	DC BUS voltage is less than Pr.06-00 at constant speed. Corrective Actions Check if the input voltage is normal. Check for possible sudden changes in load. Check the setting of Pr.06-00.
14	LüS	DC BUS voltage is less than Pr.06-00 at stop. Corrective Actions Check if the input voltage is normal. Check for possible sudden changes in load. Check the setting of Pr.06-00.
15	ar P	Phase loss protection Corrective Actions Check if there is any phase loss in the three-phase model or in the one-phase input application.
16	ı Ha	 IGBT is overheated above the protection level. Corrective Actions ■ Ensure that the ambient temperature falls within the specified temperature range. ■ Make sure the ventilation holes are not obstructed. ■ Remove any foreign objects from the heat sink and check for possible dirt in the heat sink. ■ Check the fan and clean it. ■ Provide enough space for adequate ventilation.
18	EH lo	IGBT Hardware Error Corrective Actions Return the unit to the default.

ID No.	Display	Descriptions
21	ما	Overload; the AC motor drive detects excessive drive output current. Corrective Actions Check if the motor is overloaded. Change to the next power level with a higher value for the AC motor drive model.
22	Enl 1	Electronic thermal relay 1 protection Corrective Actions Check the setting of the electronic thermal relay (Pr.06-14). Change to the next power level with a higher value for the motor model.
26	ot l	When the output current exceeds the over-torque detection level (Pr.06-07) and also exceeds Pr.06-08; when Pr.06-06 is set as 1 or 3, the keypad displays a warning without an error record; when Pr.06-06 is set as 2 or 4, it displays an error, stops running, and displays an error record. Corrective Actions Check if the motor is overloaded. Verify that the motor rated current in Pr.05-01 is correct. Increase the motor capacity.
28	пĽ	Low current detection. Corrective Actions ■ Check Pr. 06-71, Pr. 06-72, Pr. 06-73.
31	c F2	Cannot read internal EEPROM. Corrective Actions Press the RESET key to reset to the default. If the fault code still displays on the keypad, return the unit to the default.
33	cd l	U-phase current error Corrective Actions Cycle the power to the drive. If the fault code still displays on the keypad, return the unit to the default.
34	c d 2	V-phase current error Corrective Actions ■ Cycle the power to the drive. ■ If the fault code still displays on the keypad, return the unit to the default.
35	Eba	W-phase current error Corrective Actions Cycle the power to the drive. If the fault code still displays on the keypad, return the unit to the default
36	Hd[]	CC (current clamp) hardware error Corrective Actions Cycle the power. If the fault code still displays on the keypad, return the unit to the default.

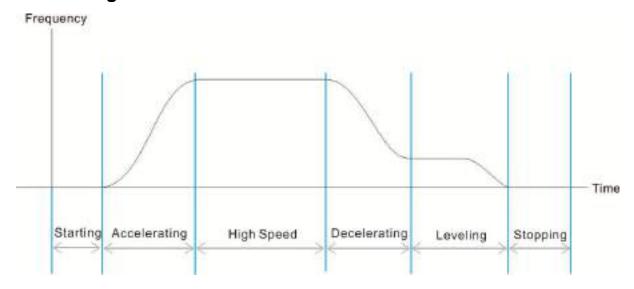
ID No.	Display	Descriptions
37	Hd I	OC hardware error Corrective Actions Cycle the power. If the fault code still displays on the keypad, return the unit to the default.
40	RUE	Motor parameters auto-tuning error Corrective Actions Verify that the motor wiring is correct. Verify that the motor capacity and parameters are correct. Try auto-tuning again.
48	REE	ACI loss Corrective Actions Check the wiring for ACI. Check if the ACI signal is less than 4 mA.
49	EF	External Fault: when the multi-function input terminal (EF) is active, the AC motor drive stops output. Corrective Actions Press the RESET key after you clear the fault.
50	EF I	Emergency stop: when the multi-function input terminal (EF1) is active, the AC motor drive stops output. Corrective Actions Press the RESET key after you clear the fault.
51	ьь	External Base Block: when the multi-function input terminal (B.B.) is active, the AC motor drive stops output. Corrective Actions Deactivate the external input terminal (B.B.) to operate the AC motor drive again.
52	Paod	Keypad is locked after you enter the wrong password three times. Corrective Actions Refer to Pr.00-07 and Pr.00-08. Cycle the power, and then enter the correct password.
54	EE I	Modbus function code error (illegal function code) Corrective Actions Check if the function code is correct (function code must be 03, 06, 10, 63).
55	EE2	Modbus data address error (illegal data address 00 H–254 H) Corrective Actions ■ Check if the data address is correct.
56	EBD	Modbus data error (illegal data value) Corrective Actions Check if the data value exceeds the maximum or minimum value.

ID No.	Display	Descriptions		
57	[E4	Modbus communication error (data is written to read-only address) Corrective Actions Check if the communication address is correct.		
58 [E []		 Modbus transmission time-out Corrective Actions ■ Check if the host controller transmits the communication command within the setting time (Pr.09-03). ■ Check the communication wiring and grounding. Use a 90-degree wiring layout or separation from main circuit to prevent interference. ■ Check that the setting for Pr.09-02 is the same as the host controller. ■ Check the condition of the communication cable or replace with a new cable. 		
59	EP 10	Keypad transmission time-out		
61	Aqc	Y-connection / Δ-connection switch error Corrective Actions ■ Check the wiring of the Y-connection / Δ-connection. ■ Check the parameter settings.		
62	dЕb	Pr.07-13 is not set to 0 and there is a momentary power off or power cut. The keypad displays dEb during acceleration or deceleration to stop. Corrective Actions Set Pr.07-13 to 0. Check if the input power is stable.		
63	o5L	Motor slip exceeds Pr.07-29 setting and exceeds Pr.07-30 time setting. Corrective Actions ■ Check if the motor parameter is correct and decrease the load if overloaded. ■ Check the settings for Pr.07-29 and Pr.07-30.		
71	MBF2	Mechanical brake error 2 Corrective Actions ■ Check if the mechanical brake signal is correct. ■ Check if the detection time setting of mechanical brake (Pr.02-33) is correct.		
72	57L I	 S1-DCM internal loop detection error Corrective Actions Check the wiring of the S1 terminal. Reset the emergency switch (ON: activated) and cycle the power. Check that the input voltage maintains at least 11 V. Check the wiring of the S1 and +24 V terminals. After you make sure all the wiring is correct, if STL1 fault still exists after cycling the power, please contact Delta. 		

ID No.	Display	Descriptions
		Magnetic contactor error
	METET	Corrective Actions
74	ML-F-	■ Check if the signal of magnetic contactor is correct.
		■ Check if the setting of Pr.02-32 is correct.
		Mechanical brake error
75	MEDET	Corrective Actions
'3	111[]	■ Check if the mechanical brake signal is correct.
		■ Check if the detection time setting of mechanical brake (Pr.02-33) is correct.
		Safe Torque Off function active
		Corrective Actions
		■ Check the wiring of the S1 and S2 terminals.
76	570	Reset the emergency switch (ON: activated) and cycle the power.
'0	110	■ Check that the input voltage maintains at least 11 V.
		■ Check the wiring of the S1 / S2 and +24 V terminals.
		■ After you make sure all the wiring is correct, if STO fault still exists after cycling
		the power, please contact Delta.
		S2–DCM internal loop detection error
		Corrective Actions
		■ Check the wiring of the S2 terminal.
77	5712	Reset the emergency switch (ON: activated) and cycle the power.
		Check that the input voltage maintains at least 11 V.Check the wiring of the S2 and +24 V terminals.
		■ After you make sure all the wiring is correct, if STL2 fault still exists after cycling
		the power, please contact Delta.
		S1–DCM & S2–DCM internal loop detection error
	p	Corrective Actions
78	5713	■ After you make sure all the wiring is correct, if STL3 fault still exists after cycling
		the power, please contact Delta.
70	F 7	II phaga about singuit
79	Roc	U-phase short circuit
80	boa	V-phase short circuit
	පාතේ විශක් විශක විශක්	
81	۵۵۵	W-phase short circuit


ID No.	Display	Descriptions
		Output phase loss 1 (Phase U)
82	oPL (Output phase loss 2 (Phase V)
02		Output phase loss 3 (Phase W)
		Corrective Actions
		■ Check the motor internal wiring and change the motor if there is still an error.
83	aPL 2	■ Check the cable condition.
		■ Choose a three-phase motor, and make sure the capacity of the drive and motor
		match.
		■ Check the control board cable.
84		
		■ Verify that the three-phase current is balanced. If it is balanced and the OPHL
		fault still exists, return the unit to the default.
87	EJo	Over-load protection at low frequency
		CANopen guarding error
		Corrective Actions
		■ Increase the guarding time (Index 100C).
	CGdE	■ Check the communication wiring and grounding. Use a 90-degree wiring layout
101		or separation from the main circuit to prevent interference.
		■ Make sure the communication wiring is serial.
		■ Use a dedicated CANopen cable and install a terminating resistor.
		■ Check the condition of the communication cable or replace with a new cable.
	СНЬЕ	CANopen heartbeat error
		Corrective Actions
		■ Increase the Heartbeat time (Index 1016).
		■ Check the communication wiring and grounding. Use a 90-degree wiring layout
102		or separation from the main circuit to prevent interference.
		■ Make sure the communication wiring is serial.
		Use a dedicated CANopen cable and install a terminating resistor.
		■ Check the condition of the communication cable or replace with a new cable.
		CANopen bus off error
		Corrective Actions
		■ Re-install the CANopen card.
	PT, PTPT	■ Check the communication wiring and grounding. Use a 90-degree wiring layout
104	E 6FE	or separation from the main circuit to prevent interference.
		■ Make sure the communication wiring is serial.
		■ Use a dedicated CANopen cable and install a terminating resistor.
		■ Check the condition of the communication cable or replace with a new cable.

ID No.	Display	Descriptions
105	CIdE	CANopen index error Corrective Actions ■ Reset the CANopen index (Pr.00-02 = 7).
106	CRdE	CANopen station address error Corrective Actions ■ Disable CANopen (Pr.09-36 = 0). ■ Reset the CANopen setting (Pr.00-02 = 7). ■ Reset the station address (Pr.09-36).
107	[FrE	CANopen memory error Corrective Actions ■ Disable CANopen (Pr.09-36 = 0). ■ Reset the CANopen setting (Pr.00-02 = 7). ■ Reset the station address (Pr.09-36).
111	ichE	InnerCOM time-out failure
121	CP20	Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
123	CP22	Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
124	CP30	Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
126	CP32	Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
127		Firmware version error
140	HdE	GFF detected at power on
141	646FF	GFF occurs before running
142	RUE I	Auto-tune error 1 (in DC test stage)
143	RuE2	Auto-tune error 2 (high frequency test stage)
144	RuEB	Auto-tune error 3 (rotary test stage)


[This page intentionally left blank]

Chapter 15 Auto-tuning Process

■ Flow chart

■ Fine-tuning for Elevators' Performance

Stage	Function	Pr.	Explanation	Settings	Default
	Delay Time	02-30	Turn On Delay of Magnetic Contactor between Drive and Motor	0.010–65.000 sec.	0.200
		02-39	Brake Release Delay Time When Elevator Starts	0.010–65.000 sec.	0.250
		07-01	DC Brake Current Level	0–100 %	30
		07-02	DC Brake Time at Start-up	0.0-60.0 sec.	0.7
	Roll Back Adjustment	02-42	Brake Release Function Option	Bit 0 = 0: No function Bit 0 = 1: Check torque output function switch Bit 1 = 0: No function Bit 1 = 1: Brake control	0000h
Starting				by frequency threshold function switch	
	Start-up Adjustment	01-04	Mid-point Voltage 1 of Motor 1	230V series:0.0–240.0 V 460V series:0.0–480.0 V	11.0 22.0
		01-06	Mid-point Voltage 2 of Motor 1	230V series:0.0–240.0 V 460V series:0.0–480.0 V	2.0 4.0
		01-08	Minimum Output Voltage of Motor 1	230V series:0.0–240.0 V 460V series:0.0–480.0 V	0.0
	Torque	02-41	Output Current Level Setting	0–100%	0

Stage	Function	Pr. Explanation		Settings	Default
	Check		for External Terminals		
		01-12	Acceleration Time 1	0.00-600.00 sec.	2.00
Accelerating	Multi-Step Speed	01-24	S-curve Acceleration Begin Time S1	0.00-25.00 sec.	1.00
	Speed	01-25	S-curve Acceleration Arrival Time S2	0.00-25.00 sec.	1.00
		01-13	Deceleration Time 1	0.00-600.00 sec.	2.00
Decelerating	Multi-Step	01-26	S-curve Deceleration Begin Time S3	0.00-25.00 sec.	1.00
	Speed	01-27	S-curve Deceleration Arrival Time S4	0.00-25.00 sec.	1.00
		01-71	Leveling Speed Switch	0.00–599.00 Hz	0.00
	Elevator	01-72	Lower than Leveling Speed S5	0.00-25.00 sec.	1.00
Leveling	Parking	01-73	Deceleration Time when Operating without RUN Command	0.00-25.00 sec.	2.00
	Delay Time	02-40	Brake Contracting Delay Time When Elevator Stops	0.010–65.000 sec.	0.250
		02-31	Turn Off Delay of Magnetic Contactor between Drive and Motor	0.010–65.000 sec.	0.200
		07-01	DC Brake Current Level	0–100 %	30
		07-03	DC Brake Time at Stop	0.0-60.0 sec.	0.7
Stopping	Roll Back Adjustment		Brake Release Function Option	Bit 0 = 0: No function Bit 0 = 1: Check torque output function switch Bit 1 = 0: No function Bit 1 = 1: Brake control by frequency threshold function switch	0000h
	Torque Check	02-41	Output Current Level Setting for External Terminals	0–100% (Rated current of drive %)	0

Explanations for the Auto-tuning Steps

Step1. Basic Parameters Settings

- Make sure that Pr.00-00 (identity code of the AC motor drive) matches with the nameplate indicated on the AC motor drive.
- Reset all parameters to defaults (set Pr.00-02 to 9 or 10).

Pr.00-02	0: No function
Parameter Reset	1: Parameter write protection
	5: Reset kWH display to 0
	6: Reset PLC
	7: Reset CANopen index (slave)
	9: All parameters are reset to defaults.
	(Base frequency = 50 Hz)
	10: All parameters are reset to defaults.
	(Base frequency = 60 Hz)

■ Master Frequency Command Source: User-defined. (Pr.00-20)

Pr.00-20	0: Digital keypad
Master Frequency Command	1: RS-485 serial communication
Source	2: External analog input (Refer to Pr.03-00)
	3: External UP / DOWN terminal
	6: CANopen input
	Note: It is valid only when using with KPC-CC01.

Operation Command Source: User-defined. (Pr.00-21)

Pr.00-21	0: Digital keypad	
Operation Command Source	1: External terminals	
	2: Communication RS-485 input	
	3: CANopen input	
	Note: it is valid only when using with KPC-CC01.	

■ MI/MO External Terminal Settings

Refer to Pr.02-01–Pr.02-07 for the external input terminals MI1–MI7.

NOTE: The default for Pr.02-07 is 49 (Enable Drive). Disable this function if you do not need to use it.

Pr.02-01-Pr.02-07	0: No function
	1: multi-step speed command 1 / multi-step position
	command 1
	2: multi-step speed command 2 / multi-step position
	command 2
	3: multi-step speed command 3 / multi-step position
	command 3
	4: multi-step speed command 4 / multi-step position
	command 4

. .	D ~ ~	
ວ. 🗆	ĸes	sei

- 6: JOG operation
- 7: Acceleration / deceleration speed inhibit
- 8: 1st, 2nd acceleration / deceleration time selection
- 9: 3rd, 4th acceleration / deceleration time selection
- 10: EF input (Pr.07-20)
- 11: Base Block (B.B.) input from external
- 12: Output stop
- 15: Rotating speed command form AVI
- 16: Rotating speed command form ACI
- 18: Forced to stop (Pr.07-20)
- 24: FWD JOG command
- 25: REV JOG command
- 28: Emergency stop (EF1)
- 29: Signal confirmation for Y-connection
- 30: Signal confirmation for ∆-connection
- 38: Disable EEPROM writing function
- 40: Force coasting to stop
- 49: Enable Drive
- 51: Selection for PLC mode bit 0
- 52: Selection for PLC mode bit 1
- 53: Trigger CANopen quick stop
- 58: Emergency power mode detection
- 59: Magnetic contactor error detection
- 60: Mechanical brake error detection
- 61: Power loss signal
- 62: Mechanical brake error detection 2

Refer to Pr.02-16 and Pr.02-17 for the settings for MO1–MO7.

Pr.02-16–Pr.02-17 0: No function 1: Indication during RUN 2: Operation speed reached 3: Desired frequency reached 1 (Pr.02-22) 4: Desired frequency reached 2 (Pr.02-24) 5: Zero speed (Frequency command) 6: Zero speed, include STOP (Frequency command) 7: Over-torque (Pr.06-06–06-08) 9: Drive is ready 10: Low voltage warning (LV) (Pr.06-00) 11: Malfunction indication 12: Mechanical brake signal (Pr.02-39, Pr.02-40) 13: Over-heat warning (Pr.06-15)

16:	Slip	error	(oSL)		

19: External interrupt B.B. input (Base Block)

20: Warning output

21: Over-voltage

22: Over-current stall prevention

23: Over-voltage stall prevention

24: Operation source

25: Forward command

26: Reverse command

27: Output when current ≥ Pr.02-41

28: Output when current < Pr.02-41

31: Y-connection for the motor coil

32: △-connection for the motor coil

33: Zero speed (actual output frequency)

34: Zero speed includes stop (actual output frequency)

35: Error output selection 1 (Pr.06-23)

36: Error output selection 2 (Pr.06-24)

37: Error output selection 3 (Pr.06-25)

38: Error output selection 4 (Pr.06-26)

40: Speed reached (including STOP)

44: Low current output (use with Pr.06-71–Pr.06-73)

45: UVW output magnetic contactor ON/OFF switch

50: Output control for CANopen

56: Power generation direction and status verification

57: Power generation direction

58: EPS MODE

67: Analog input level reached

75: Motor-controlled magnetic contactor output

Step 2. Motor tuning

- Set the parameters according to the motor type (IM)
- Motor auto-tuning: Set the Operation Command source to the digital keypad (Pr.00-21=0, refer to step 1)
- Control method: Set Pr.00-11.

Pr.00-11	0: VF (IM V/F control)
Speed Control Mode	2: SVC

■ Enter the motor nameplate information into Pr.01-00–01-02.

Pr.01-00	0.00–599.00 Hz
Maximum Operation Frequency	
of Motor 1	

Pr.01-01	0.00–599.00 Hz
Output Frequency of Motor 1	

Pr.01-02	230V series: 0.0–255.0 V
Output Voltage of Motor 1	460V series: 0.0–510.0 V

[IM (Induction Motor)]

■ Motor auto-tuning: Set the Operation Command source to the digital keypad (Pr.00-21=0, refer to step 1) and set Pr.05-00=2

Pr.05-00	0: No function
Motor Parameter Auto-tuning	1: Dynamic test for an induction motor (IM)
	2: Static test for an induction motor (IM)

NOTE 1: You do not need to release the brake in this auto-tuning operation. Make sure that the magnetic contactor is ON when it is installed between the AC motor drive and the motor. When Pr.05-00 is set to 2, you must enter the motor no-load current in Pr.05-05. The digital keypad displays the warning message "Auto tuning" until auto-tuning is finished. Then, it saves the measured results in Pr.05-06–Pr.05-09.

NOTE 2: The automatic measurement of an IM motor (induction motor) can also perform dynamic measurements.

Pr.05-01	10-120 % of the drive's rated current
Full-load Current for an Induction	
Motor (A)	
Pr.05-02	0.00–655.35 kW
Rated Power for an Induction	
Motor (kW)	

Pr.05-03	0–6553 rpm
Rated Speed for an Induction	
Motor (rpm)	

Chapter 15 Auto-tuning Process | MH300-L

Pr.05-04	2–20
Number of Poles for an Induction	
Motor	

Step 3. Multi-Step Speed settings

Multi-step speed settings

- Confirm the total number of speed steps (high speed, middle speed, low speed, creep, inspection and level auto-learning)
- Make sure that the step speed settings and the corresponding terminal actions for the multi-function input commands are correct (MI3–MI6).
- Set the multi-step speeds in Pr.04-00-Pr.04-14

Pr.04-00 to Pr.04-14 settings	1st Step Speed Frequency	0.00–599.00 Hz
	2 nd Step Speed Frequency	0.00–599.00 Hz
	3 rd Step Speed Frequency	0.00–599.00 Hz
	4th Step Speed Frequency	0.00–599.00 Hz
	5 th Step Speed Frequency	0.00–599.00 Hz
	6th Step Speed Frequency	0.00–599.00 Hz
	7 th Step Speed Frequency	0.00–599.00 Hz
	8th Step Speed Frequency	0.00–599.00 Hz
	9th Step Speed Frequency	0.00–599.00 Hz
	10 th Step Speed Frequency	0.00–599.00 Hz
	11th Step Speed Frequency	0.00–599.00 Hz
	12th Step Speed Frequency	0.00–599.00 Hz
	13 th Step Speed Frequency	0.00–599.00 Hz
	14 th Step Speed Frequency	0.00–599.00 Hz
	15 th Step Speed Frequency	0.00–599.00 Hz

NOTE:

It is recommended that you set the maximum operating frequency to the half of maximum operating frequency before confirming each step speed setting and the corresponding terminal actions for the multi-function input commands.

- Set the acceleration/deceleration with Pr.01-23 = 08 (first and second acceleration/deceleration time selection) and = 09 (third and fourth acceleration/deceleration time selection) for the multi-function input command Pr.02-01–02-07.
- Set the acceleration/deceleration time: Pr.01-12-Pr.01-19.

Pr.01-12 to Pr.01-19 settings	Acceleration Time 1	0.00-600.00 sec.
	Deceleration Time 1	0.00-600.00 sec.
	Acceleration Time 2	0.00-600.00 sec.
	Deceleration Time 2	0.00-600.00 sec.
	Acceleration Time 3	0.00-600.00 sec.
	Deceleration Time 3	0.00-600.00 sec.
	Acceleration Time 4	0.00-600.00 sec.
	Deceleration Time 4	0.00-600.00 sec.

NOTE:

It is recommended that you set the Pr.01-73 (deceleration time) to the smallest value for the

trial run to ensure all the actions are correct, then increase it for the final test.

■ JOG Acceleration/Deceleration Time Setting: Pr.01-20–Pr.01-22

Pr.01-20 to Pr.01-22 settings	JOG Acceleration Time	0.00-600.00 sec.
	JOG Deceleration Time	0.00-600.00 sec.
	JOG Frequency	0.00-600.00 sec.

■ S-curve Setting: Pr.01-24–Pr.01-34, Pr.01-71, Pr.01-72

Pr.01-24–Pr.01-34, Pr.01-71,	S-curve Acceleration Begin	0.00-25.00 sec.
Pr.01-72 settings	Time S1	
	S-curve Acceleration Arrival	0.00-25.00 sec.
	Time S2	
	S-curve Deceleration Begin	0.00-25.00 sec.
	Time S3	
	S-curve Deceleration Arrival	0.00-25.00 sec.
	Time S4	
		0: Output waiting
	Zero-speed mode	1: Zero-speed operation
		2: Fmin (refer to Pr.01-07)
	Leveling Speed Switch	0.00–599.00 Hz
	Lower than Leveling Speed	0.00-25.00 sec.
	S5	

NOTE:

It is recommended that you set the S-curve time to 0 for the trial run to ensure all the actions are correct, and then increase it for the final test.

Step 4. Trial run

Use the trial run after you complete Step 1 to Step 3 above to check if the motor runs normally after executing the inspection with a loaded motor. At the same time, check if the multi-function output terminal operations are correct (such as whether the action of the brake release and magnetic contactor match the host controller).

Also check the speed, current value, and check for noise in the carriage and other noise sources when switching between each step.

Step 5. Elevator tuning

1. Enable slip compensation

To disable the slip compensation, set Pr.07-27 = 0, Pr.07-34 = 0 and Pr.07-35 = 0. To enable the slip compensation, set Pr.07-27 > 0, Pr.07-34 > 0 and Pr.07-35 > 0. Adjust the settings in Pr.07-27, Pr.07-34 and Pr.07-35.

Pr.07-27	0.00–10.00
Slip Compensation Gain	
Pr.07-34	0.0–100.0%
Slip compensation gain %	
(Power generation mode)	
Pr.07-35	0.0–100.0%
Slip compensation gain %	
(Electricity mode)	

2. Start-up Adjustment

Adjust the minimum output voltage to avoid start-up failure.

V/F control: Adjust settings in Pr.01-04, Pr.01-06, Pr.01-08.

SVC control: Adjust settings in Pr.01-08.

Pr.01-04	230 V series : 0.0 V-240.0 V				
Mid-point voltage 1 of motor 1	460 V series : 0.0 V-480.0 V				
Pr.01-06	230 V series : 0.0 V-240.0 V				
Mid-point voltage 2 of motor 1	460 V series : 0.0 V-480.0 V				
Pr.01-08	230 V series : 0.0 V-240.0 V				
Minimum output voltage of motor 1	460 V series : 0.0 V-480.0 V				

3. Adjust DC brake

Adjust settings in Pr.07-01, Pr.07-02, Pr.07-03.

Pr.07-01	0–100 %
DC brake current level	
Pr.07-02	0.0-60.0 sec.
DC brake time at start-up	
Pr.07-03	0.0-60.0 sec.
DC brake time at stop	

4. Adjust elevator parking

Adjust settings in Pr.01-71, Pr.01-72, Pr.01-73.

Adjust settings in Pr.01-71, Pr.01-72, F	71.01-73.
Pr.01-71	0.00-599.00 Hz
Leveling Speed Switch	
Pr.01-72	0.00-25.00 sec.
Lower than Leveling Speed S5	
Pr.01-73	0.00-25.00 sec.
Deceleration Time when Operating	
without RUN Command	

■ Frequently Asked Questions (FAQs)

■ Roll-Back Solution :

- 1. Bit1: See the elevator timing diagram on page 12-02-15 in Parameter Group 2 in Chapter 12.
- 2. Set contactor delay and DC brake (Pr.07-01 and Pr.07-03) constant time during stop.
- 3. Set Pr.02-42 Bit 1=1.
- 4. Set frequencies for brake release and brake engage (Pr.02-43 and Pr.02-44) to solve roll-back issue.

[This page intentionally left blank]

Chapter 16 CANopen Overview

- 16-1 CANopen Overview
- 16-2 Wiring for CANopen
- 16-3 CANopen Communication Interface Descriptions
 - 16-3-1 CANopen Control Mode Selection
 - 16-3-2 DS402 Standard Control Mode
 - 16-3-3 By Using Delta Standard
 - 16-3-4 DI/DO AI are controlled through CANopen
- 16-4 CANopen Supporting Index
- 16-5 CANopen Fault Codes
- 16-6 CANopen LED Function

The built-in CANopen function is a kind of remote control. You can control the AC motor drive using the CANopen protocol. CANopen is a CAN-based higher layer protocol that provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). It also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to the CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation.

Delta CANopen supported functions:

- Supports CAN2.0A Protocol
- Supports CANopen DS301 V4.02
- Supports DSP-402 V2.0

Delta CANopen supported services:

- PDO (Process Data Objects): PDO1-PDO4
- SDO (Service Data Objects):

Initiate SDO Download;

Initiate SDO Upload;

Abort SDO;

You can use the SDO message to configure the slave node and access the Object Dictionary in every node.

■ SOP (Special Object Protocol):

Supports default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02;

Supports SYNC service;

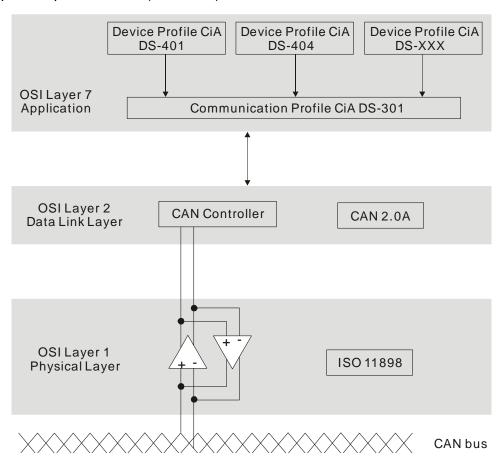
Supports Emergency service.

NMT (Network Management):

Supports NMT module control;

Supports NMT Error control;

Supports Boot-up.


Delta CANopen does not support this service:

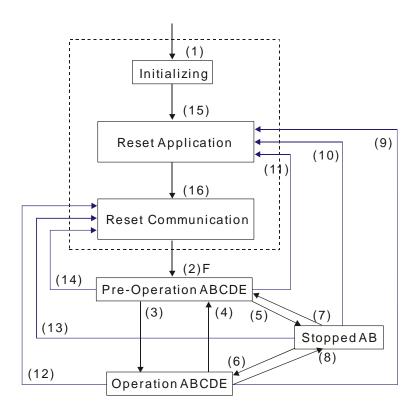
Time Stamp service

16-1 CANopen Overview

CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover the application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

RJ45 Pin Definition


PIN	Signal	Description				
1	CAN_H	CAN_H bus line (dominant high)				
2	CAN_L	CAN_L bus line (dominant low)				
3	CAN_GND	Ground / 0 V /V-				
6	CAN_GND	Ground / 0 V /V-				

CANopen Communication Protocol contains the following services:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Objects)
- EMCY (Emergency Object)

NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. A network has only one NMT master, and the other nodes are slaves. All CANopen nodes have a present NMT state, and the NMT master can control the state of the slave nodes. The following shows the state diagram of a node:

(1) After power is applied, start in the auto-initialization state A: NMT

(2) Automatically enter the pre-operational state B: Node Guard

(3) (6) Start remote node C: SDO

(4) (7) Enter the pre-operational state D: Emergency

(5) (8) Stop remote node E: PDO

(5) (6) Stop remote mode

(9) (10) (11) Reset node F: Boot-up

(12) (13) (14) Reset communication(15) Automatically enter reset application state

(16) Automatically enter reset communication state

	Initializing	Pre-Operational	Operational	Stopped
PDO			0	
SDO		0	0	
SYNC		0	0	
Time Stamp		0	0	
EMCY		0	0	
Boot-up	0			
NMT		0	0	0

SDO (Service Data Objects)

Use SDO to access the Object Dictionary in every CANopen node using the Client/Server model. One SDO has two COB-IDs (request SDO and response SDO) to upload or download data between two nodes. There is no data limit for SDOs to transfer data, but it must transfer data by segment when the data exceeds four bytes with an end signal in the last segment. The MH300-L series does not currently support segment transmission.

The Object Dictionary (OD) is a group of objects in a CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path in the OD is the index and sub-index; each object has a unique index in the OD, and has a sub-index if necessary. The following shows the request and response frame structure of SDO communication:

PDO (Process Data Objects)

PDO communication can be described by the producer/consumer model. Each node of the network listens to the messages of the transmission node and distinguishes whether the message has to be processed or not after receiving the message. A PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and an RxPDO. PDOs are transmitted in a non-confirmed mode. All transmission types are listed in the following table:

Type Number		PDO									
Type Number	Cyclic	Acyclic	Asynchronous	RTR only							
0		0	0								
1–240	0		0								
241–251			Reserved								
252			0		0						
253				0	0						
254				0							
255				0							

Type number 0 indicates the synchronous aperiodic message between two PDO transmissions.

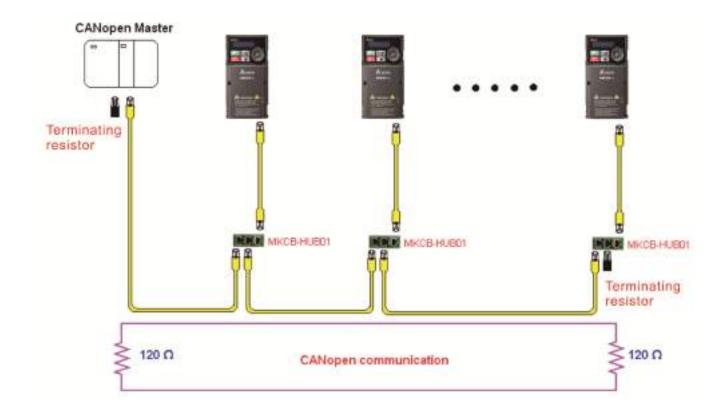
Type number 1-240 indicates the number of SYNC message between two PDO transmissions.

Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.

Type number 253 indicates the data is updated immediately after receiving RTR.

Type number 254: Delta CANopen does not support this transmission format.

Type number 255 indicates the data is an asynchronous aperiodic transmission.


All PDO transmission data must be mapped to the index with Object Dictionary.

EMCY (Emergency Object)

When errors occur inside the hardware, an emergency object is triggered. An emergency object is only sent when an error occurs. As long as there is nothing wrong with the hardware, there is no emergency object warning of an error message.

16-2 Wiring for CANopen

Use an external CANopen communication splitter box (MKCB-HUB01) for built-in CANopen wiring to connect CANopen to an MH300-L. The link uses an RJ45 cable. You must terminate the two farthest ends with $120~\Omega$ terminating resistors as shown in the picture below.

16-3 CANopen Communication Interface Descriptions

16-3-1 CANopen Control Mode Selection

There are two control modes for CANopen: the DS402 standard (Pr.09-40 set to 1) is the default, and the Delta's standard setting (Pr.09-40 set to 0). The following table shows the control mode definitions:

CANopen	С	ontrol mode Speed	Operatio	n control	Other		
control mode	Index	Description	Index	Description	Index Description		
	6042-00	Target rotating	6040.00	Operation	605A-00	Quick stop	
DS402	6042-00	speed (RPM) 6040-00		Command	603A-00	processing mode	
Pr.09-40=1					605C-00	Disable operation	
					0030-00	processing mode	
	2060-03	Target rotating		Operation			
Delta Standard	2000-03	speed (Hz)	2060-01	Command			
Pr.09-40=0							

You can use some indices in either DS402 or Delta's standard.

For example:

- 1. Indices that are defined as RO attributes.
- 2. The corresponding index of available parameter groups: (2000-00-200E-XX)
- 3. Accelerating/Decelerating Index: 604F 6050

16-3-2 DS402 Standard Control Mode

16-3-2-1 Related set up for an AC motor drive (following the DS402 standard)

If you want to use the DS402 standard to control the motor drive, follow these steps:

- 1. Wire the hardware (refer to Section 16-2 Wiring for CANopen).
- 2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control.
- 3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
- 4. Set DS402 for the control mode: Pr.09-40 = 1
- 5. Set the CANopen station: set the CANopen station (range 1–127, 0 is the disable CANopen slave function) with Pr.09-36. Note: set Pr.00-02 = 7 to reset if the station number error CAdE or CANopen memory error CFrE appears.
- 6. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: 1 M (0), 500 K (1), 250 K (2), 125 K (3), 100 K (4) or 50 K (5)).
- 7. Set the multiple input functions to Quick Stop. You can also choose enable or disable; the default setting is disabled. If it is necessary to enable the function, set MI terminal to 53 in one of the following parameters: Pr.02-01–02-07 or Pr.02-26–02-28. Note: This function is available in DS402 only.

16-3-2-2 The status of the motor drive (by following DS402 standard)

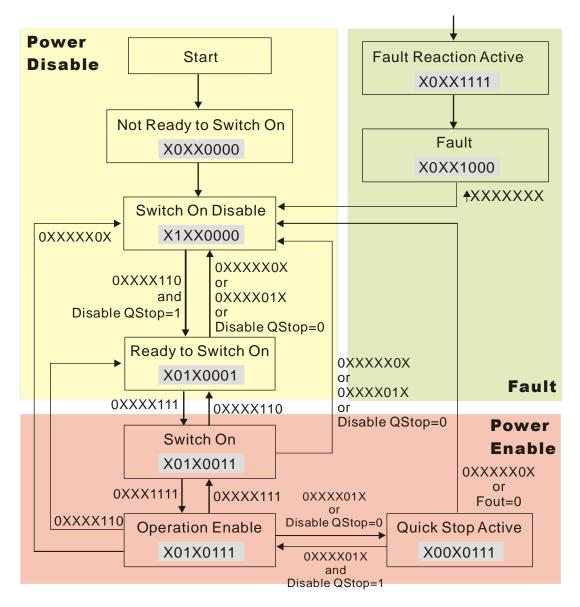
According to the DS402 definition, the motor drive is divided into 3 blocks and 9 statuses as described below.

3 blocks

- 1. Power Disable: without PWM output
- 2. Power Enable: with PWM output
- 3. Fault: one or more errors have occurred.

9 status

- 1. Start: power on
- 2. Not Ready to Switch On: the motor drive is initiating.
- 3. Switch On Disable: occurs when the motor drive finishes initiating.
- 4. Ready to Switch On: warming up before running.
- 5. Switch On: the motor drive has the PWM output, but the reference command is not effective.
- 6. Operation Enable: able to control normally.
- 7. Quick Stop Active: when there is a Quick Stop request, stop running the motor drive.
- 8. Fault Reaction Active: the motor drive detects conditions which might trigger error(s).
- 9. Fault: one or more errors have occurred in the motor drive.


When the motor drive turns on and finishes the initiation, it remains in Ready to Switch On status. To control the operation of the motor drive, change to Operation Enable status. To do this, set the control word's bit0-bit3 and bit7 of the Index 6040H and pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described below:

Index 6040

15–9	8	7	6–4	3	2	1	0
Reserved	Halt	Fault Reset	Operation	Enable operation	Quick Stop	Enable Voltage	Switch On

Index 6041

15–14	13–12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	Operation	Internal limit active	Target reached	Remote	Reserved	Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enable	Switch on	Ready to switch on

Set command 6040 = 0xE, and then set another command 6040 = 0xF. Then you can switch the motor drive to Operation Enable. The Index 605A determines the direction of the lines from Operation Enable when the control mode changes from Quick Stop Active. When the setting value is 5-7, both lines are active, but when the setting value of 605A is not 5-7, once the motor drive is switched to Quick Stop Active, it is not able to switch back to Operation Enable.

Index	Sub	Definition	Default	R/W	Size	Unit	PDO Map	Mode	note
605Ah	0	Quick stop option code	2	RW	S16		No		Disable drive function Slow down on slow down ramp Slow down on quick stop ramp Slow down on slow down ramp and stay in Quick Stop Slow down on quick stop ramp and stay in Quick Stop Slow down on the current limit and stay in Quick Stop

Chapter 16 CANopen Overview | MH300-L

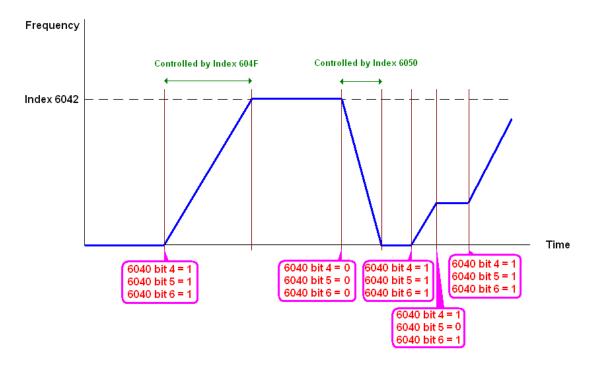
When the control section switches from Power Enable to Power Disable, use 605C to define the stop method.

Index	Sub	Definition	Default	R/W	Size	Unit	PDO Map	Mode	note
605Ch	1 ()	Disable operation option code	1	RW	S16		No		0: Disable drive function 1: Slow down with slow down ramp; disable the drive function.

16-3-2-3 Various mode control method (by following DS402 standard)

Speed mode:

- 1. Set MH300-L to speed control mode: set Index6060 to 2.
- 2. Switch to Operation Enable mode: set 6040 = 0xE, and then set 6040 = 0xF.
- 3. Set the target frequency: set target frequency for 6042, since the operation unit of 6042 is rpm, a transform is required:


n: rotation speed (rpm) (rounds/minute) p: number of poles in the motor (Pole) f: rotation frequency (Hz)

For example:

Set 6042H = 1500 (rpm), if the number of poles is 4 (Pr.05-04 or Pr.05-16), then the motor drive's operation frequency is 1500 (120/4) = 50 Hz. The 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter-clockwise.

- 4. To set acceleration and deceleration: use 604F (Acceleration) and 6050 (Deceleration).
- 5. Trigger an ACK signal: in the speed control mode, the bit 6–4 of Index 6040 needs to be controlled. It is defined below:

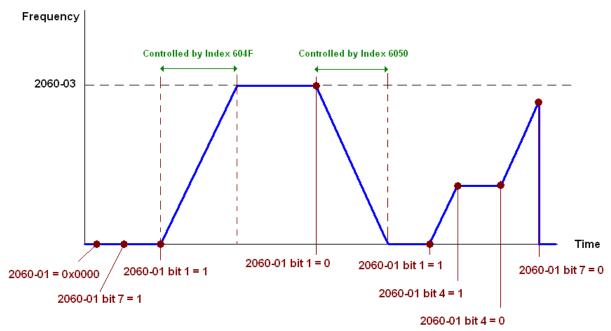
		Index 6040	SUM	
Chood mode	bit 6	bit 5	bit 4	SOIVI
Speed mode (Index 6060 = 2)	1	0	1	Locked at the current signal.
(Index 6060 = 2)	1	1	1	Run to reach targeting signal.
		Other		Decelerate to 0 Hz.

NOTE 01: Read 6043 to get the current rotation speed (unit: rpm).

NOTE 02: Read bit 10 of 6041 to find if the rotation speed has reached the targeting value (0: Not reached; 1: Reached).

16-3-3 By Using Delta Standard

16-3-3-1 Related set up for an AC motor drive


Follow the steps below:

- Wire the hardware (refer to Section 16-2 Wiring for CANopen).
- 2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control.
- 3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
- 4. Set Delta Standard as the control mode: Pr.09-40 = 0.
- 5. Set the CANopen station: set Pr.09-36; the range is between 1–127. When Pr.09-36 = 0, the CANopen slave function is disabled. Note: if an error appears (CAdE or CANopen memory error) as you complete the station setting, set Pr.00-02 = 7 to reset.
- Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: 1 M (0), 500 K (1), 250 K (2), 125 K (3), 100 K (4) and 50 K (5)).

16-3-3-2 Various mode control method

Speed Mode:

- 1. Set MH300-L to speed control mode: set index 6060 = 2 or index 2060-02 = 0.
- 2. Set the target frequency: set 2060-03, unit is Hz, with 2 decimal places. For example 1000 is 10.00 Hz.
- 3. Operation control: set 2060-01 = 008H for server on, and set 2060-01 = 0081H for running.

16-3-4 DI/DO AI are controlled through CANopen

To control the DO of the motor drive through CANopen, follow these steps:

- 1. Define the DO to be controlled by CANopen. For example, set Pr.02-13 = 50 to control RY1.
- 2. To control DO, use control Index 2026-41. To set RY1 as ON, set bit 0 of Index 2026-41 = 1, then RY1 outputs 1. To control AFM output = 50.00%, set Index 2026-A1 = 5000, then AFM outputs 50%.

The following table shows the mapping of CANopen DI DO AI: DI:

Terminal	Related Parameters	R/W	Mapping Index	
MI 1	Pr.02-01	RO	2026-01 bit 2	
MI 2	Pr.02-02	RO	2026-01 bit 3	
MI 3	Pr.02-03	RO	2026-01 bit 4	
MI 4	Pr.02-04	RO	2026-01 bit 5	
MI 5	Pr.02-05	RO	2026-01 bit 6	
MI 6	Pr.02-06	RO	2026-01 bit 7	
MI 7	Pr.02-07	RO	2026-01 bit 8	
MI 10	Pr.02-26	RO	2026-01 bit 10	
MI 11	Pr.02-27	RO	2026-01 bit 11	
MI 12	Pr.02-28	RO	2026-01 bit 12	

DO:

Terminal	Related Parameters	R/W	Mapping Index
RY1	Pr.02-13 = 50	RW	2026-41 bit 0
MO1	Pr.02-16 = 50	RW	2026-41 bit 3
MO2	Pr.02-17 = 50	RW	2026-41 bit 4
MO10 (RY10)		RW	2026-41 bit 5
MO11 (RY11)		RW	2026-41 bit 6
MO12 (RY12)		RW	2026-41 bit 7

AI:

Terminal	Related Parameters	R/W	Mapping Index
AVI	==	RO	Value of 2026-61
ACI	==	RO	Value of 2026-62
Al10	==	RO	Value of 2026-64
Al11	==	RO	Value of 2026-65

16-4 CANopen Supporting Index

CANopen Remote IO mapping

Index	Sub	R/W	Definition
	01h	R	Each bit corresponds to different input terminals.
	02h	R	Each bit corresponds to different input terminals.
	03h-40h	R	Reserved
	41h	RW	Each bit corresponds to different output terminals.
	42h-60h	R	Reserved
2026H	61h	R	AVI (%)
202011	62h	R	ACI (%)
	63h	R	Reserved
	64h		Al10 (%)
	65h		Al11 (%)
	66h-A0h	R	Reserved
	A1h	RW	AFM (%)

Index 2026-01	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit8	bit9	bit10	bit11	bit12	bit13	bit14	bit15
1	MI1	MI2	MI3	MI4	MI5	MI6	MI7									
2											MI10	MI11	MI12			

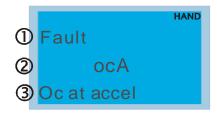
^{1:} Control broad I/O

2: Add external card, EMM-D3R2CA (D1022 = 9)

	Index 2026-41	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit8	bit9	bit10	bit11	bit12	bit13	bit14	bit15
Ī	1	RY1			MO1	MO2											
Ī	2						RY10	RY11									

^{1:} Control broad I/O

2: Add external card, EMM-D3R2CA (D1022 = 9)


Delta Standard Mode

Index	sub	R/W	Size		Descriptions	6	Speed Made		
index				bit	Definition	Priority	Speed Mode		
	00h	R	U8						
				0	Ack	4	0: fcmd =0 1: fcmd = Fset (Fpid)		
				1	Dir	4	0: FWD run command 1: REV run command		
				2					
				3	Halt		Drive runs until target speed is reached Drive stops by declaration setting		
	01h	RW	U16	4	Hold		O: Drive runs until target speed is reached Frequency stop at current frequency		
				5	JOG		0:JOG OFF Pulse 1: JOG RUN		
2060h				6	QStop		Quick Stop		
				7	Power		0: Power OFF 1: Power ON		
				14–8	Cmd SW		Multi-step frequency switching		
		DW LIAO		15			Pulse 1: Fault code cleared		
	02h	RW	U16						
	03h	RW	U16				Speed command (unsigned decimal)		
	04h	RW	U16						
	05h	RW	S32						
	06h	RW	1140						
	07h	RW	U16						
	08h	RW	U16						
				0	Arrive		Frequency reached		
				1	Dir		0: Motor FWD run 1: Motor REV run		
				2	Warn		Warning		
	01h	R	U16	3	Error		Error detected		
				4					
				5	JOG		JOG		
2061h				6	QStop		Quick stop		
				7	Power ON		Switch ON		
				15–8					
	02h	R							
	03h	R	U16				Actual output frequency		
	04h	R	000						
	05h	R	S32				Actual position (absolute)		
	06h	R	040				A street to serve		
	07h	R	S16				Actual torque		

DS402 Standard

Index	Sub	Definition	Default	R/W	Size	Unit	PDO Map	Mode	Note
		Abort connection							0: No action
6007h	0	option code	2	RW	S16		Yes		2: Disable voltage
									3: Quick Stop
603Fh	0	Error code	0	R0	U16		Yes		
6040h	0	Control word	0	RW	U16		Yes		
6041h	0	Status word	0	R0	U16		Yes		
6042h	0	vl target velocity	0	RW	S16	rpm	Yes	vl	
6043h	0	vl velocity demand	0	RO	S16	rpm	Yes	vl	
6044h	0	vl control effort	0	RO	S16	rpm	Yes	vl	
604Fh	0	vl ramp function time	10000	RW	U32	1ms	Yes	vl	
6050h	0	vl slow down time	10000	RW	U32	1ms	Yes	vl	Unit must be 100 ms, and check if the setting is 0.
6051h	0	vl quick stop time	1000	RW	U32	1ms	Yes	vl	
									0: Disable drive function
									1: Slow down on slow down
									ramp
									2: Slow down on quick stop
		Quick stop option							ramp
605Ah	0	code	2	RW	S16		No		5: Slow down on slow down
		oodo							ramp and stay in QUICK
									STOP
									6: Slow down on quick stop
									ramp and stay in QUICK
									STOP
									0: Disable drive function
605Ch	0	Disable operation	1	RW	S16		No		1: Slow down with slow down
003011		option code	Į.	KVV	516		110		ramp; disable the drive
									function
6061h	0	Mode of operation display	2	RO	S8		Yes		Same as above

16-5 CANopen Fault Codes

- Display error signal
- ② Abbreviation for error codeThe code displays as shown on KPMH-LC01
- ③ Display error description

^{*} Refer to settings for Pr.06-17-Pr.06-22.

Setting*	Display	Fault code	Description	CANopen fault register (bit 0–7)	CANopen fault code
1	Fault ocA Ocataccel	0001H	Over-current during acceleration	1	2213H
2	Fault ocd Ocat decel	0002H	Over-current during deceleration	1	2213H
3	Fault ocn Oc at normal SPD	0003H	Over-current during steady operation	1	2214H
4	Fault GFF Ground fault	0004H	Ground fault. When one of the output terminal(s) is grounded, the short circuit current is more than 50% of the AC motor drive rated current. Note: the short circuit protection is provided for the AC motor drive protection, not to protect you.	1	2240H
6	Fault ocS Oc at stop	0006H	Over-current at stop. Hardware failure in current detection.	1	2214H
7	ovA Ov at accel	0007H	Over-current during acceleration. Hardware failure in current detection.	2	3210H
8	Fault ovd Ov at decel	0008H	Over-current during deceleration. Hardware failure in current detection.	2	3210H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0–7)	CANopen fault code
9	Fault OVN Ov at normal SPD	009H	DC BUS over-voltage at constant speed.	2	3210H
10	Fault ovS Ov at stop	000AH	Over-voltage at stop. Hardware failure in voltage detection.	2	3210H
11	Fault LvA Lv at accel	DC BUS voltage is less than Pr.06-00 during acceleration.		2	3220H
12	Fault Lvd Lv at decel	000CH	DC BUS voltage is less than Pr.06-00 during deceleration.	2	3220H
13	Fault Lvn Lv at normal SPD	000DH	DC BUS voltage is less than Pr.06-00 at constant speed.	2	3220H
14	Fault LvS Lv at stop	000EH	DC BUS voltage is less than Pr.06-00 at stop.	2	3220H
15	Fault OrP Phase Lacked	000FH Phase loss protection		2	3130H
16	Fault OH1 IGBT over heat	0010H	IGBT is overheated above the protection level.	3	4310H
18	Fault tH1o Thermo 1 open	0012H	IGBT over-heating protection error	3	FF00H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0–7)	CANopen fault code
21	Fault oL Inverter oL	0015H	Overload; the AC motor drive detects excessive drive output current.	1	2310H
22	Fault EoL1 Thermal relay 1	0016H	Electronic thermal relay 1 protection	1	2310H
26	Fault ot1 Over torque 1	001AH	When the output current exceeds the over-torque detection level (Pr.06-07) and also exceeds Pr.06-08; when Pr.06-06 is set as 1 or 3, the keypad displays a warning without an error record; when Pr.06-06 is set as 2 or 4, it displays an error, stops running and displays an error record.	3	8311H
28	Fault uC Under torque 1	001CH	Low current detection	1	8321H
31	Fault cF2 EEPROM read Err	001FH	Cannot read internal EEPROM.	5	5530H
33	Fault cd1 las sensor Err	0021H	U-phase current error	1	FF04H
34	Fault cd2 Ibs sensor Err	0022H	V-phase current error	1	FF05H
35	Fault cd3	0023H	W-phase current error	1	FF06H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0–7)	CANopen fault code	
36	Fault Hd0 cc HW Error	0024H	CC (current clamp) hardware error	5	FF07H	
37	Fault Hd1 oc HW Error	0025H	25H OC hardware error		FF08H	
40	Fault AUE Auto tuning Err	0028H	Motor parameters auto-tuning error	1	FF21H	
48	Fault ACE ACI loss	0030H	ACI loss	1	FF25H	
49	Fault EF External Fault	0031H	External Fault; when the multi-function input terminal (EF) is active, the AC motor drive stops output.	5	9000H	
50	Fault EF1 Emergency stop	0032H	Emergency stop; when the multi-function input terminal (EF1) is active, the AC motor drive stops output.	5	9000H	
51	Fault bb Base block	0033H	External Base Block; when the multi-function input terminal (B.B.) is active, the AC motor drive stops output.	5	9000H	
52	Fault Pcod Password Error	0034H	Keypad is locked after you enter the wrong password three times.	5	FF26H	
54	Fault cE1 Modbus CMD err	0036H	Modbus function code error (illegal function code)	4	7500H	

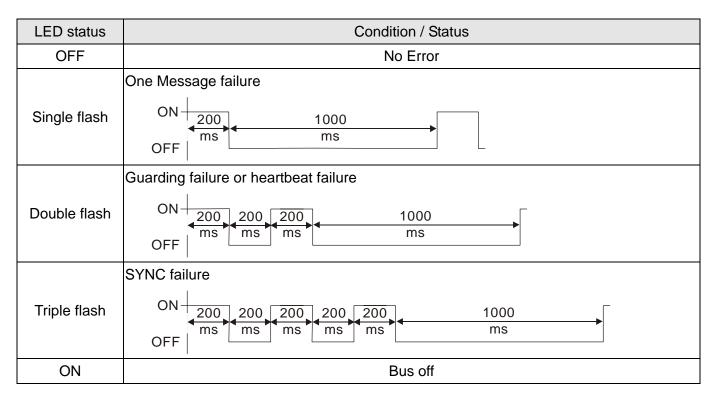
Setting*	Display	Fault code	Description	CANopen fault register (bit 0–7)	CANopen fault code		
55	Fault cE2 Modbus ADDR err	0037H	Modbus data address error [illegal data address (00 H–254 H)]	4	7500H		
56	Fault cE3 Modbus DATA err	0038H	Modbus data error (illegal data value)		7500H		
57	Fault cE4 Modbus slave FLT	0039H	Modbus communication error (data is written to read-only address)	` 4			
58	Fault cE10 Modbus time out	003AH	Modbus transmission time-out	4	7500H		
59	Fault CP10 Keypad Time Out	003BH	Keypad transmission time-out	4	7500H		
61	Fault ydc Y-delta connect	003DH	Y-connection / Δ-connection switch error	2	3330H		
62	Fault dEb Dec. Energy back	003EH	Energy regeneration when decelerating	2	FF27H		
63	Fault oSL Over slip Error	003FH	Motor slip exceeds Pr.07-29 setting and exceeds Pr.07-30 time setting.		FF28H		
72	Fault STL1 STO Loss 1	0048H	S1–DCM internal loop detection error	5	FF30H		

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
74	Fault MCF Control Fail	004AH	Magnetic contactor error	5	FF2FH
75	Fault MBF Mech. Brake Fail	004BH	Mechanical brake error	5	7110H
76	Fault STO 004CH Safe Torque Off function active		5	FF31H	
77	Fault STL2 STO Loss 2	STL2 004DH S2–DCM internal loop detection error		5	FF32H
78	Fault STL3 STO Loss 3	S1-DCM & S2-DCM internal loop detection error		5	FF33H
79	Fault Aoc U phase oc	0050H	U-phase short circuit	1	FF2BH
80	Fault boc V phase oc	boc 0051H V-phase short circuit		1	FF2CH
81	Fault coc W phase oc	0050H	W-phase short circuit 1		FF2DH
82	Fault OPL1 U phase lacked	0052H	Output phase loss 1 (Phase U)	2	2331H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0–7)	CANopen fault code
83	Fault oPL2 V phase lacked	0053H	Output phase loss 2 (Phase V)	2	2332H
84	Fault oPL3 W phase lacked	0054H	Output phase loss 3 (Phase W)	2	2333H
87	Fault 0L3 Over-load protection at low frequency 0 Derating Error		0	8A00H	
101	Fault CGdE Guarding T-out	CGdE 0065H CANopen guarding error		4	8130H
102	Fault CHbE Heartbeat T-out	0066Н	CANopen heartbeat error	4	8130H
104	Fault CbFE CAN/S bus off	0068H	CANopen bus off error	4	8140H
105	Fault CIdE CAN/S Idx exceed	0069H	CANopen index error	4	8100H
106	Fault CAdE CAN/S add. set	006AH	CANopen station address error	4	8100H
107	Fault CFrE CAN/S FRAM fail	006BH	CANopen memory error	4	8100H

Chapter 16 CANopen Overview | MH300-L

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
111	Fault ictE InrCOM Time Out	006FH	InrCOM internal communication special error code	4	7500H
127	Fault CP33 CP33	0081H	Firmware version error	7	FF3CH
140	Fault Hd6 GFF HW error	008EH	GFF detected at power on	1	2240H
141	Fault BGFF BeforeRUN GFF	0090H	GFF occurs before running	1	2240H
142	Fault AUE1 Auto tuning Err1	0091H	Auto-tune error 1 (in DC test stage)	1	FF3DH
143	Fault AUE2 Auto tuning Err2	0092H	Auto-tune error 2 (high frequency test stage)		FF3EH
144	Fault AUE3 Auto tuning Err3	0093H	Auto-tune error 3 (rotary test stage)	1	FF3FH


16-6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.

RUN LED:

LED status	Condition	CANopen Status
OFF	Keep lighting off	Initial
Blinking	ON 200 200 ms ms ms	Pre-operation
Single flash	ON- 200 1000 ms ms ms	Stopped
ON	Keep lighting on	Operation

ERR LED:

[This page intentionally left blank]

Chapter 17 PLC Function Applications

- 17-1 PLC Summary
- 17-2 Notes Before Using a PLC
- 17-3 Turn on
- 17-4 Basic Principles of PLC Ladder Diagrams
- 17-5 Various PLC Device Functions
- 17-6 Introduction to the Command Window
- 17-7 Error Display and Handling
- 17-8 Explanation of Each PLC Speed Mode
- Control 17-9 Count Function Using Pulse Input

17-1 PLC Summary

17-1-1 Introduction

The commands provided by the MH300-L built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the use of basic commands and application commands, follow the operating methods of Delta's PLC DVP series.

17-1-2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's software program for the DVP and MH300-L programmable controllers in Windows operating system environment. In addition to general PLC program design and general Windows editing functions (such as cut, paste, copy, and multiple windows), WPLSoft also provides many features such as Chinese/English annotation editing, registry editing, settings, file reading, saving, and contact graphic monitoring and settings.

Table 17-1 lists the basic requirements for installing the WPLSoft editing software:

Item	System requirements				
Operating system	Windows [®] XP / Vista / 7 (32-bit / 64-bit) / 8 / 10 (64-bit)				
CPU	At least Pentium 90				
Memory At least 16 MB (it is recommend at least 32 MB)					
Hard drive	Hard drive capacity: at least 100 MB of free space				
Haid drive	One optical drive (to install this software)				
Display	Resolution: 640×480, at least 16 colors; it is recommended that the screen				
Display	area be set at 800×600 pixels.				
Mouse	Ordinary mouse or Windows-compatible pointing device				
Printer	Printer with Windows driver software				
RS-485 port	Must have at least an RS-485 port to link to the PLC				
USB port	The USB port on the drive can be connected to the PLC				

Table 17-1

17-2 Notes Before Using a PLC

- 1. The MH300-L provides two communication serial ports that you can use to download programs to the PLC (see Figure 17-1 below).
- 2. Channel 1 (USB port) communication format is the same as channel 2.
- 3. Channel 2 has a preset communication format of 7, N, 2, 9600; you can change to ASCII in Pr.09-01 (transmission speed) and Pr.09-04 (communication protocol).
- 4. The PLC preset is node 2; you can change the PLC node in Pr.09-35 (PLC address), but this address may not be the same as the drive's address setting in Pr.09-00 (communication address).

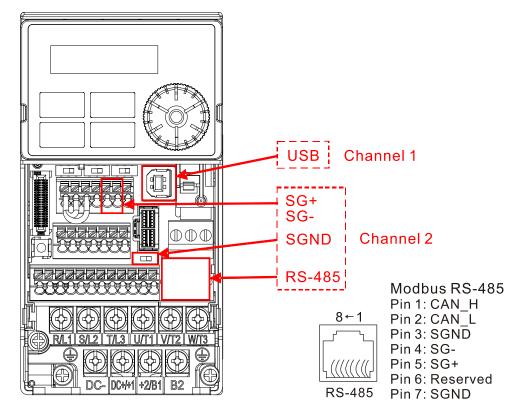


Figure 17-1

- 5. The host controller can simultaneously access data from the drive and the internal PLC, using the identifier for the node. For instance, if the drive node is 1 and the internal PLC node is 2, then the host controller command depends on the node address:
 - 01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in drive Pr.04-00.
 - 02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0.
- 6. The PLC program is disabled when uploading/downloading programs.
- 7. Note that when using WPR commands to write parameters, you may modify values up to a maximum of 10⁹ times; otherwise, a memory write error occurs. The number of modifications depends on whether the parameter value has changed. If you do not change the value, it does not change the number of modifications; however, if the entered value is different from before, the number of modifications increases by one.
- 8. In the PLC Run and PLC Stop mode, you cannot set Pr.00-02 to the values 9 or 10, and cannot be

Chapter 17 PLC Function Applications | MH300-L

reset to the default value.

- 9. You can reset the PLC to the default value when you set Pr.00-02 to 6.
- 10. The corresponding MI function is disabled when the PLC writes to input contact X.
- 11. When the PLC controls the drive operation, the control commands are entirely controlled by the PLC and are not affected by the setting for Pr.00-21.
- 12. When the PLC controls the drive's Frequency commands (FREQ commands), the Frequency commands are entirely controlled by the PLC, and are not affected by the setting for Pr.00-20 or the HAND ON/OFF configuration.
- 13. When the PLC controls the drive operation, if the keypad STOP setting is valid, this triggers an FStP error and causes the drive to stop.

17-3 Turn on

17-3-1 Connect the Drive to the PC

You start operating the PLC functions with the following steps:

After pressing the MENU key and choosing 4: PLC on the KPC-CC01 digital keypad (optional), press the ENTER key (see Figure 17-3 below).

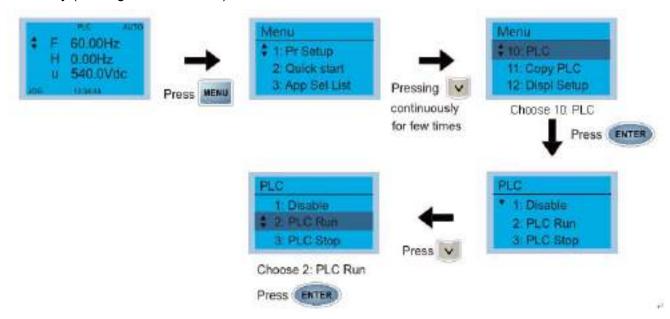


Figure 17-3

1. Wiring: Connect the drive's RJ45 communication interface to a PC through the RS-485 cable.

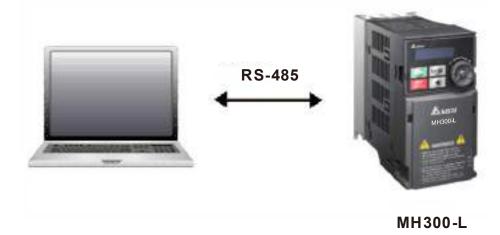


Figure 17-4

2. PLC function usage

Digital keypad KPC-CC01 (optional)

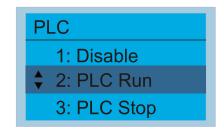


Figure 17-5

PLC functions are as shown in Figure 17-5 on the left; select item 2 PLC Run to enable the PLC functions.

- 1: No function (Disable)
- 2: Enable PLC (PLC Run)
- 3: Stop PLC functions (PLC Stop)

Digital keypad (KPMH-LC01)

Select PLC1 to enter PLC mode setting.

PLC 0: Do not implement PLC functions

PLC 1: Initiate PLC Run
PLC 2: Initiate PLC Stop

Figure 17-6

■ The MH300-L automatically switches to PLC mode when the external multifunctional input terminals (MI1–MI7) are in PLC Mode selection bit 0 (51) or PLC Mode selection bit1 (52), and the terminal contact is closed or open. In this case, keypad switching is ineffective. The corresponding actions are listed in the following table.

PLC	mode	DI O Marila a di safian	DIOM: In the state of
Using KPC-CC01 (optional)	Using KPMH-LC01	PLC Mode selection bit1 (52)	PLC Mode selection bit0 (51)
Disable	PLC 0	OFF	OFF
PLC Run	PLC 1	OFF	ON
PLC Stop	PLC 2	ON	OFF
Maintain previous state	Maintain previous state	ON	ON

Table 17-2

Using the MH300-L digital keypad to implement the PLC functions

- ☑ When the PLC screen switches to the PLC1 screen, this triggers one PLC action, and you control the PLC program start/stop by communications with WPLSoft.
- ☑ When the PLC screen switches to the PLC2 screen, this triggers one PLC stop, and you control the PLC program start/stop by communications with WPLSoft.
- The external terminal control method is the same as shown in Table 17-2 above.

NOTE

- When the input/output terminals (MI1–MI7 Relay MO) are included in the PLC program, these input/output terminals are used only by the PLC. For example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay (RA/RB/RC) operates according to the program. At this time, the multifunctional input/output terminal setting has no effect. Because these terminal functions are already being used by the PLC, you can determine the DI / DO / AO in use by the PLC by looking at Pr.02-52, 02-53, and 03-30.
- When the PLC's procedures use special register D1040, the corresponding AO contact AFM is occupied.
- Pr.03-30 monitors the state of action of the PLC function analog output terminals; bit 1 corresponds to the AFM action state.

17-3-2 I/O device explanation

Input devices:

Serial No.	X0	X1	X2	Х3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
1	MI1	MI2	MI3	MI4	MI5	MI6	MI7									
2											MI10	MI11	MI12			

- 1: Control I/O
- 2: Extension card EMM-D3R2CA (D1022=9)

Output devices:

Serial No.	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y10	Y11	Y12	Y13	Y14	Y15	Y16	Y17
1	RY1			MO1	MO2											
2						RY10	RY11									

- 1: Control I/O |
- 2: Extension card EMM-D3R2CA (D1022=9)

RY1 / RY2 / RY3

RY10 / RY11 / RY12

Figure 17-7

17-3-3 Installing WPLSoft

See Delta's website where you can download the WPLSoft editing software: http://www.delta.com.tw/product/em/download/download_main.asp?act=3&pid=3&cid=1&tpid=3
After you install WPLSoft, the WPLSoft program is located in the folder "C:\Program Files\Delta Industrial Automation\WPLSoft x.xx".

17-3-4 Writing programs in WPLSoft

STEP 1:

You can run the editing software by double-clicking the WPL icon.

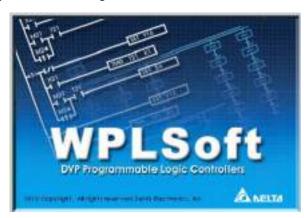


Figure 17-8

STEP 2:

The WPL editing window appears after three seconds. When running WPLSoft for the first time, before you create a new project file, the menu bar shows only **File**, **View**, **Communication**, **Options**, and **Help** menus.

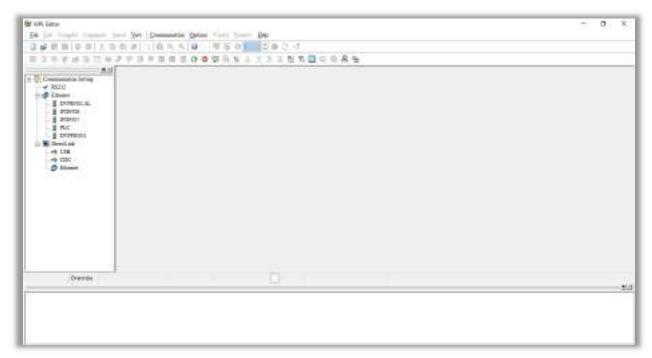


Figure 17-9

NOTE

The next time you run WPLSoft, the program opens the last project file you edited. Figure 17-10 describes the main parts of the WPLSoft editing window.

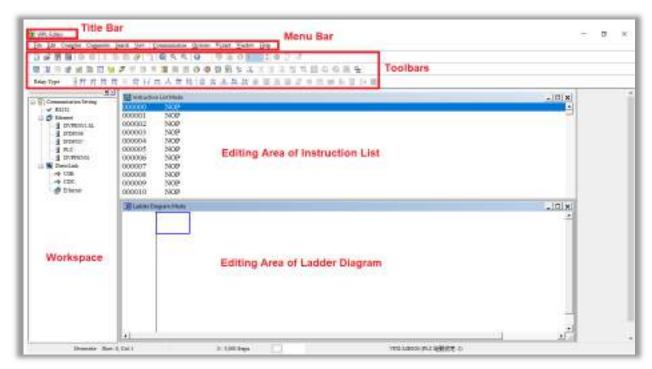


Figure 17-10

STEP 3:

To open a new project file, on the Toolbar, click the New Dutton (or press Ctrl+N).

Figure 17-11

NOTE

Alternatively, on the File menu, click New (Ctrl+N).

Figure 17-12

STEP 4:

This displays the **Select a PLC Model** dialog box where you can enter the **Program Title**, **File Name**, and select the device and communication settings.

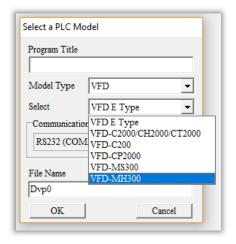


Figure 17-13

In the **Communication Setting** dialog box, define the communication settings and then click **OK**.

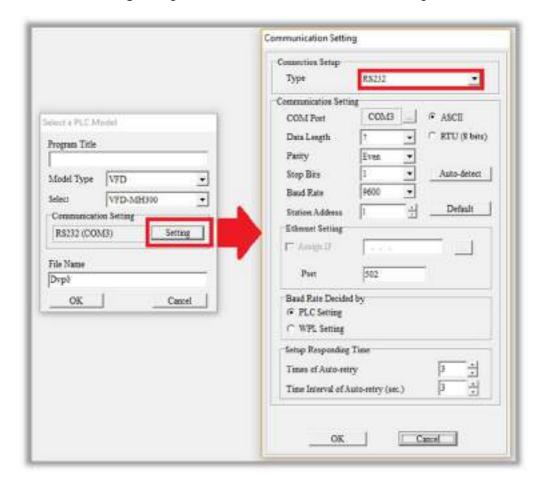


Figure 17-14

NOTE

You must select RS232 for the type of connection setup in the **Communication Setting** dialog box when using USB to connect the motor drive (MH300-L series).

STEP 5:

You can then begin editing the program. There are two program editing methods: you can edit in the command mode, or edit in the ladder diagram mode.

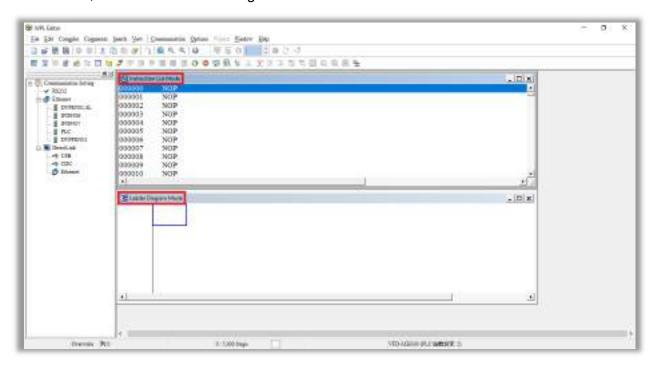


Figure 17-15

NOTE

In the ladder diagram mode, you use the buttons on the function icon row on the toolbar.

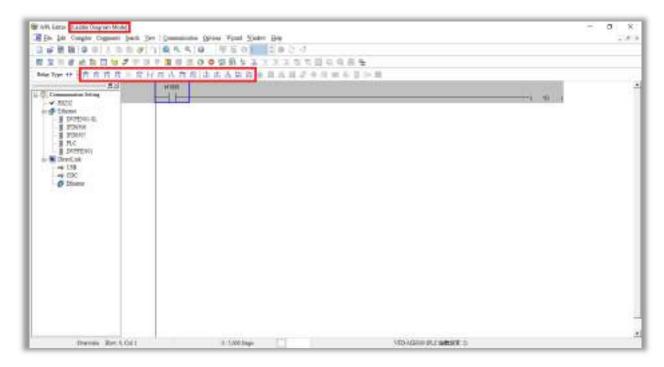
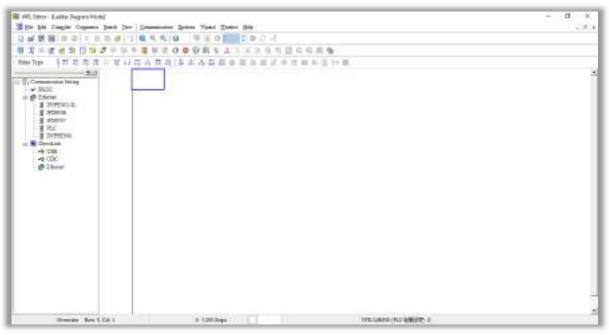


Figure 17-16

Basic Operation


Example: Create the ladder diagram in the following picture.

```
M10 ( Y0 )
```

Figure 17-17

Use the following steps to create the ladder diagram. These steps show you how to use both the mouse and the keyboard (F1–F12) to add functions.

1. The following picture shows the WPLSoft program after you create a new project file.

Figure 17-18

2. Add an always-open switch. On the toolbar click the always-open switch button 👛 or press F1.

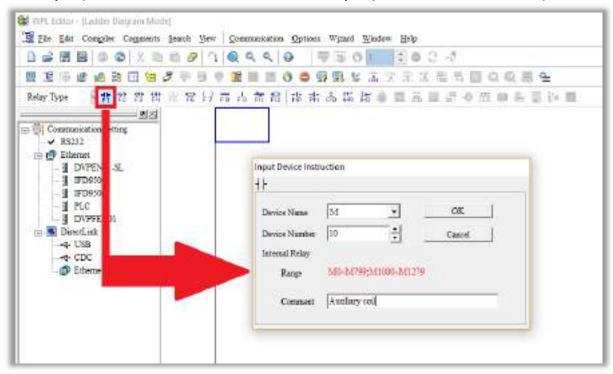


Figure 17-19

In the **Input Device Instruction** dialog box, select the device name (such as **M**), device number (such as **10**) and enter comments (such as **auxiliary coil**). Click **OK** when finished.

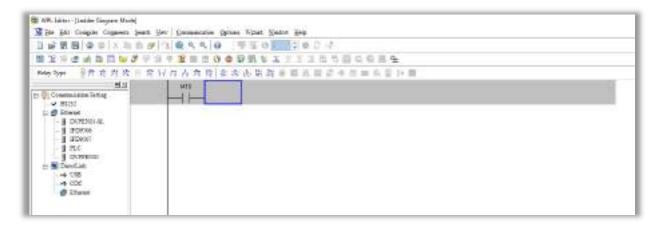


Figure 17-20

3. Add an output coil. Click the output coil button or press F7.

In the **Input Device Instruction** dialog box, select the device name (such as **Y**), the device number (such as **0**) and enter comments (such as **output coil**). Click **OK** when finished.

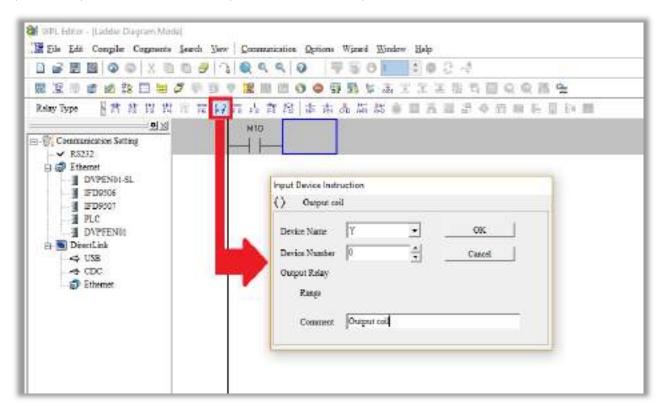



Figure 17-21

Figure 17-22

4. Press Enter, and **Input Instruction** box appears. In the **Input Instruction** box, select **END**, or use the keyboard to type "END", and then click **OK**, as shown in Figure 17-23 and Figure 17-24.

Figure 17-23



Figure 17-24

5. Compile the program. On the toolbar, click the Compile button to compile the edited ladder diagram into a command program. After compiling, the number of rungs appear on the left side of the busbar.

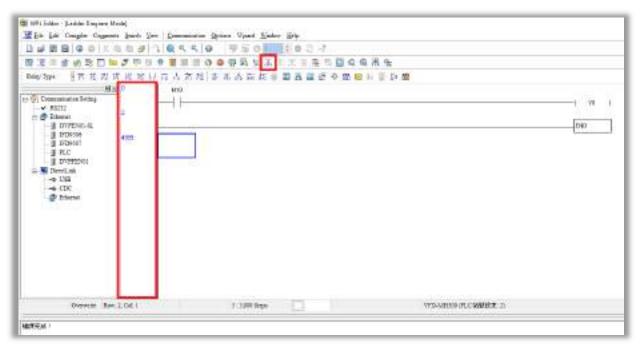


Figure 17-25

17-3-5 Program download

After you compile your program, download it to the device. Click the Download button . WPLSoft downloads the program to the online PLC in the communication format that you specified for the communication settings.

17-3-6 Program monitoring

After you download the program, confirm that the PLC is in Run mode. On the Communication menu, click Online Mode , and then click **Start Ladder Diagram Control** (as shown in Figure 17-26). This allows you to supervise and operate the ladder diagram while online.

Figure 17-26

17-4 Basic Principles of PLC Ladder Diagrams

17-4-1 Schematic diagram for PLC ladder diagram program scanning

Output results are calculated on the basis of the ladder diagram configuration

(internal devices have real-time output before results are sent to an external output point)

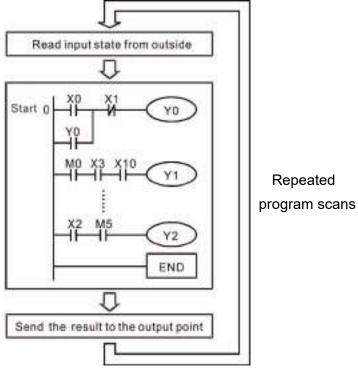


Figure 17-27

17-4-2 Introduction to ladder diagrams

Ladder diagrams use a graphic language widely applied in automatic controls. They employ common electrical control circuit symbols. After you use a ladder diagram editor to create a ladder diagram program, the PLC program design is complete. Using a graphic format to control processes is very intuitive and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram mimic common electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as the conventional electrical control circuit elements (such as relays, coils, and contacts), a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1, this may indicate that a coil is electrified; and if that bit is 0, it indicates that the coil is not electrified. You can use a N.O. contact (Normally Open, or contact A) to directly read the value of the corresponding bit, and use a N.C. contact (Normally Closed, or contact B) to get the inverse of the bit's value. Multiple relays occupy multiple bits, and eight bits comprise one byte. Two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (as in addition/subtraction or displacement), it can use a byte, a word, or a double word. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process numerical values, these values are usually in the form of bytes, words, or double words (internally in the PLC).

The various internal devices in a PLC use a certain amount of memory in the PLC's storage area. When

you use these devices, the content of the corresponding storage area is read in the form of bits, bytes, or words.

The following table describes the internal devices in a PLC

Device	Description of Function						
Input Relay	An input relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external input point. It serves as a terminal connecting with an external input switch and receiving external input signals. It is driven by external input signals, to which it assigns values of 0 or 1. A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay. You cannot use WPLSoft to manually perform ON/OFF actions. You can use a relay's contacts (contacts A and B) an unlimited number of times in a program. An input relay with no input signal must be left idle and cannot be used for some other purpose. Input devices are indicated by X0, X1, X7, X10, X11, and so on. These devices are indicated with the symbol X, and a device's order is indicated with an octal number. Input point numbers are indicated in the main PLC and in extension devices.						
Output Relay	An output relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external output point. It connects with an external load. It can be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one N.O. contact to connect with external loads or other contacts, and like the input contacts, you can use the output relay's contacts an unlimited number of times in a program. An output relay with no input signal is idle, but can be used by an internal relay if needed. ☑ Output devices are indicated by Y0, Y1, Y7, Y10, Y11, and so on. These devices are indicated with the symbol Y, and a device's order is indicated with an octal number. Output point numbers are indicated in the main PLC and in extension devices.						
Internal Relay	Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponds to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. You can use an internal auxiliary relay's contacts an unlimited number of times in a program. Internal relays have no outputs to the outside, and their status must output through an output point. ☑ Internal relay devices are indicated by: M0, M1–M799, and so on. These devices are indicated with the symbol M, and the device's order is indicated with a decimal number.						
Counter	Counters perform counting operations. The setting value for a counter (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from OFF ON, this indicates that						
Timer	Timers perform timing for operations. The timer contains a coil, contact, and a time value register. When the coil is electrified, and the setting value for the timer is reached, the contact is actuated (contact A closes, contact B opens), and the timer's fixed value is given by the setting value. A timer has a regulated clock cycle (timing units: 100 ms). As soon as power to the coil is cut off, the contact is no longer be actuated (contact A opens, contact B closes), and the original timing value returns to zero. ☑ Timer devices are indicated by: T0, T1–T159, and so on. These devices are indicated by the symbol T, and the device's order is indicated with a decimal number.						
Data Register	Data registers are used exclusively to store data and various parameters. When you use a PLC is to perform various types of sequence control, set time values, and count value controls, the PLC performs data processing and numerical operations and stores the operands, parameters, and results in data registers. Each data register contains 16 bits of binary data (one word). Two data registers with adjacent numbers can process double words. ☑ Data register devices are indicated by: D0, D1–D399, and so on. These devices are indicated by the symbol D, and the device's order is indicated with a decimal number.						

Ladder diagram images and explanations

See the Section 17-4-2 "Introduction to ladder diagrams" for descriptions of devices.

Ladder diagram structures	Explanation of commands	Command	Using Device	
 	N.O. switch, contact A	LD	X, Y, M, T, C	
	N.C. switch, contact B	LDI	X, Y, M, T, C	
	Series N.O.	AND	X, Y, M, T, C	
	Series N.C.	ANI	X, Y, M, T, C	
	Parallel N.O.	OR	X, Y, M, T, C	
	Parallel N.C.	ORI	X, Y, M, T, C	
	Rising edge-triggered switch	LDP	X, Y, M, T, C	
	Falling edge-triggered switch	LDF	X, Y, M, T, C	
├ ── ├ ── │↑├ ──	Rising edge-triggered series	ANDP	X, Y, M, T, C	
	Falling edge-triggered series	ANDF	X, Y, M, T, C	
	Rising edge-triggered parallel	ORP	X, Y, M, T, C	
	Falling edge-triggered parallel	ORF	X, Y, M, T, C	
	Block series	ANB	N/A	
	Block parallel	ORB	N/A	
	Multiple outputs	MPS MRD MPP	N/A	
	Coil driven output commands	OUT	Y, M	
	Some basic commands, application commands.	Some basic commands, application commands.		
	Inverted logic	INV	N/A	

Table 17-6

K10

17-4-3 Overview of PLC ladder diagram editing

The program editing method in WPLSoft begins from the left busbar and proceeds to the right busbar (the right busbar is not visible in WPLSoft). Continue to the next row after completing each row; there are a maximum of 11 contacts on each row. If this is not sufficient, WPLSoft generates a continuous line to indicate the continued connection, so that you can add more devices. A continuous series of numbers is generated automatically and you can use identical input points repeatedly (as shown in Figure 17-28).

Figure 17-28

The PLC scans a ladder diagram programs from the upper left corner to the lower right corner. The coils and application command computing box are handled in the output, and in ladder diagram are placed on the farthest right of a rung. Taking Figure 17-29 below as an example, we can analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.

command sequence LD X0 2 OR M0 3 X1 AND 4 **X3** Υ1 AND M3 ORB 5 LD Y1 **TMR** T0

M1

ORB 7 ANB 8 OUT Y

6

AND

LD AND

Explanation of

OUT Y1
TMR T0 K10

X4

T0

М3

Figure 17-29

Explanation of basic structure of ladder diagrams

LD (LDI) command: an LD or LDI command appears at the start of a block. See Figure 17-30.

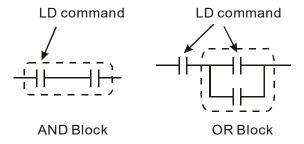


Figure 17-30

LDP and LDF use this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact (see Figure 17-31).

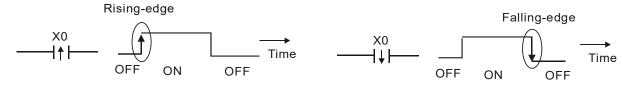


Figure 17-31

AND (ANI) command: a series configuration in which a single device is connected with one device or a block. See Figure 17-32.

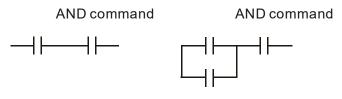


Figure 17-32

NOTE

ANDP, ANDF use this structure, but their action occurs at the rising and falling edge of a conducting contact.

OR (ORI) command: a single device is connected with one device or a block. See Figure 17-33.

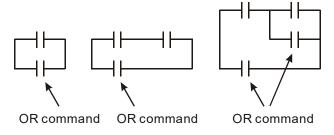


Figure 17-33

NOTE

ORP, ORF use this structure, but their action occurs at the rising and falling edge of a conduction contact.

ANB command: a configuration in which one block is in series with one device or block. See Figure 17-34.

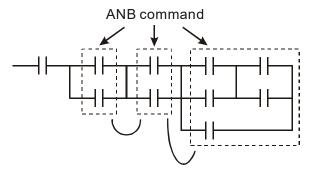


Figure 17-34

ORB command: a configuration in which one block is in parallel with one device or block. See Figure 17-35.

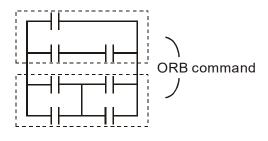
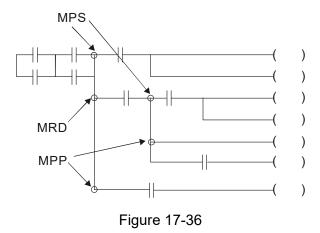


Figure 17-35

NOTE

In the case of ANB and ORB operations that connect a number of blocks, they should be combined to form a block or network from the top down or from left to right.


MPS, MRD, MPP commands: branching point memory for multiple outputs that enable multiple different outputs. The MPS command begins at a branching point, which refers to the intersection of horizontal and vertical lines. Control relies on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when editing a ladder diagram. You can use the structure of the ladder diagram to judge what kinds of contact memory commands are used.

MPS is indicated by use of the _ symbol. You can use this command consecutively up to eight times.

The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other parts of the ladder diagram, the original contact status must be read. MRD is indicated by the | symbol.

The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop operation); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded. MPP is indicated by the L symbol.

Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in Figure 17-36.

17-4-4 Common basic program design examples

Start, stop, and protection circuits

Some applications may require a brief close or brief break using a button to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations. This protective circuit may employ one of the following methods.

Example 1: Priority stop protective circuit

When the start N.O. contact X1=ON, and the stop N.C. contact X2=OFF, Y1=ON. If X2 switches to ON, coil Y1 is no longer electrified, and this is therefore referred to as priority stop. See Figure 17-37.

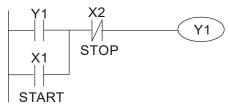
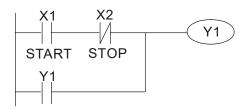



Figure 17-37

Example 2: Priority start protective circuit

When the start N.O. contact X1=ON, and the stop N.C. contact X2 = OFF, Y1=ON, and coil Y1 is electrified and protected. If X2 switches to ON, coil Y1 still protects the contact and continues to be electrified, and this is therefore referred to as priority start. See Figure 17-38.

Figure 17-38

Example 3: Setting (SET) and reset (RST) command protective circuit

Figure 17-39 shows a protective circuit composed of RST and SET commands.

- A priority stop occurs when you place the RST command after the SET command.
 Because the PLC executes programs from the top down, at the end of the program the
 state of Y1 indicates whether coil Y1 is electrified. When X1 and X2 both actuate, Y1 loses
 power, and this is therefore referred to as priority stop.
- A priority start occurs when you place the SET command after the RST command. When X1 and X2 both actuate, Y1 electrifies, and this is therefore referred to as priority start.

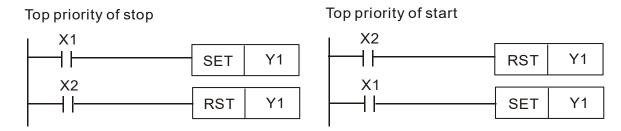
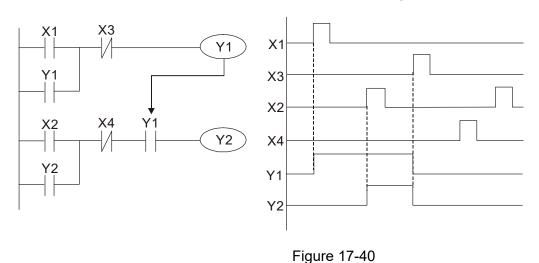
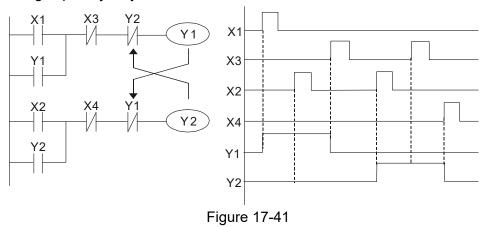



Figure 17-39

Commonly-used control circuits

Example 4: Conditional control


X1 and X3 respectively start and stop Y1; and X2 and X4 respectively start and stop Y2. All have protective circuits. Because Y1's N.O. contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y2. The action of Y1 is therefore a condition for the action of Y2, and Y1 must actuate before Y2 can actuate. See Figure 17-40.

Example 5: Interlocking control

Figure 17-41 shows an interlocking control circuit. Depending on which of the start contacts X1 or X2 becomes valid first, the corresponding output Y1 or Y2 actuates, and when one actuates, the other does not actuate. Y1 and Y2 cannot actuate at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y1 and Y2 to actuate at same time. This ladder

diagram assigns priority only to Y1.

Example 6: Sequence control

If the N.C. contact of Y2 in the interlocking control configuration from example 5 is put in series with the Y1 circuit, to create an AND condition for actuation of Y1 (see Figure 17-42), not only is Y1 a condition for the actuation of Y2 in this circuit, but the actuation of Y2 also stops the actuation of Y1. This configuration confirms the actuation order of Y1 and Y2.

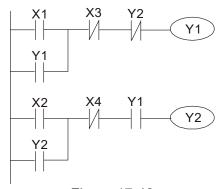


Figure 17-42

Example 7: Oscillating circuit

Oscillating circuit with a period of $\Delta T + \Delta T$

Figure 17-43 shows a very simple ladder diagram. When starting to scan the Y1 N.C. contact, because the Y1 coil has lost power, the Y1 N.C. contact is closed. When the Y1 coil is then scanned, it is electrified, and the output is 1. When the Y1 N.C. contact is scanned in the next scanning cycle, because the Y1 coil is electrified, the Y1 NC contact is open, the Y1 coil then loses power, and the output is 0. Following repeated scanning, the output of Y1 coil has an oscillating waveform with a period of $\Delta T(ON)+\Delta T(OFF)$.

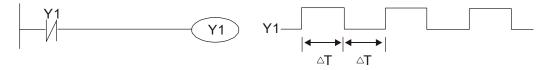


Figure 17-43

Oscillating circuit with a period of nT+ΔT

The ladder diagram (Figure 17-44) shown below uses timer T0 to control coil Y1's electrified time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which causes the output from Y1 to oscillate as shown in the diagram below. The constant n is the timer's decimal setting value, and T is the clock cycle of the timer.

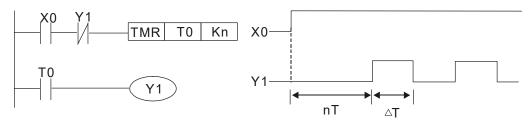


Figure 17-44

Example 8: Flashing circuit

Figure 17-45 shows an oscillating circuit of a type commonly used to cause an indicator to flash or a buzzer to buzz. It uses two timers to control the ON and OFF time of Y1 coil. Here constants n1 and n2 are the setting values of timers T1 and T2, and T is the clock cycle of the timer.

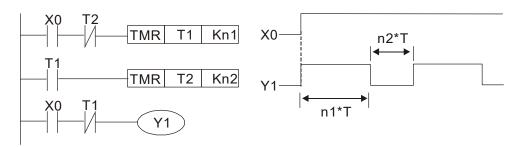
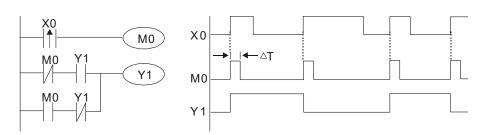



Figure 17-45

Example 9: Triggering circuit

In Figure 17-46, a rising edge in input X0 causes coil M0 to generate a single pulse for ΔT (length of one scanning cycle), and coil Y1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and N.C. contact M0 and N.C. contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X0. This again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, and so on. You can see the sequence of these actions in the figure below. This type of circuit is commonly used to enable one input to perform two alternating actions. You can see from the time sequence in the diagram below that when input X0 is a square wave signal with a period of T, the output of coil Y1 is a square wave signal with a period of 2T.

Figure 17-46

Example 10: Delay circuit

When input X0 is ON, because the corresponding NC contact is OFF, the timer T10 is in a no power state, and output coil Y1 is electrified. T10 receives power and begins to count the time only after input X0 is OFF, and output coil Y1 is delayed for 100 seconds (K1000*0.1 sec. = 100 sec.) before losing power. You can see the sequence of actions in Figure 17-47.

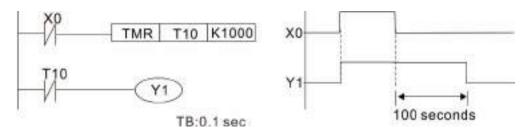


Figure 17-47

Example 11: The open/close delay circuit is composed of two timers; output Y4 has a delay no matter input X0 is ON or OFF. See Figure 17-48.

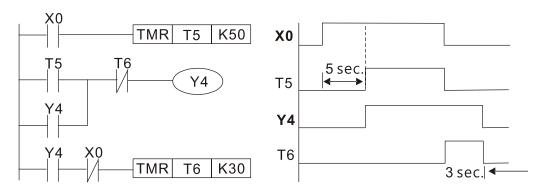


Figure 17-48

Example 12: Extended timing circuit

In the circuit in the ladder diagram (Figure 17-49) on the left, the total delay time from the moment input X0 closes to the time output Y1 is electrified is (n1+n2)*T, where T is the clock cycle. The timers are T11 and T12, and the clock cycle is T.

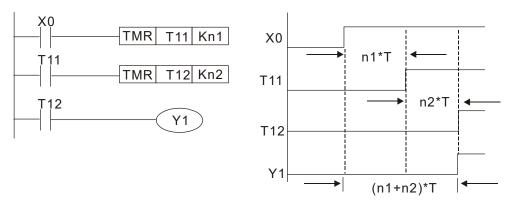


Figure 17-49

17-5 Various PLC Device Functions

Item	Specifications	Notes
Algorithmic control	The program is stored internally, alternating back-and-forth	
method	scanning method.	
Input/output control	When the scan starts again after ending (after execution to the	
method	END command), the input/output is immediately refreshed.	
Algorithmic	Basic commands (several µs)	Application command (1 to
processing speed	Dasic Commands (Several µs)	several tens of µs)
Programming	Command + ladder diagram	
language		
Program capacity	5000 steps	
Input/output	Digital input (X): 7, digital output (Y): 3	
terminal	Analog input AI: 2, analog output AO: 1	

Table 17-7

Туре	Device	e Item		Range		Function
	Х	External input relay		X0–X17, 16 points, octal number	Total 32	Corresponds to external input point
	Y	External outpu	ıt relay	Y0–Y17, 16 points, octal number	points	Corresponds to external output point
		Auxiliary	General Use	M0-M799, 800 points	Total	Contact can switch ON/OFF
Relay	M	Relay	Special purpose	M1000–M1279, 280 points	1080 points	within the program
Relay bit form	Т	Timer	100 ms timer	T0-T59, 160 points	Total 160 points	Timers referred to by the TMR command; T contact with the same number switches ON when the time is reached.
	С	Counter	16-bit counter, general use	C0–C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the C with the same number switches ON when the count is reached.
Re	Т	Current timer value		T0-T159, 160 points		The contact switches ON when the time is reached.
gister	С	Current counte	er value	C0–C79, 16-bit counter 80 points		The counter contact switches ON when the count is reached.
Register word data	D Data		Used to maintain power OFF	D0-D99, 100 points	Total 1020	Used as data storage memory area
ata .		Register	Special purpose	D100–D399, 300 points D1000–D1619, 620 points	points	alea
	K	Decimal	Single-byte	Setting Range: K-32,768-I	K32,767	
Constant	, n	Decimal	Double-byte	Setting Range: K-2,147,483,648–K2,147,483,647		
Constant	Н	Hexadecimal	Single-byte	Setting Range: H0000–HFFFF		
			Double-byte	Setting Range: H00000000-HFFFFFFF		
	Serial communications port (program write/read)		RS-485/USB/keypad port			
Input/output		Two built-in analog inputs and one analog output				
High-speed counting		One built-in (MI7 or MI6+MI7) 32-bit high-speed counter				
Function extension module Optional Accessories		EMM-D3R2CA				
Comm	Communication extension Built-in		CANopen (slave)			
I		Optional Accessories				

Table 17-8

17-5-1 Introduction to device functions

Input/output contact functions

Input contact X has this function: input contact X is connected with an input device, and reads input signals entering the PLC. There are no restrictions on the number of times that the input contact A or B appear in the program. The ON/OFF state of input contact X changes as the input device switches between ON and OFF; you cannot use a peripheral device (WPLSoft) to force contact X ON or OFF.

Output contact Y functions

The output contact Y sends an ON/OFF signal to drive the load connected to output contact Y. There are two types of output contacts: relays and transistors. There are no restrictions on the number of times that contact A or B of an output contact Y appear in a program, but it is recommended that you use the number of output coil Y only once in a program; otherwise the output state when the PLC performs program scanning is determined by the program's final output Y circuit.

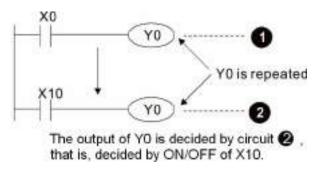


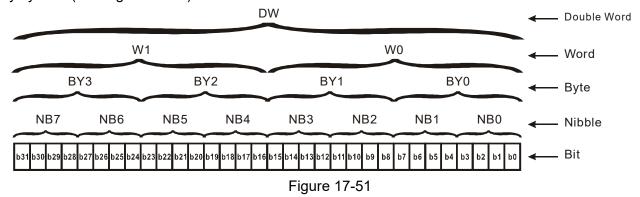
Figure 17-50

Numerical value, constant [K] / [H]

	Single-byte	K	K Decimal	K-32,768–K32,767
Constant	Double-byte	, K		K-2,147,483,648–K2,147,483,647
Constant	Single-byte	Н		H0000-HFFFF
	Double-byte		Hexadecimal	H0000000—HFFFFFFF

Table 17-9

The PLC uses five types of numerical values to implement calculations based on its control tasks; the following topics explain the use and function of the different numerical types.


Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Table 17-10 below explains terms related to binary numbers.

bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0.
Nibble	Comprised of a series of four bits (such as b3-b0); can be used to express a one-
Minnie	nibble decimal number 0–9 or hexadecimal number 0–F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7–b0); can express a
Буш	hexadecimal number: 00–FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a
VVOIG	hexadecimal number with four nibbles: 0000–FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31–b0); can express a
Double Word	hexadecimal number with eight nibbles: 00000000–FFFFFFF

Table 17-10

The following diagram shows the relationship between bits, digits, nibbles, words, and double words in a binary system (see Figure 17-51).

Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers.

Example: External input: X0–X7, X10–X17...(Device number table)

External output: Y0–Y7, Y10–Y17...(Device number table)

Decimal Number, DEC

A PLC uses decimal numbers for the following purposes:

- ☑ The setting values of timer T or counter C, such as TMR C0 K50 (K constant).
- ☑ The numbers of devices including M, T, C, or D, such as M10 or T30 (device number).
- An operand in an application command, such as MOV K123 D0 (K constant).

Binary Coded Decimal, BCD

Uses one nibble or four bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with four nibbles. These are used to read the input value of a rotating numerical switch to input or output a numerical value to a seven-segment display drive.

Hexadecimal Number, HEX

A PLC uses hexadecimal numbers as operands in application commands, such as MOV H1A2B D0 (H constant).

Constant K

PLC's usually prefixed decimal numbers with K, such as K100. This indicates that it is a decimal number with a numeric value of 100.

Exceptions: You can combine K with a bit device X, Y, M, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2–K4 represent 8-, 12-, and 16-bit combinations.

Constant H

PLC's usually prefixed hexadecimal numbers with H, such as in the case of H100. This indicates a hexadecimal number with a numeric value of 100.

Functions of auxiliary relays

Like an output relay Y, an auxiliary relay M has an output coil and contacts A and B, and you can use the output relay contacts any number of times in a program. You can use an auxiliary relay M to configure the control circuit, but cannot use the auxiliary relay to directly drive an external load. There are two types of auxiliary relays:

Ordinary auxiliary relays: ordinary auxiliary relays all revert to the OFF state when a power outage occurs while the PLC is running, and remains in the OFF state when power is restored.

Special purpose auxiliary relays: each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

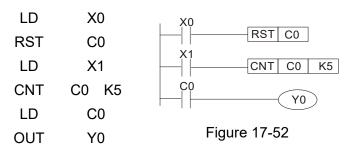
Timer functions

Timers use 100 ms as their timing unit. When the timing method is an upper time limit, and the current timer value = setting value, the timer output coil is energized. Timer setting values use decimal K values; you can also use the data register D as a setting value.

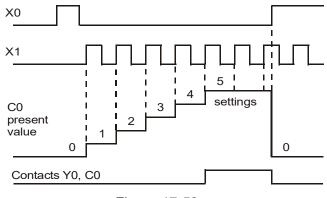
Actual timer setting time = timing units * set value

Counter features

Item	16-bit counter
Туре	General Type
CT Direction:	Up
Setting	0–32,767
Designation of set value	Constant K or data register D
Change in current value	When the count reaches the setting value, it stops counting.
Output contact	When the count reaches the setting value, the contact switches ON and stays ON.
Reset	The current value reverts to 0 when an RST command is executed, and the contact
Neset	reverts to OFF.
Contact actuation	All are actuated after the end of scanning.


Counter functions

When a counter's counting pulse input signal switches from OFF to ON, if the counter's current value is equal to the setting value, the output coil switches ON. The setting value can be either a decimal K or a data register D.


16-bit counter:

- ☑ 16-bit counter setting range: K0–K32,767. When K0 and K1 are identical, the output contact is immediately ON during the first count.
- ☑ The current counter value is cleared from an ordinary counter when power to the PLC turns OFF.
- If you use the MOV command or WPLSoft to transmit a value greater than the setting value to the C0 current value register, when the next X1 switches from OFF to ON, the C0 counter contact changes to ON, and the current value changes to the setting value.
- ✓ You can set a counter's setting value directly using a constant K, or indirectly using the value in register D (not including special data registers D1000–D1199 or D2000–D2799).
- ☑ If the setting value is a constant K, the value must be a positive number. If the setting value is from data register D, the value can be either a positive or negative number. If using a data register, and the current value is 32,767, incrementing the count causes the count value to roll over to -32,768 as the count continues to accumulate.

Example

- When X0 = ON and the RST command is executed, the current value of C0 reverts to 0, and the output contact reverts to OFF.
- 2. When X1 switches from OFF to ON, the current value of the counter is incremented by one (add one).
- 3. When the count in C0 reaches the set value K5, the contact C0 switches to ON, and the current value of C0 = setting value = K5. Afterwards, additional changes in X1 do not affect the count value, and C0 remains at K5.

17-5-2 Introduction to special relay functions (special M)

R/W column: RO means read only; RW means read and write.

0 : 114	F " B ' "	
Special M	Function Descriptions	R/W
M1000	Monitors N.O. contact (contact A). N.O. while RUN, contact A. This contact is	RO
IVI 1000	ON while in the RUN state.	NO
M1001	Monitors N.C. contact (contact B). N.C. while RUN, contact B. This contact is	RO
1001	OFF while in the RUN state.	110
M1002	Initiates a forward pulse (the instant RUN is ON). Initial pulse, contact A.	RO
1111002	Produces a forward pulse when RUN begins; pulse width = scan cycle.	1.0
M1003	Initiates a reverse pulse (the instant RUN is OFF). Initial pulse, contact A.	RO
	Produces a reverse pulse when RUN ends; pulse width = scan cycle.	
M1004	 D:	RO
M1005	Drive malfunction instructions	RO
M1006	Drive has no output	RO
M1007	Drive direction FWD (0) / REV (1)	RO
M1008		
– M1010		
M1010	10ma alask nulas E ma ON / E ma OFF	RO
	10ms clock pulse, 5 ms ON / 5 ms OFF.	_
M1012	100ms clock pulse, 50 ms ON / 50 ms OFF.	RO
M1013	1 sec. clock pulse, 0.5 s ON / 0.5 s OFF.	RO
M1014	1 min. clock pulse, 30 s ON / 30 s OFF.	RO
M1015	Frequency reached (when used with M1025)	RO
M1016	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018		
M1019		
M1020	Zero flag	RO
M1021	Borrow flag	RO
M1022	Carry flag	RO
M1023	Divisor is 0	RO
M1024		
M1025	Drive frequency = set frequency (ON) Drive frequency = 0 (OFF)	RW
M1026	Drive operating direction FWD (OFF) / REV (ON)	RW
M1027	Drive Reset	RW
M1028		
M1029		
M1030		
M1031		
M1032		
M1033		
M1034		
M1035		
M1036		
M1037		
M1038	MI7 single-phase or MI6+MI7 AB-phase count begins	RW
M1039	Reset MI7 single-phase or MI6+MI7 AB-phase count value	RW
M1040	Hardware power (Servo On)	RW
M1041		
M1042	Quick Stop	RW
M1043		
M1044	Pause (Halt)	RW
M1045		
		
M1047		

Special M	Function Descriptions	R/W
M1048		
M1049		
M1050		
M1051		
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053		
M1054		
M1055		
M1056	Hardware already has power (Servo On Ready)	RO
M1057		
M1058	On Quick Stopping	RO
M1059		
_		
M1062		
M1063		RO
M1064		
_		
M1076		
M1077	485 read/write completed	RO
M1078	485 read/write error	RO
M1079	485 communication time-out	RO

Table 17-11

17-5-3 Introduction to special register functions (special D)

R/W column: F	RO means read only; RW means read and write.	
Special D	Function Descriptions	R/W
D1000		
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Total program memory content	RO
D1004		
_		
D1009		
D1010	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	RO
D1012	Maximum scan time (units: 0.1 ms)	RO
D1013		
_		
D1017		
D1018	Current integral value	RO
D1019	Force setting for PID I integral	RW
D1020	Output frequency (0.00–599.00 Hz)	RO
D1021	Output current (####.#A)	RO
D1022	Al AO DI DO extension card number	
D 1022	9: EMM-D3R2CA	
D1023	Communication extension card number	RO
D 1023	0: No extension card	I NO
D1024		
_		
D1026		
D1027		RO
D1028	AVI value (0.00–100.00%)	RO
D1029	ACI value (0.00–100.00%)	RO
D1030		
D1031	Al10 value (0.00–100.00%)	RO

Special D	Function Descriptions	R/W
D1032	Al11 value (0.00–100.00%)	RO
D1033		
_		
D1034		
D1035		
D1036	Servo error bit	RO
D1037	Drive output frequency	RO
D1038	DC BUS voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM (-100.00–100.00%)	RW
D1041	Analog output value AO10 (0.00–100.00%)	RW
D1042	Analog output value AO11 (0.00–100.00%)	RW
D1043		
D1044		-
D1045		
D1046		
_		
D1049		
D1050	Actual operation mode	RO
	0: Speed	1.0
D1051		
D1052		
D1053		RO
D1054	MI7 current calculated count value (low word)	RO
D1055	MI7 current calculated count value (high word)	RO
D1056	Rotational speed corresponding to MI7	RO
D1057	MI7's rotating speed ratio	RW
D1058	MI7 refresh rate (ms) corresponding to rotating speed	RW
D1059	Number of nibbles of rotating speed corresponding to MI7 (0–3)	RW
D1060	Operation mode setting 0: Speed	RW
D1061	485 COM1 communications time-out time (ms)	RW

Table 17-12

17-5-4 PLC Communication address

Device	Range	Type	Address (Hex)
X	00–17 (Octal)	bit	0400-040FF
Υ	00–17 (Octal)	bit	0500-050F
Т	00–159	bit/word	0600-069F
М	000–799	bit	0800-0B1F
M	1000–1279	bit	0BE8-0CFF
С	0–79	bit/word	0E00-0E4F
D	00–399	word	1000–118F
D	1000–1619	word	13E8–1653

Table 17-13

Command codes

Function Code	Function Descriptions	Function target
H1	Coil status read	Y, M, T, C
H2	Input status read	X, Y, M, T, C
H3	Read single unit of data	T, C, D
H5	Force single coil status change	Y, M, T, C

Chapter 17 PLC Function Applications | MH300-L

H6	Write single unit of data	T, C, D
HF	Force multiple coil status change	Y, M, T, C
H10	Write multiple units of data	T, C, D

Table 17-14

When PLC functions have been activated, the MH300-L can match the PLC and drive parameters; this method uses different addresses for drives (default station number is 1; PLC sets station number as 2).

17-6 Introduction to the Command Window

17-6-1 Overview of basic commands

Ordinary commands

Command	Function	OPERAND	Execution
code	FullClion	OPERAND	speed (μs)
LD	Load contact A	X, Y, M, T, C	0.8
LDI	Load contact B	X, Y, M, T, C	0.8
AND	Connect contact A in series	X, Y, M, T, C	0.8
ANI	Connect contact B in series	X, Y, M, T, C	0.8
OR	Connect contact A in parallel	X, Y, M, T, C	0.8
ORI	Connect contact B in parallel	X, Y, M, T, C	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack	N/A	0.3

Table 17-15

Output command

Command code	Function	OPERAND	Execution speed (μs)
OUT	Drive coil	Y, M	1
SET	Action continues (ON)	Y, M	1
RST	Clear contact or register	Y, M, T, C, D	1.2

Table 17-16

Timer, counter

Command code	Function	OPERAND	Execution speed (μs)
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Table 17-17

Main control command

Command code	Function	OPERAND	Execution speed (μs)
MC	Common series contact connection	N0-N7	0.4
MCR	Common series contact release	N0-N7	0.4

Table 17-18

Contact rising edge/falling edge detection command

Command	Function	OPERAND	Execution
code	1 dilotion	OFEIVAND	speed (μs)
LDP	Start of rising edge detection action	X, Y, M, T, C	1.1
LDF	Start of falling edge detection action	X, Y, M, T, C	1.1
ANDP	Rising edge detection series connection	X, Y, M, T, C	1.1
ANDF	Falling edge detection series connection	X, Y, M, T, C	1.1
ORP	Rising edge detection parallel connection	X, Y, M, T, C	1.1
ORF	Falling edge detection parallel connection	X, Y, M, T, C	1.1

Table 17-19

Upper/lower differential output commands

Command code	Function	OPERAND	Execution speed (μs)
PLS	Upper differential output	Y, M	1.2
PLF	Lower differential output	Y, M	1.2

Table 17-20

Stop command

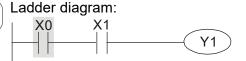
Command code	Function	OPERAND	Execution speed (μs)
END	Program conclusion	N/A	0.2

Table 17-21

Other commands

Command	Function	OPERAND	Execution
code	i dilettori	OI LIVAIND	speed (μs)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
Р	Index	Р	0.3

Table 17-22


17-6-2 Detailed explanation of basic commands

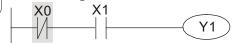
Command	Function					
LD			Load co	ontact A		
_	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						_

Explanation

Use the LD command for contact A starting at the left busbar or contact A starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.

Example

Command code: Description:


LD	X0	Load Contact A of X0
AND	X1	Create a series connection to contact A of X1
OUT	Y1	Drive Y1 coil

Command	Function					
LDI			Load co	ontact B		
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						_

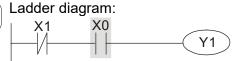
Explanation

Use the LDI command for contact B starting at the left busbar or contact B starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.

Example

Ladder diagram:

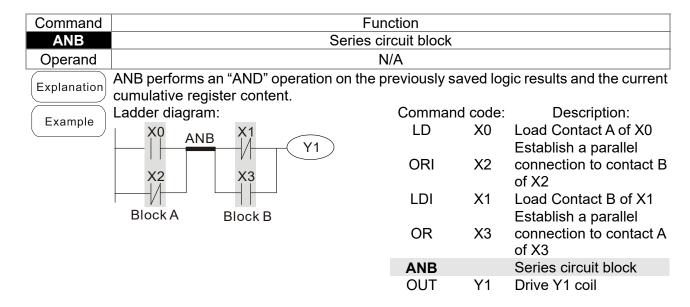
Command code: Description:


LDI	X0	Load Contact B of X0
AND	X1	Create a series connection to contact A of X1
OUT	Y1	Drive Y1 coil

Command	Function							
AND		Connect contact A in series						
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399		
Operand						_		

Explanation

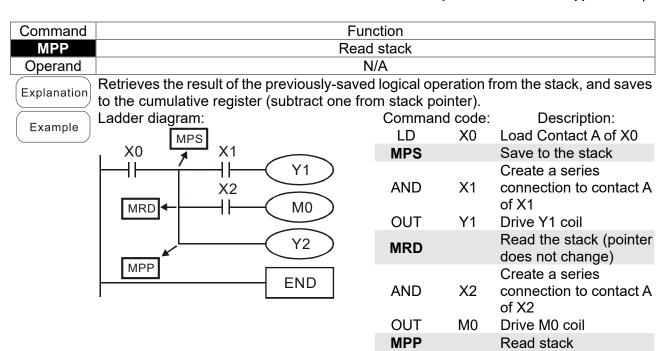
Use the AND command to create a series connection to contact A; its function is to first read the current status of the designated series contact and the logical operation results before contact in order to perform "AND" operation; saves the results in the cumulative register.



Command code:			Description:			
	LDI	X1	Load Contact B of X1			
	AND	X0	Create a series connection to contact A of X0			
	OUT	Y1	Drive Y1 coil			

Command	Function									
ANI	Connect contact B in series									
	X0-X17	Y0-Y17	M0-M799	T0-159	(C0-C79	D0-D399			
Operand							-			
	Use the ANI command to create a series connection to contact B; its function is to first read the current status of the designated series contact and the logical operation									
Explanation	results before	contact in or	der to perform							
	cumulative req			0		D				
Example	Ladder diagram:			Command code:		Description:				
	X1 X	(0 /(Ŷ1)	LD	X1	Load Con	ntact A of X1			
				ANI	Х0	Create a connection of X0	series on to contact B			
				OUT	Y1	Drive Y1	coil			

Command	Function								
OR	Connect contact A in parallel								
	X0-X17	Y0-Y17	M0-M799	T0-159		C0-C79	D0-D399		
Operand							-		
Use the OR command to establish a parallel connection to contact A; its function is to first read the current status of the designated series contact and the logical operation results before contact in order to perform "OR" operation; saves the results in									
	cumulative reg Ladder diagra	•		Command	code.	Des	scription:		
Example	Example X0 Y1			LD	X0		ntact A of X0		
	X1				X1	Create a connection of X1	series on to contact A		
				OUT	Y1	Drive Y1	coil		


Command	Function									
ORI		Connect contact B in parallel								
	X0-X17	Y0-Y17	M0-M799	T0-159		C0-C79	D0-D399			
Operand							-			
	Use the ORI of	ommand to es	tablish a paral	lel connecti	on to c	ontact B; it	s function is to			
[Fundametian	first read the o	current status	of the designat	ed series c	ontact	and the log	gical operation			
Explanation	results before	contact in c	order to perfor	rm "OR" o	peration	n; saves $\tilde{\ }$	the results in			
	cumulative reg		•		•	,				
Example	Ladder diagra	-		Command	code:	Des	scription:			
Lxample	X0		Ŷ1)	LD	X0	Load Con	tact A of X0			
	X1					Create a	series			
				ORI	X1		n to contact B			
						of X1				
				OUT	Y1	Drive Y1				

Command		Function								
ORB	Parallel circuit block									
Operand		N/A								
ORB performs an "OR" operation on the previously saved logic results and the currence cumulative register content.										
Fyample	Ladder diagram:	Command	d code:	Description:						
Example	X0 X1 Block A	LD	X0	Load Contact A of X0						
	Y1)			Establish a parallel						
	YO YO K	ANI	X1	connection to contact						
	X2 X3 ORB			B of X1						
		LDI	X2	Load Contact B of X2						
	Block B			Establish a parallel						
		AND	X3	connection to contact A of X3						
		ORB		Parallel circuit block						
		OUT	Y1	Drive Y1 coil						

Command	Function
MPS	Save to stack
Operand	N/A
Explanation	Saves the current content of the cumulative register to the stack (add one to the stack pointer).

Command	Function
MRD	Read stack (pointer does not change)
Operand	N/A
Explanation	Reads the stack content and saves to the cumulative register (the stack pointer does not change).

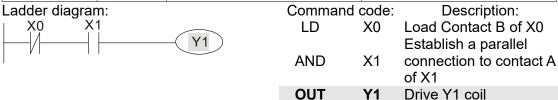
Command	Function							
OUT		Drive coil						
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399		
	-			-	-	-		

Outputs the result of the logical operation before the OUT command to the designated element.

OUT

END

Y2


Drive Y2 coil

Program conclusion

Coil contact action:

	Out command							
Result:	Coil	Access Point:						
	Coil	Contact A (N.O.)	Contact B (N.C.)					
FALSE	OFF	Not conducting	Conducting					
TRUE	ON	Conducting	Not conducting					

Example

Command	Function								
SET		Action continues (ON)							
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399			
Operand	-			-	-	-			

Sets the designated element to ON, and maintains it in an ON state, regardless of whether the SET command is still driven. Use the RST command to set the element as OFF.

Example Ladder diagram:

X0 Y0

SET Y1

Command code:

LD X0 Load Contact A of X0

Establish a parallel

AN Y0 connection to contact

B of Y0

				SEI I	I ACTION CO	nunues (ON)			
Command		Function							
RST		Clear contact or register							
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399			
	-								

Resets the designated element as described.

Element	Mode
Y, M	Both coil and contact are set to OFF.
T, C	Sets the current timing or count value to 0 and both the coil and contact are set to OFF.
D	Sets the content value to 0.

If the RST command is not executed, the status of the designated element remains unchanged.

Example

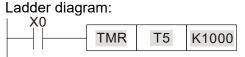
Command code:

LD X0 Load Contact A of X0

RST Y5 Clear the contact or register

Action continues (ON)

Command	Function		
TMR	16-bit timer		
Onerend	T-K	T0-T159, K0-K32,767	
Operand	T-D	T0-T159, D0-D399	


Explanation

Electrifies the designated timer coil, and the timer begins timing. The contact's action is as follows when the timing value reaches the designated setting value (timing value ≥ setting value):

N.O. (Normally Open) contact	Closed
N.C. (Normally Closed) contact	Open

If the RST command is not executed, the status of the designated element remains unchanged.

Example

Command code: Description:
LD X0 Load Contact A of X0

TMR T5 K1000 T5 timer
Set value as K1000

Command	Function		
CNT	16-bit counter		
Operand	C-K	C0-C79, K0-K32,767	
Operand	C-D	C0-C79, D0-D399	

Explanation

When you execute the CNT command from OFF to ON, switch the designated counter coil from no power to electrified and add one to the counter's count value. When the count reaches the designated value (count value = setting value), the contact has the following action:

N.O. (Normally Open) contact	Closed
N.C. (Normally Closed) contact	Open

After reaching the count value, the contact and count value both remain unchanged even with continued count pulse input. Use the RST command to restart or clear the count.

Ladder diagram:

X0

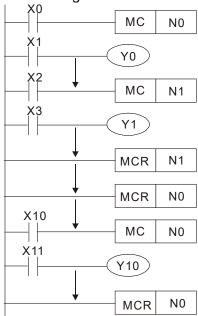
CNT C2 K100

Command code: Description:

LD X0 Load Contact A of X0

CNT C2 K100 C2 counter
Set value as K100

Command	Function			
MC/MCR	Connect/release a common series contact			
Operand	N0–N7			

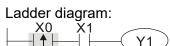

MC is the main control initiation command, and any command between MC and MCR is executed normally. When the MC command is OFF, any command between MC and MCR acts as follows:

MOI Caolo ao Ioliowo.			
Determination of commands	Description The timing value reverts to 0, the coil loses power, and the contact does not operate. The coil loses power, and the count value and contact stay in their current state.		
Ordinary timer			
Counter			
Coil driven by OUT command	None receive power.		
Elements driven by SET, RST commands. They remain in their current state.			
Application commands	None are actuated.		

MCR is the main control stop command, and is placed at the end of the main control program. There may not be any contact command prior to the MCR command. The MC-MCR main control program commands support a nested program structure with a maximum of only eight levels; use in the order N0–N7. Refer to the following program example:

Example

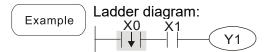
Ladder diagram:



Command	code:	Description:
LD	X0	Load Contact A of X0
MC	N0	Connection of N0 common series contact
LD	X1 Y0	Load Contact A of X1
OUT :	ŤŪ	Drive Y0 coil
LD	X2	Load Contact A of X2
MC	N1	Connection of N1 common series contact
LD	X3	Load Contact A of X3
OUT	Y1	Drive Y1 coil
:		
MCR	N1	Release N1 common series contact
:		
MCR	N0	Release N0 common series contact
:		
LD	X10	Load Contact A of X10
MC	N0	Connection of N0 common series contact
LD	X11	Load Contact A of X11
OUT ·	Y10	Drive Y10 coil
MCR	N0	Release N0 common series contact

Command	Function					
LDP		Start of rising edge detection action				
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						-

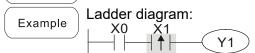
The LDP command has the same use as LD, but its action is different. Its function is to save the current content while also saving the detected state of the rising edge of the contact to the cumulative register.



Command	d code:	Description:
LDP	X0	Start of X0 rising edge detection action
AND	X1	Create a series connection to contact A of X1
OUT	Y1	Drive Y1 coil

Command	Function					
LDF		Start of falling edge detection action				
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						-

Explanation


The LDF command has the same use as LD, but its action is different. Its function is to save the current content while also saving the detected state of the falling edge of the contact to the cumulative register.

Command code:			Description:
	LDF	X0	Start of X0 falling edge detection action
	AND	X1	Create a series connection to contact A of X1
	OUT	Y1	Drive Y1 coil

Command		Function				
ANDP	Rising edge detection series connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						-

Explanation Use the ANDP command for a contact rising edge detection series connection.

Comman	d code:	Description:
LD	X0	Load Contact A of X0
ANDP	X1	X1 Rising edge detection series connection
OUT	Y1	Drive Y1 coil

Command		Function				
ANDF	Falling edge detection series connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						-

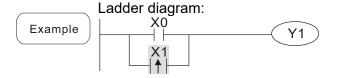
Explanation Use the ANDF command for a contact falling edge detection series connection.

Example Ladder diagram:

X0 X1

Y1

Command code:


LD X0 Load Contact A of X0

ANDF X1 Falling edge detection series connection

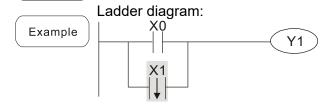
OUT Y1 Drive Y1 coil

Command	Function					
ORP		Rising	edge detectio	n parallel conr	ection	
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						-

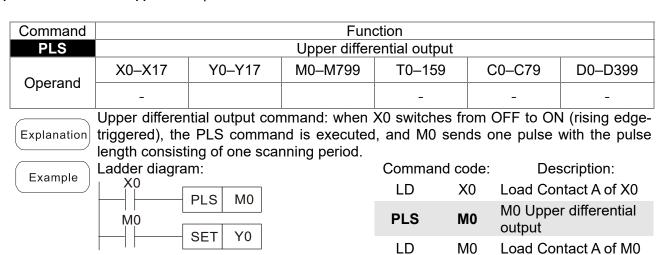
Explanation Use the ORP command for a contact rising edge detection parallel connection.

Command code:

LD X0 Load Contact A of X0


X1 Rising edge

ORP X1 detection parallel connection


OUT Y1 Drive Y1 coil

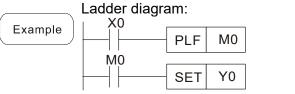
Command	Function					
ORF		Falling	g edge detectio	n parallel conr	nection	
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand						-

Explanation Use the ORF command for a contact falling edge detection parallel connection.

Commar	nd code:	Description:
LD	X0	Load Contact A of X0
ORF	X 1	X1 Falling edge detection parallel connection
OUT	V1	Drive Y1 coil

Timing diagram: I _

X0 	One scan cycle	One scan cycle	
мо	L	K	
Y0 -			


SET

Y0

(ON)

Command	Function					
PLF			Lower differ	ential output		
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
Operand	-			-	-	-

Lower differential output command: when X0 switches from ON to OFF (falling edge-Explanation triggered), the PLF command is executed, and M0 sends one pulse with the pulse length consisting of one scanning period.

Timing diagram: One scan cycle One scan cycle M0 Y0

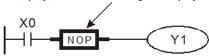
Command code:		Description:
LD	X0	Load Contact A of X0
PLF	MO	M0 Lower differential output
LD	MO	Load Contact A of M0
SET	Y0	Y0 Action continues (ON)

Y0 Action continues

Command	Function
END	End of Program
Operand	N/A

Explanation

An END command must be added to the end of a ladder diagram program or command program. The PLC scans the program from address 0 to the END command, and then returns to address 0 and begins scanning again.


Command	Function
NOP	No action
Operand	N/A

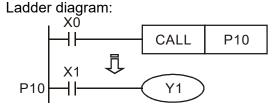
The NOP command does not perform any operation in the program. Because execution of this command retains the original logical operation results, you can use it in the following situation: use the NOP command instead of a command that is deleted without changing the program length.

Example

NOP command is simplified and does not display when the ladder digram displays.

Ladder diagram:

Commar	id code:	Description:
LD	X0	Load Contact B of X0
NOP		No action
OUT	Y1	Drive Y1 coil


Command	Function										
INV	Inverse of operation results										
Operand	N/A										
	Saves the result of the logic inversion or cumulative register.	peration pri	or to th	ne INV command in the							
Example	Ladder diagram:	Command	d code:	Description:							
Example	X0 Y1	LD	X0	Load Contact A of X0							
		INV		Inverse of operation results							
		OUT	Y1	Drive Y1 coil							

Command	Function
Р	Pointer
Operand	P0-P255

Explanation

Use pointer P as the target in a subprogram call (command API 01 CALL). Using P does not require starting from zero, but the number cannot be used repeatedly; otherwise, an unpredictable error occurs.

Example

Command code: Description:

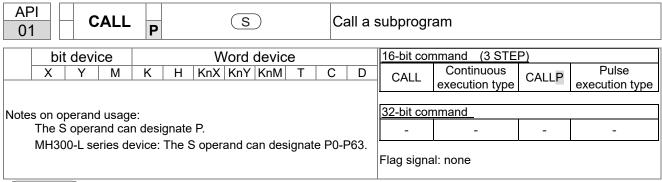
LD X0 Load Contact A of X0

CALL P10 Call command CALL to P10

P10 Pointer P10

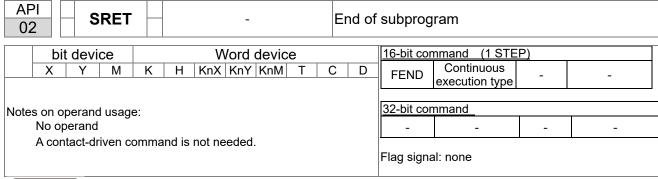
LD X1 Load Contact A of X1

OUT Y1 Drive Y1 coil

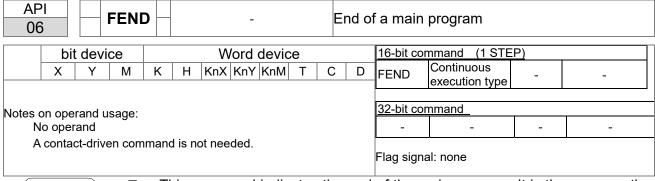

17-6-3 Overview of application commands

Classification	API	Command code		Р	Function		EPS
Classification		16 bit	32 bit	command		16 bit	32 bit
	01	CALL	-		Call a subprogram	3	_
Circuit control	2	SRET	-	-	End a subprogram	1	-
	06	FEND	-	-	End a main program	1	-
	10	CMP	DCMP		Compare set output	7	13
Send	11	ZCP	DZCP		Range comparison	9	17
comparison	12	MOV	DMOV		Move data	5	9
	15	BMOV	_		Send all	7	
	20	ADD	DADD		BIN addition	7	13
	21	SUB	DSUB		BIN subtraction	7	13
Four logical	22	MUL	DMUL		BIN multiplication	7	13
operations	23	DIV	DDIV		BIN division	7	13
	24	INC	DINC		BIN add one	3	5
	25	DEC	DDEC		BIN subtract one	3	5
Rotational	30	ROR	DROR		Right rotation	5	_
displacement	31	ROL	DROL		Left rotation	5	_
	40	ZRST	_		Clear range	5	-
Data Process	49		DFLT		Convert BIN whole number to		9
	49		DLFI		binary floating point number	-	9
	110	_	DECMP		Compare binary floating point numbers	_	13
	111	_	DEZCP		Compare binary floating point	_	17
					number range		
	116	_	DRAD		Convert angle to diameter	_	9
	117	_	DDEG		Convert diameter to angle	_	9
	120	_	DEADD		Add binary floating point numbers	_	13
	121	_	DESUB		Subtract binary floating point numbers	_	13
	122	_	DEMUL		Multiply binary floating point numbers	_	13
	123	_	DEDIV		Divide binary floating point numbers	_	13
	124	_	DEXP		Find exponent of a binary floating point number	_	9
Floating point operation	125	-	DLN		Find natural logarithm of a binary floating point number	_	9
	127	_	DESQR		Find the square root of a binary floating point number	_	9
	129	-	DINT		Convert binary floating point number to BIN whole number	_	9
	130	_	DSIN		Find the sine of a binary floating point number	_	9
	131	_	DCOS		Find the cosine of a binary floating point number	_	9
	132	_	DTAN		Find the tangent of a binary floating point number	_	9
	133	_	DASIN		Find the arcsine of a binary floating point number	_	9
	134	_	DACOS		Find the arccosine of a binary floating point number	_	9
	135		DATAN		Find the arctangent of a binary floating point number		9
	136	_	DSINH		Find the hyperbolic sine of a binary floating point number	_	9
Floating point operation	137	_	DCOSH		Find the hyperbolic cosine of a binary floating point number	_	9
	138	_	DTANH		Find the hyperbolic tangent of a binary floating point number	_	9

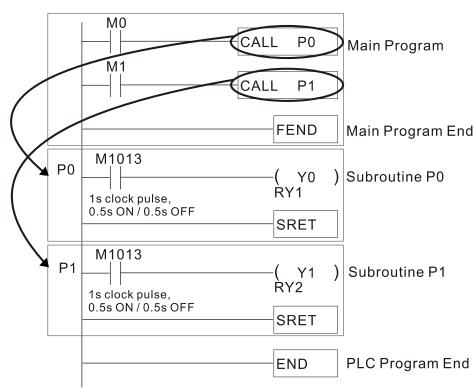
Ola a sifi a a ti a u	4 DI	Command code		Р	From atting to	STEPS		
Classification	API	16 bit 32 bit		command	Function	16 bit	32 bit	
Communication	150	MODRW	_		Modbus read/write	7	_	
	160	TCMP	_		Compare calendar data	11	_	
	161	TZCP	_		Compare calendar data range	9	_	
Calendar	162	TADD	_		Calendar data addition	7	_	
	163	TSUB	_		Calendar data subtraction	7	_	
	166	TRD	-		Calendar data read	3	_	
GRAY code	170	GRY GBIN	DGRY		Convert CRAY code	5 5	9	
	171	GBIN	DGBIN		Convert GRAY code to BIN Contact form logical operation			
	215	LD&	DLD&	-	LD#	5	9	
	216	LDI	DLD	-	Contact form logical operation LD#	5	9	
	217	LD^	DLD^	-	Contact form logical operation LD#	5	9	
	218	AND&	DAND&	-	Contact form logical operation AND#	5	9	
Contact form logical operation	219	ANDI	DANDI	-	Contact form logical operation AND#	5	9	
	220	AND^	DAND^	-	Contact form logical operation AND#	5	9	
	221	OR&	DOR&	-	Contact form logical operation OR#	5	9	
	222	ORI	DOR	-	Contact form logical operation OR#	5	9	
	223	OR^	DOR^	-	Contact form logical operation OR#	5	9	
	224	LD =	DLD =	-	Contact form compare LD*	5	9	
	225	LD <	DLD <	-	Contact form compare LD*	5	9	
	226	LD>	DLD >	-	Contact form compare LD*	5	9	
	228	LD < >	DLD < >	-	Contact form compare LD*	5	9	
	229	LD = >	DLD = >	-	Contact form compare LD*	5	9	
	230	LD = <	DLD = <	-	Contact form compare LD*	5	9	
	232	AND =	DAND =	-	Contact form compare AND*	5	9	
0	233	AND <	DAND <	-	Contact form compare AND*	5	9	
Contact form comparison	234	AND >	DAND >	-	Contact form compare AND*	5	9	
command	236	AND < >	DAND < >	-	Contact form compare AND*	5	9	
	237	AND = >	DAND = >	-	Contact form compare AND*	5	9	
	238	AND = <	DAND = <	-	Contact form compare AND*	5	9	
	240	OR =	DOR =	-	Contact form compare OR*	5	9	
	241	OR <	DOR <	-	Contact form compare OR*	5	9	
	242	OR >	DOR>	-	Contact form compare OR*	5	9	
	244	OR < >	DOR < >	-	Contact form compare OR*	5	9	
	245	OR = >	DOR = >	-	Contact form compare OR*	5	9	
	246	OR = <	DOR = <	-	Contact form compare OR*	5	9	

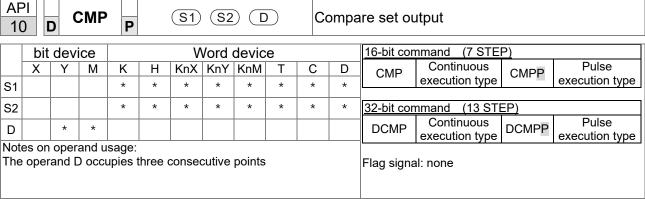

Classification	A DI	Comma	nd code	Р	Function	STE	EPS	
Classification	API	16 bit	32 bit	command	Function	16-bit	32-bit	
	275	-	FLD =	-	Floating point number contact form compare LD*	-	9	
Floating point contact form	276	-	FLD <	-	Floating point number contact form compare LD*	-	9	
	277	-	FLD >	-	Floating point number contact form compare LD*	-	9	
	278	-	FLD < >	-	Floating point number contact form compare LD*	-	9	
	279	-	FLD = >	-	Floating point number contact form compare LD*	-	9	
	280	-	FLD = <	-	Floating point number contact form compare LD*	-	9	
	281	-	FAND =	-	Floating point number contact form compare AND*			
	282	-	FAND <	-	Floating point number contact form compare AND*	-	9	
	283	-	FAND >	-	Floating point number contact form compare AND*	-	9	
	284	-	FAND < >	-	Floating point number contact form compare AND*	-	9	
Comparison command	285	-	FAND = >	Floating point number contact form compare AND*		-	9	
	286	-	FAND = <	-	Floating point number contact form compare AND*	-	9	
	287	-	FOR =	-	Floating point number contact form compare OR*		9	
	288	-	FOR <	-	Floating point number contact form compare OR*	-	9	
	289	-	FOR >	-	Floating point number contact form compare OR*	-	9	
	290	-	FOR < >	-	Floating point number contact form compare OR*	-	9	
	291	-	FOR=>	-	Floating point number contact form compare OR*	-	9	
	292	-	FOR = <	-	Floating point number contact form compare OR*	-	9	
Drive enecial	139	RPR	_		Read servo parameter	5	_	
Drive special command	140	WPR	_		Write servo parameter	5	_	
Command	262	_	DPOS		Set target	-	5	

17-6-4 Detailed explanation of application commands


Explanation

- S: Call subprogram pointer
- Write the subprogram after the FEND command.
- The subprogram must end after the SRET command.
- Refer to the FEND command explanation and sample content for detailed command functions.


Explanation


- A contact-driven command is not needed. Automatically returns next command after CALL command.
- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.

- This command indicates the end of the main program. It is the same as the END command when the PLC executes this command.
- The CALL command program must be written after the FEND command, and the SRET command is added to the end of the subprogram.
- When using the FEND command, an END command is also needed. However, the END command must be placed at the end, after the main program and subprogram.

CALL command process

- **S1**: Compare value 1. **S2**: Compare value 2. **D**: Results of comparison.
- Compares the size of the content of operand S1 and S2; stores the results of the comparison in D.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16-bit command, when b15 is 1, this indicates a negative number.

Example

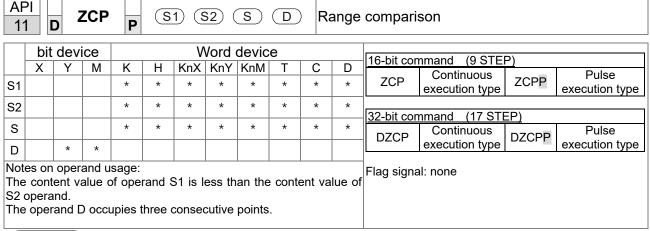
- When the designated device is Y0, it automatically occupies Y0, Y1 and Y2.
- When X10=ON, the CMP command executes, and Y0, Y1 or Y2 is ON. When X10=OFF, the CMP command does not execute, and the state of Y0, Y1 and Y2 remain in the state prior to X10=OFF.
- For ≥, ≤, or ≠ comparison results, use series and parallel connections among Y0–Y2.

```
X10

CMP K10 D10 Y0

Y0

If K10 > D10, Y0 = ON

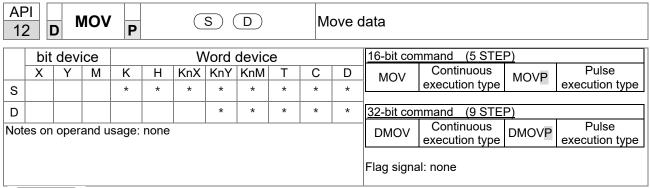

Y1

If K10 = D10, Y1 = ON

Y2

If K10 < D10, Y2 = ON
```

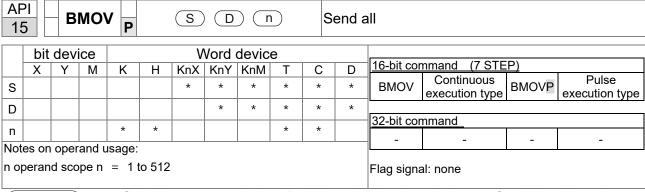
■ To clear results of comparison, use the RST or ZRST command.



- **S1**: Lower limit of range comparison. **S2**: Upper limit of range comparison. **S**: Comparative value. **D**: Results of comparison.
- Compares value **S** with the lower limit **S1** and upper limit **S2**, and stores the results of the comparison in **D**.
- When lower limit **S1** > upper limit **S2**, the command uses the lower limit **S1** to perform the comparison with **S1** as the upper and lower limit.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16-bit command, when b15 is 1, this indicates a negative number.

Example

- When the designated device is M0, it automatically occupies M0, M1 and M2.
- When X0=ON, the ZCP command executes, and M0, M1 or M2 is ON. When X0=OFF, the ZCP command does not execute, and the state of M0, M1 or M2 remains in the state prior to X0=OFF.
- For ≥, ≤, or ≠ comparison results, use series and parallel connections of M0–M2.


■ To clear results of comparison, use the RST or ZRST command.

- **S**: Data source. **D**: Destination of data movement.
- Moves the content in S to D. When the command does not execute, the content of D does not change.

Example

- When X0=OFF, the content of D10 does not change; if X0=ON, the value K10 is moved to data register D10.
- When X1=OFF, the content of D10 does not change; if X1=ON, the current value of T0 is moved to data register D10.

- **S**: Initiate source device. **D**: Initiate destination device. **n**: Send block length.
- Sends the content of n registers starting from the initial number of the device designated by **S** to the n registers starting from the initial number of the device designated by **n**; if the number of points referred to by n exceeds the range used by that device, sends only points within the valid range.

Example 1

When X10=ON, sends the content of registers D0–D3 to the four registers D20– D23.

Example 2

When sending from designated bit devices KnX, KnY, and KnM, **S** and **D** must have the same number of nibbles, which means n must be identical for source and destination.

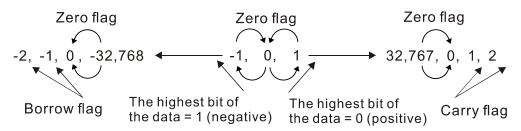
```
M1000
                                  MO
                                              Y0
         BMOV
               K1M0
                     K1Y0
                            K3
                                               Y1
                                  M1
                                  M2
                                              Y2
                                  M3
                                              Y3
                                              Y4
                                  M4
                                  M5
                                              Y5
                                                     n=3
                                  M6
                                              Y6
                                  M7
                                              Y7
                                  M8
                                              Y10
                                  M9
                                              Y11
                                 M10
                                              Y12
                                  M11
                                              Y13
```

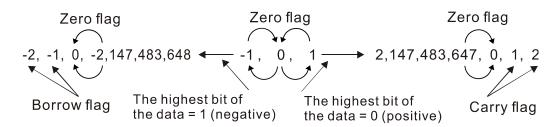
AF 20) 4	ADD	P		S 1	S2			В	BIN ad	ddition				
bit device Word device										16-bit command (7 STEP)						
	Χ	Υ	М	K	Н	KnX	KnY	KnM	Т	С	D	ADD Continuous ADDP Pulse				
S1				*	*	*	*	*	*	*	*	execution type ABB execution type				
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)				
D							*	*	*	*	*	DADD Continuous DADDP Pulse execution type				
Notes on operand usage: none Flag signal: M1020 Zero flag																

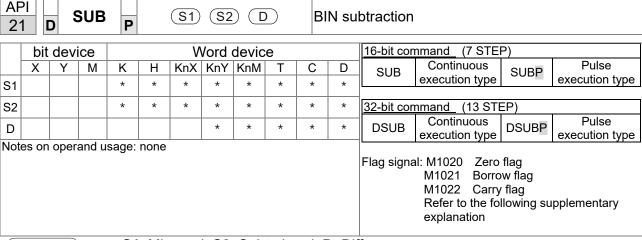
A DI

- S1: Augend. S2: Addend. D: Sum.
- Adds **S1** and **S2** using the BIN method and stores result in **D**.
- The highest bit of any data defines the sign: bit=0 indicates (positive) bit=1 indicates (negative); enables the use of algebraic addition operations (for instance: 3+ (-9) =-6).
- Flag changes connected with the addition.
 - 1. When calculation results are 0, the zero flag M1020 is ON.
 - 2. When calculation results are less than -32,768, the borrow flag M1021 is ON.
 - 3. When calculation results are greater than 32,767, the carry flag M1022 is ON.

Example

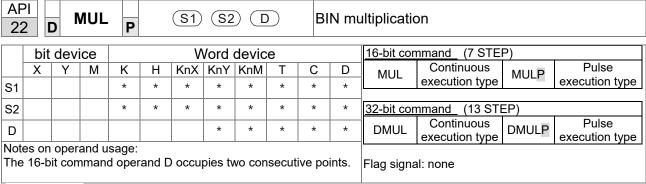

■ 16-bit BIN addition: When X0=ON, saves the result of the content of addend D0 plus the content of augend D10 in the content of D20.


Remarks

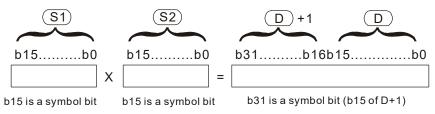

Relationship between flag actions and negative/positive numbers:

16-bit:

32-bit:



- **S1**: Minuend. **S2**: Subtrahend. **D**: Difference.
- Subtracts **S2** from **S1** using the BIN method and stores result in **D**.
- The highest bit of any data defines the sign bit=0 indicates (positive) bit=1 indicates (negative); enables the use of algebraic subtraction operations.
- Flag changes connected with subtraction.
 - 1. When calculation results are 0, the zero flag M1020 is ON.
 - 2. When calculation results are less than -32,768, the borrow flag M1021 is ON.
 - 3. When calculation results are greater than 32,767, the carry flag M1022 is ON.

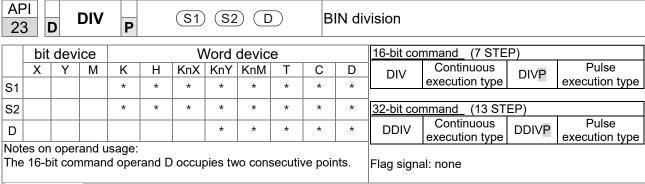

Example

■ 16-bit BIN subtraction: When X0=ON, subtracts the content of D10 from the content of D0, and stores the difference in D20.

- **S1**: Multiplicand. **S2**: Multiplier. **D**: Product.
- Multiplies **S1** and **S2** using the BIN method, and stores the product in **D**.

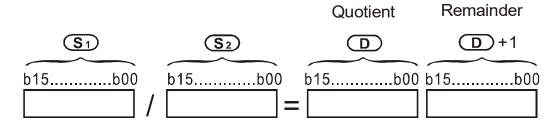
16-bit BIN multiplication operation:

Symbol bit = 0 refers to a positive value. Symbol bit = 1 refers to a negative value.


When **D** is a bit device, K1–K4 can be designated as a hexadecimal number, which occupies two consecutive units.

Example

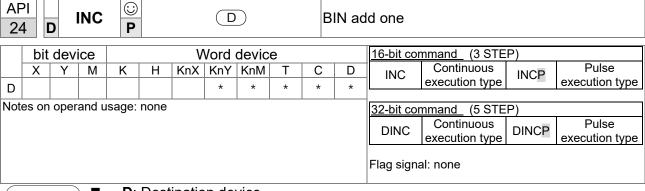
When 16-bit DO is multiplied by 16-bit D10, the result is a 32-bit product; the upper 16 bits are stored in D21, and the lower 16 bits are stored in D20. The bit at the farthest left indicates the sign of the result.


```
MUL D0 D10 D20

MUL D0 D10 K8M0
```


- **S1**: Dividend. **S2**: Divisor. **D**: Quotient and remainder.
- Divides **S1** by **S2** and stores the quotient and remainder in **D** using the BIN method. The sign bit for **S1**, **S2** and **D** must be kept in mind when performing a 16-bit operation.

16-bit BIN division:



If **D** is a bit device, K1–K4 can be designated as 16 bits, which occupy two consecutive units and yield the quotient and remainder.

Example

When X0=ON, stores the quotient resulting from division of dividend D0 by divisor D10 in D20, and the remainder in D21. The highest bit indicates the sign of the result.

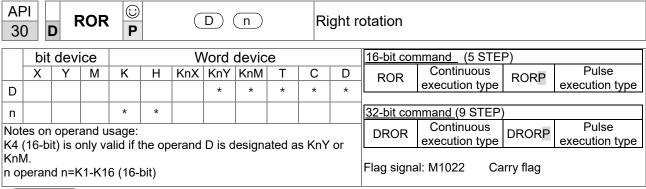
```
DIV D0 D10 D20
```


- D: Destination device.
- If a command is not the pulse execution type, adds 1 to the content of device D during each scanning cycle.
- Generally use this command as a pulse execution type command (INCP).
- During 16-bit operation, 32,767 +1 rolls over to -32,768. During 32 bit operation, 2,147,483,647 +1 rolls over to -2,147,483,648.

Example

When X0 switches from OFF to ON, adds 1 to the content of D0.

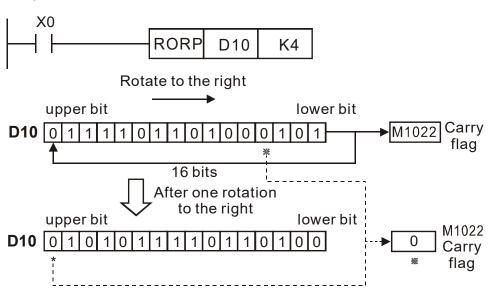
API D DEC P BIN subtract										btract on	е				
bit device Word device 16-bit command (3 STEP)															
	Χ	Υ	М	K	Н	KnX	KnY	KnM	Т	С	D	DEC	Continuous	DECP	Pulse
D				*	*	*	*	*					execution type	D201	execution type
Note	es on	oper	and u	sage:	none	I						32-bit command (5 STEP)			
												DDEC	Continuous execution type	DDECP	Pulse execution type
												Flag signa	al: none		

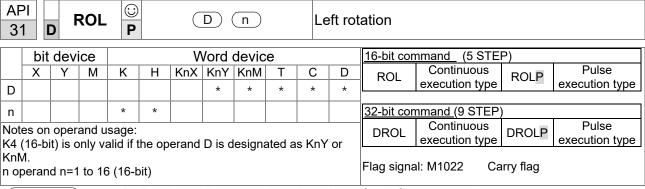

Explanation

- **D**: Destination device.
- If a command is not the pulse execution type, adds 1 to the content of device **D** during each scanning cycle.
- Generally use this command as a pulse execution type command (DECP).
- During 16-bit operation, -32,768 -1 rolls over to 32,767. During 32 bit operation, -2,147,483,648 -1 rolls over to 2,147,483,647.

Example

When X0 switches OFF to ON, subtracts 1 from the content of D0.

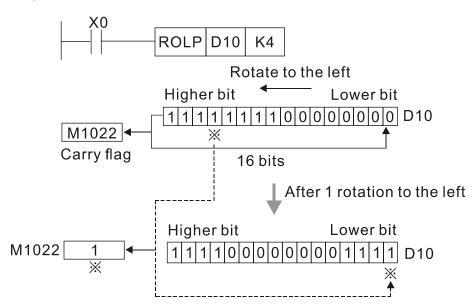


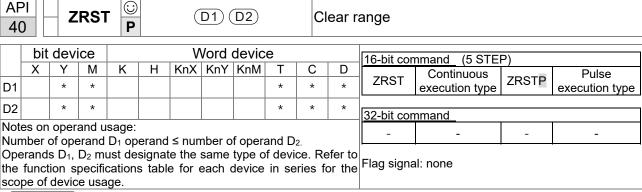


- **D**: Device to be rotated. **n**: Number of bits for one rotation.
- Rotates the device designated by **D** to the right **n** bits.
- Generally use this command as a pulse execution type command (RORP).

Example

When X0 switches OFF to ON, 4 of the 16 bits in D10 specify a right rotation; the content of the bit indicated with * (see figure below) is sent to the carry flag signal M1022.





- **D**: Device to be rotated. **n**: Number of bits for one rotation.
- Rotates the device designated by **D** to the left **n** bits.
- Generally use this command as a pulse execution type command (ROLP).

Example

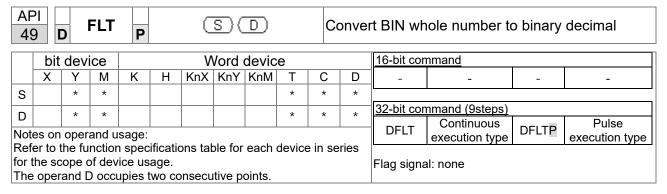
When X0 switches OFF to ON, 4 of the 16 bits in D10 specify a left rotation; the content of the bit indicated with * (see figure below) is sent to the carry flag signal M1022.

- **D1**: Clear range's initial device. **D2**: Clear range's final device.
- When the number of operand **D1** > number of operand **D2**, only the operand designated by **D2** is cleared.

Example

- When X0 is ON, clears auxiliary relays M300–M399, changes them to OFF.
- When X1 is ON, 16-bit clears counters C0–C127 (writes 0, and clears and changes contact and coil to OFF).
- When X10 is ON, clears timer T0–T127 (writes 0, and clears and changes contact and coil to OFF).
- When X3 is ON, clears the data in data registers D0–D100 (sets to 0).

```
X0
                  ZRST
H۲
                            M300
                                      M399
X1
<del>|</del> | |
                  ZRST
                             C0
                                      C127
X10
H۴
                  ZRST
                             T0
                                      T127
X3
                  ZRST
                              D0
                                      D100
```

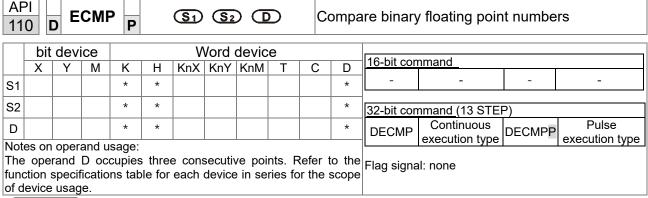

Remarks

Devices such as bit device Y, M and word device T, C, D can independently use the clear command (RST).

```
RST M0

RST T0

RST Y0
```



- **S**: Source device. **D**: Result device.
- Converts a BIN whole number into a binary decimal value.

Example

When X11 is ON, converts the whole number corresponding to D0 and D1 into floating point numbers, and stores the result in D20 and D21.

```
DFLT D0 D20
```

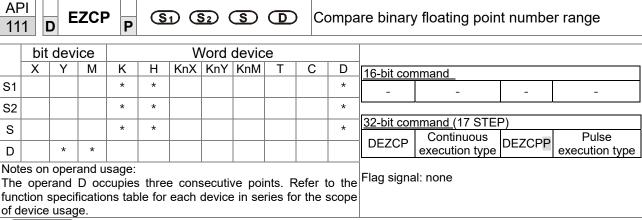

- **S**₁: Binary floating point number 1. **S**₂: Binary floating point number 2. **D**: Results of comparison, occupies three consecutive points.
- Compares binary floating point number 1 with binary floating point number 2, and stores the result of comparison (>, =, <) in **D**.
- If the source operand S₁ or S₂ designates a constant K or H, the command converts the constant to a binary floating point number for the purpose of comparison.

- When the designated device is M10, it automatically occupies M10–M12.
- When X0=ON, the DECMP command executes, and one of M10–M12 is ON. When X0=OFF, the DECMP command does not execute, and M10–M12 remains in the X0=OFF state.
- For ≥, ≤, or ≠ comparison, use series and parallel connections for M10–M12.
- Use the RST or ZRST command to clear the result.

```
M10

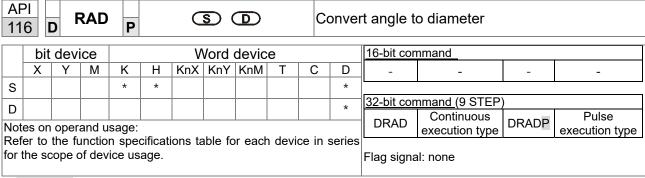
M10

M11


ON when (D1, D0) > (D101, D100)

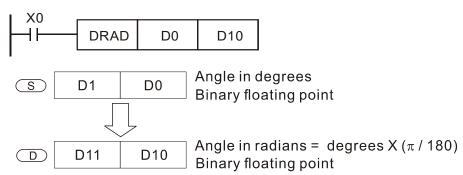
M11

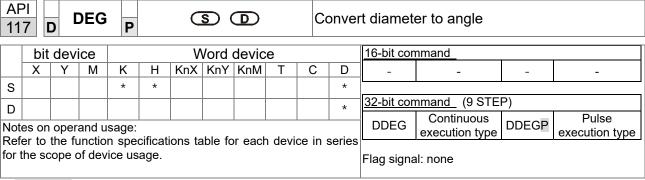
ON when (D1, D0) = (D101, D100)


M12

ON when (D1, D0) < (D101, D100)
```


- **S**₁: Lower limit for binary floating point number in range comparison. **S**₂: Upper limit for binary floating point number in range comparison. **S**: Comparison of binary floating point numerical values. **D**: Results of comparison, occupies three consecutive points.
- Compares binary floating point number **S** with the lower limit value **S**₁ and the upper limit value **S**₂; stores the results of comparison in **D**.
- If the source operand S₁ or S₂ designates a constant K or H, the command converts the constant to a binary floating point number for the purpose of comparison.
- When the lower limit S_1 is greater than the upper limit S_2 , a command issues to perform comparison using the lower limit value S_1 as the upper and lower limit.

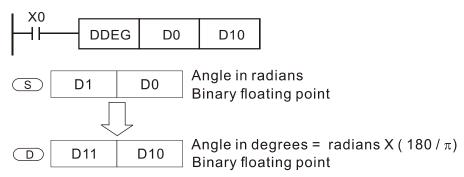

- When the designated device is M0, it automatically occupies M0–M2.
- When X0=ON, the DEZCP command executes, and one of M0–M2 is ON. When X0=OFF, the EZCP command does not execute, and M0–M2 remains in the X0=OFF state.
- Use the RST or ZRST command to clear the result.

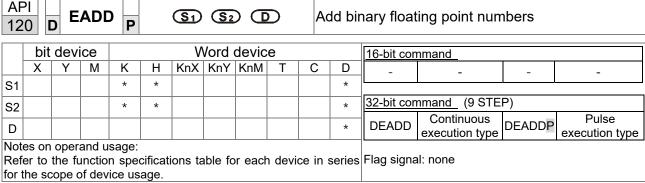


- S: data source (angle). D: result of transformation (diameter).
- Uses the following formula to convert angles to radians. Diameter = Angle \times ($\pi/180$)

Example

■ When X0=ON, converts the angle of the designated binary floating point number (D1, D0) to radians and stores the result in (D11, D10); the result is a binary floating point number.

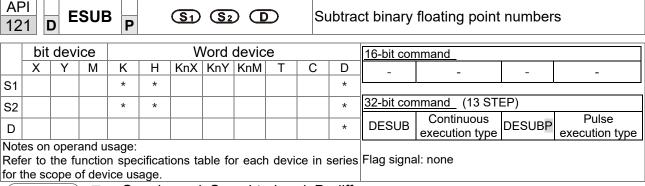




- **S**: data source (diameter). **D**: results of transformation (angle).
- Uses the following formula to convert radians to an angle.
- Angle = Diameter × (180/π)

Example

When X0=ON, angle of the designated binary floating point number (D1, D0) in radians is converted to an angle and stored in (D11, D10), with the content consisting of a binary floating point number.


- S₁: addend. S₂: augend. D: sum.
- Adds the content of the register designated by S_2 to the content of the register designated by S_1 , and stores the result in the register designated by D. Addition is performed entirely using binary floating point numbers.
- If the source operand S₁ or S₂ designates a constant K or H, the command converts that constant into a binary floating point number for use in addition.
- In the situation when S_1 and S_2 designate identical register numbers, if a "continuous execution" command is employed, when the conditional contact is ON, the register performs addition once during each scan. You generally use pulse execution type commands (DEADDP) under ordinary circumstances.

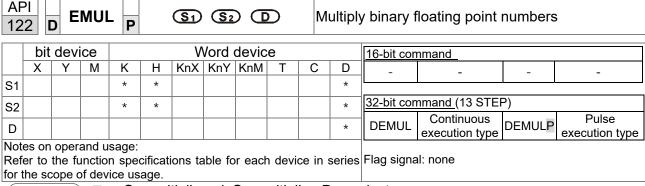
Example

When X0=ON, adds a binary floating point number (D1, D0) to a binary floating point number (D3, D2), and stores the results in (D11, D10).

```
X0 DEADD D0 D2 D10
```

■ When X2 =ON, adds a binary floating point number (D11, D10) to K1234 (which is automatically converted to a binary floating point number), and stores the results in (D21, D20).

- S₁: minuend. S₂: subtrahend. D: difference.
- Subtracts the content of the register designated by S₂ from the content of the register designated by S₁, and stores the difference in the register designated by D; subtraction is performed entirely using binary floating point numbers.
- If the source operand S₁ or S₂ designates a constant K or H, the command converts that constant into a binary floating point number for use in subtraction.
- In the situation when S₁ and S₂ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is ON, the register performs subtraction once during each scan. You generally use pulse execution type commands (DESUBP) under ordinary circumstances.

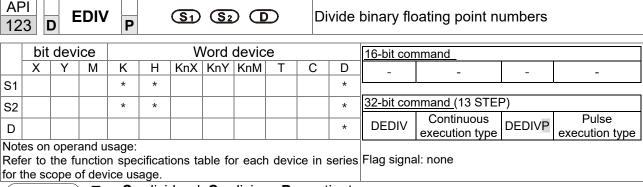

Example

When X0=ON, subtracts a binary floating point number (D1, D0) from a binary floating point number (D3, D2), and stores the results in (D11, D10).

```
DESUB D0 D2 D10
```

■ When X2 =ON, subtracts the binary floating point number (D1, D0) from K1234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

```
X2 | DESUB K1234 | D0 | D10
```

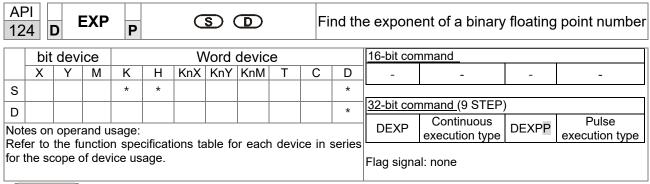


- S₁: multiplicand. S₂: multiplier. D: product.
- Multiplies the content of the register designated by S₁ by the content of the register designated by S₂, and stores the product in the register designated by D; multiplication is performed entirely using binary floating point numbers.
- If the source operand S₁ or S₂ designates a constant K or H, the command converts that constant into a binary floating point number for use in multiplication.
- In the situation when S₁ and S₂ designate identical register numbers, if you employ a "continuous execution" command, when conditional contact is ON, the register performs multiplication once during each scan. You generally use pulse execution type commands (DEMULP) under ordinary circumstances.

Example

When X1=ON, multiplies the binary floating point number (D1, D0) by the binary floating point number (D11, D10), and stores the product in the register designated by (D21, D20).

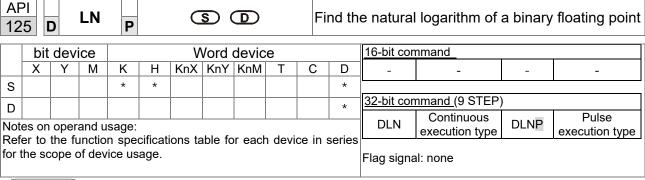
```
DEMUL D0 D10 D20
```

■ When X2 =ON, multiplies the binary floating point number (D1, D0) by K1234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

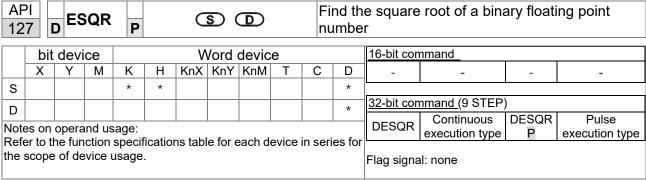

- S₁: dividend. S₂: divisor. D: quotient.
- Divides the content of the register designated by S₁ by the content of the register designated by S₂ and stores the quotient in the register designated by D; division is performed entirely using binary floating point numbers.
- If the source operand S₁ or S₂ designates a constant K or H, the command converts that constant into a binary floating point number for use in division.

Example

When X1=ON, divides the binary floating point number (D1, D0) by the binary floating point number (D11, D10), and stores the quotient in the register designated by (D21, D20).


```
X1
DEDIV D0 D10 D20
```

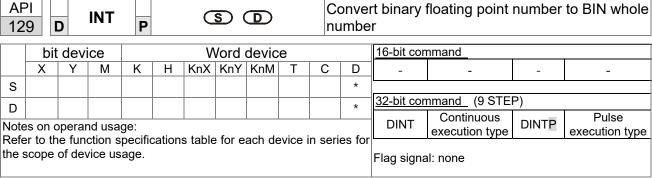
■ When X2 =ON, divides the binary floating point number (D1, D0) by K1,234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).


- S: operation source device. D: operation results device.
- Taking e =2.71828 as a base, **S** is the exponent in the EXP operation:
- [D+1, D]=EXP[S+1,S]
- Valid regardless of whether the content of **S** has a positive or negative value. The designated register D must have a 32-bit data format. Performs the operation using floating point numbers, and converts **S** to a floating point number.
- Content of operand **D** = e^{S} ; e=2.71828, **S** is the designated source data.

- When M0 is ON, converts the value of (D1, D0) to a binary floating point number, and stores the result in register (D11, D10).
- When M1 is ON, performs the EXP operation on the exponent of (D11, D10), converts the result to a binary floating point number and stores it in register (D21, D20).

- **S**: operation source device. **D**: operation results device.
- Taking e =2.71828 as a base, **S** is the exponent in the EXP operation.
- [D+1, D]=EXP[S+1,S]
- Valid regardless of whether the content of **S** has a positive or negative value. The designated register D must have a 32-bit data format. Performs the operation using floating point numbers, and converts **S** to a floating point number.
- Content of operand $D = e^{S}$; e=2.71828, **S** is the designated source data.

- When M0 is ON, converts the value of (D1, D0) to a binary floating point number, and stores the result in register (D11, D10).
- When M1 is ON, performs the EXP operation on the exponent of (D11, D10); converts the result to a binary floating point number and stores it in register (D21, D20).

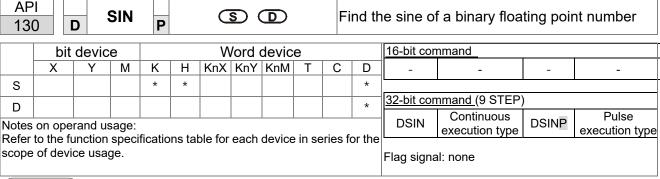

- **S**: source device for which square root is desired. **D**: result of finding square root.
- Finds the square root of the content of the register designated by **S**, stores the result in the register designated by **D**. Square roots are performed entirely using binary floating point numbers.
- If the source operand **S** refers to a constant K or H, the command converts that constant into a binary floating point number for use in the operation.

Example

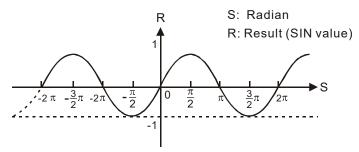
When X0=ON, finds the square root of the binary floating point number (D1, D0), and stores the result in the register designated by (D11, D10).

```
DESQR D0 D10
\sqrt{(D1 \cdot D0)} \rightarrow (D11 \cdot D10)
Binary floating point Binary floating point
```

■ When X2 = ON, finds the square root of K1,234 (which is automatically converted to a binary floating point number), and stores the result in (D11, D10).

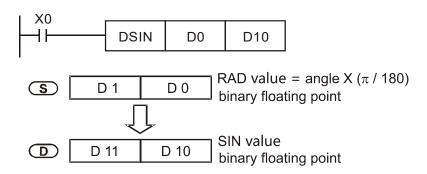


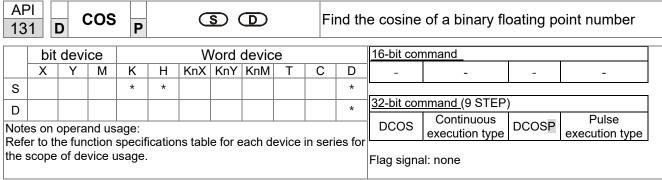
- **S**: the source device to be converted. **D**: results of conversion.
- Converts the content of the register designated by S from a binary floating point number format to a BIN whole number, and stores the results in D. The BIN whole number floating point number is discarded.
- The action of this command is the opposite of that of command API 49 (FLT).

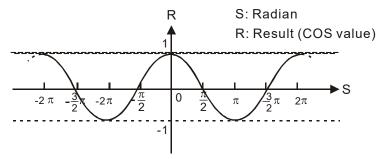

Example

When X0=ON, converts the binary floating point number (D1, D0) into a BIN whole number, and stores the result in (D10); the BIN whole number floating point number is discarded.

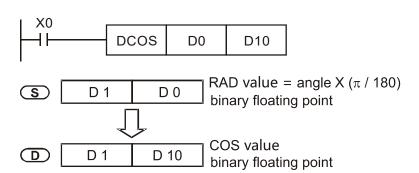
```
X0
DINT D0 D10
END
```

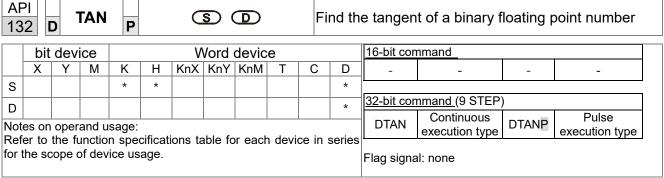


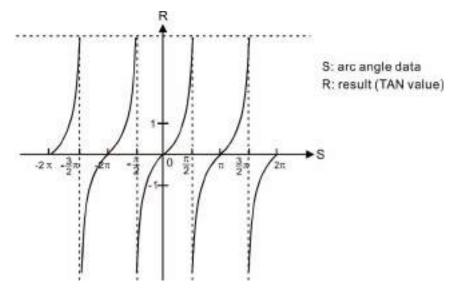

- **S**: the designated source value. **D**: the SIN value result.
- **S** is the designated source in radians.
- The value in radians (RAD) is equal to (angle \times $\pi/180$).
- Finds the SIN from the source value designated by **S** and stores the result in **D**. The following figure displays the relationship between the arc and SIN results:


Example

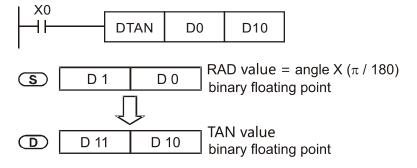
When X0=ON, finds the SIN value of the designated binary floating point number (D1, D0) in radians (RAD) and stores the result in (D11, D10), as a binary floating point number.

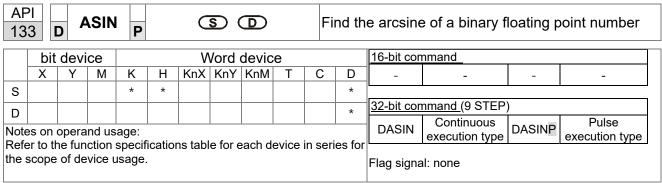



- S: the designated source value. D: the COS value result.
- Finds the COS of the source value designated by **S** and stores it in **D**. The following figure displays the relationship between the arc and COS results:

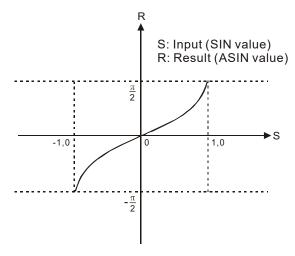

Example

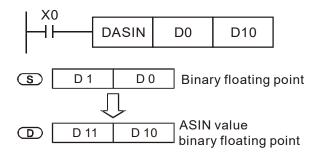
■ When X0=ON, finds the COS value of the designated binary floating point number (D1, D0) in radians and stores the result in (D11, D10), as a binary floating point number.

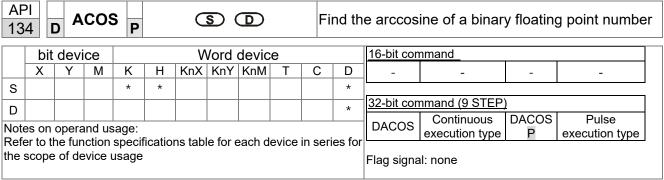



- S: the designated source value. D: the TAN value result.
- Finds the TAN of the source value designated by **S** and stores it in **D**. The following figure displays the relationship between the arc and TAN results:

Example

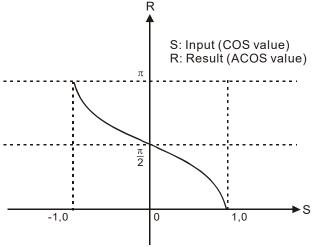

When X0=ON, finds the TAN value of the designated binary floating point number (D1, D0) in radians (RAD) and stores the result in (D11, D10), as a binary floating point number.


- S: the designated source (binary floating point number). D: the ASIN value result.
- ASIN value =sin⁻¹

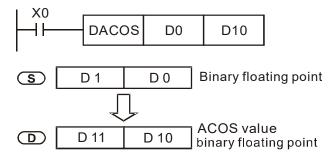

The figure below shows the relationship between input data and result:

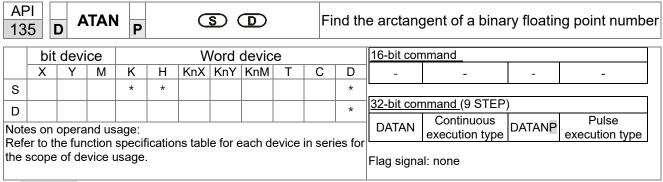
Example

When X0=ON, finds the ASIN value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

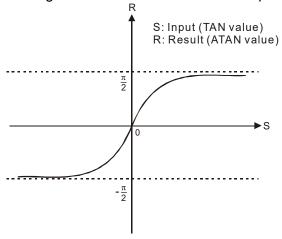


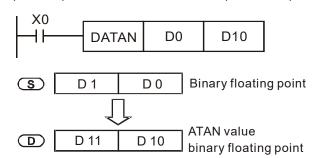
S: the designated source (binary floating point number). **D**: the ACOS value result.

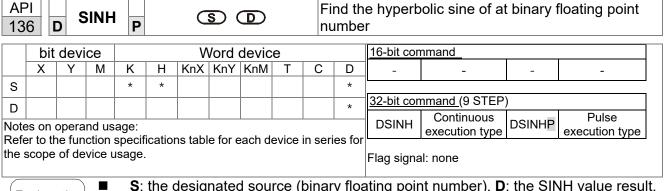

ACOS value =cos⁻¹


The figure below shows the relationship between input data and result:

Example

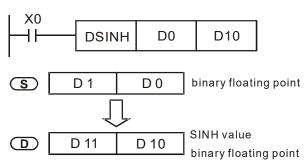

■ When X0=ON, finds the ACOS value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

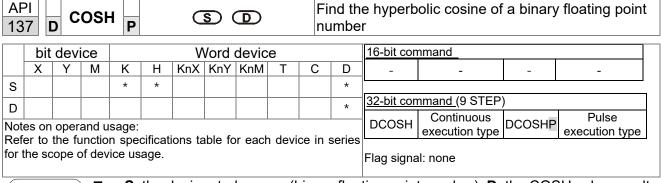

- S: the designated source (binary floating point number). D: the ATAN value result.
- ATAN value =tan⁻¹


The figure below shows the relationship between input data and result:

Example

■ When X0=ON, finds the ATAN value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

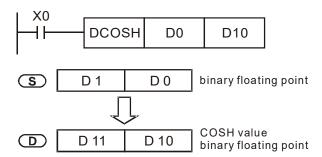


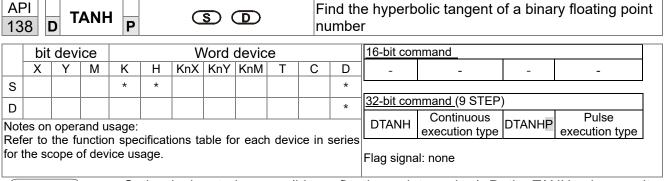

S: the designated source (binary floating point number). **D**: the SINH value result.

SINH value = $(e^s-e^{-s})/2$

Example

When X0=ON, finds the SINH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

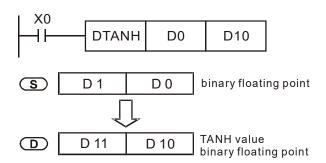


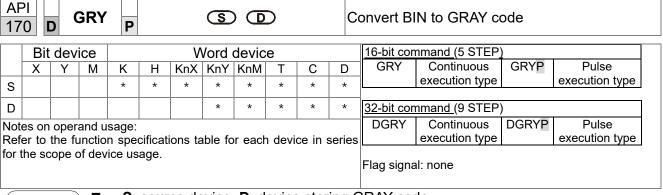

S: the designated source (binary floating point number). **D**: the COSH value result.

COSH value =(es+e-s)/2

Example

When X0=ON, finds the COSH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.



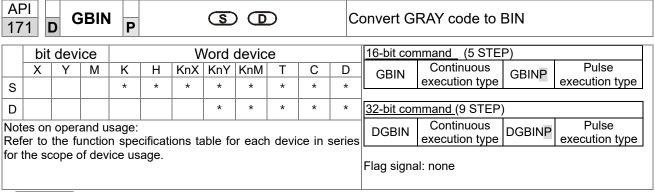


- S: the designated source (binary floating point number). D: the TANH value result.
- TANH value = $(e^s-e^{-s})/(e^s+e^{-s})$

Example

When X0=ON, finds the TANH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

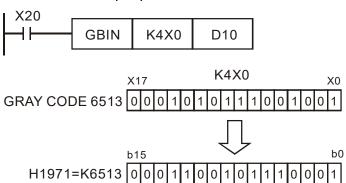

- **S**: source device. **D**: device storing GRAY code.
- Converts the BIN value of the device designated by **S** to a GRAY code, and stores the result in the device designated by **D**.
- The valid range for **S** is as shown below; if you exceed this range, it is an error, and the command does not execute.

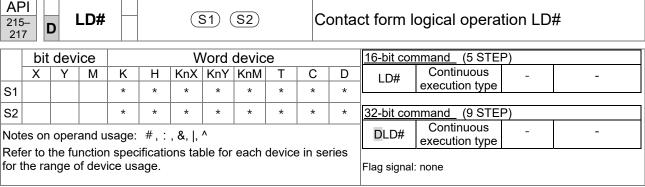

16-bit command: 0-32,767

32-bit command: 0-2,147,483,647

Example

■ When X0=ON, converts the constant K6513 to a GRAY code and stores it in D0.

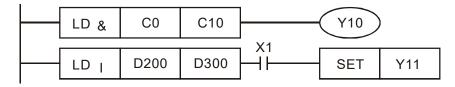

- **S**: source device storing GRAY code. **D**: device storing BIN value after conversion.
- Converts the GRAY code corresponding to the value of the device designated by
 S that is transformed into a BIN value, and stores it in the device designated by
 D.
- This command converts the value of the absolute position encoder connected with the PLC's input (this encoder usually has an output value in the form of GRAY code) into a BIN value, and stores it in the designated register.
- The valid range of **S** is as shown below; if you exceed this range, it is an error, and the command does not execute.

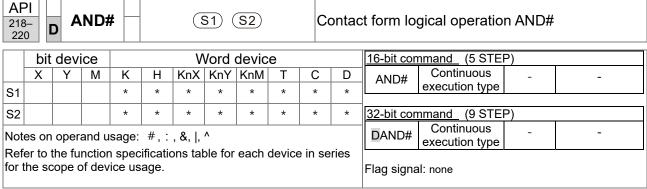

16-bit command: 0-32,767

32-bit command: 0-2,147,483,647

Example

■ When X20=ON, converts the GRAY code of the absolute position encoder connected with input points X0–X17 to a BIN value and stores it in D10.

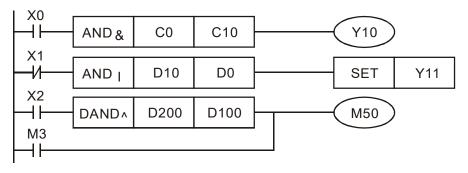


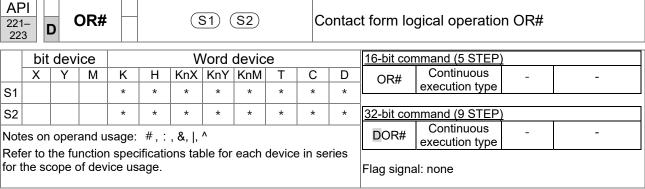

- **S**₁: data source device 1. **S**₂: data source device 2.
- This command compares the contents of **S**₁ and **S**₂. When the result of comparison is not 0, this command activates; when the result of comparison is 0, this command does not activate.
- You can use the LD# command directly to connect with the busbar.

API No.	16-bit commands	32-bit commands			ions for	or	(Conditions for inactivation				
215	LD&	D LD&	S ₁	&	S ₂	≠ 0	S ₁	&	S ₂	=0		
216	LD	D LD	S ₁		S ₂	≠ 0	S ₁		S ₂	=0		
217	LD^	D LD^	S ₁	٨	S ₂	≠ 0	S ₁	۸	S ₂	=0		

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

- When you compare the contents of C0 and C10 with the logical AND operation, and the result is not equal to 0, then Y10=ON.
- When you compare the content of D200 and D300 with the logical OR operation, and the result is not equal to 0, and X1=ON, then Y11=ON and remains in that state.

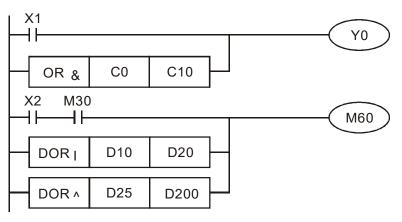


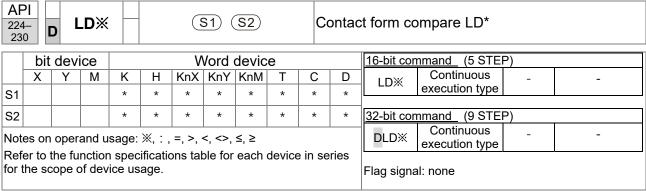

- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of S₁ and S₂. When the result of comparison is not 0, this command activates; when the result of comparison is 0, this command does not activate.
- The AND# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	С		ions fo	or	Conditions for inactivation				
218	AND&	D AND&	S ₁	&	S_2	≠ 0	S ₁	&	S_2	=0	
219	AND	D AND	S ₁		S ₂	≠ 0	S ₁		S ₂	=0	
220	AND^	D AND^	S ₁	٨	S ₂	≠ 0	S ₁	۸	S ₂	=0	

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

- When X0=ON and you compare the contents of C0 and C10 with the logical AND operation, and the result is not equal to 0, then Y10=ON.
- When X1=OFF and you compare the contents D10 and D0 with the logical OR operation, and the result is not equal to 0, then Y11=ON and remains in that state.
- When X2 =ON and compare the contents of the 32-bit register D200 (D201) and the 32-bit register D100 (D101) with the logical XOR operation, and the result is not equal to 0 or M3=ON, then M50=ON.

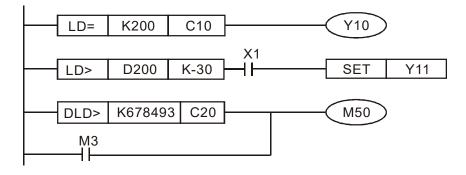



- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of **S**₁ and **S**₂. When the result of comparison is not 0, this command activates; when the result of comparison is 0, this command does not activate.
- The OR# command is an operation command in series with the contact.

API No.	16-bit	32-bit	C	ondit	ions f	or	Conditions for				
AFTINO.	commands	commands		activ	ation			inacti	vation		
221	OR&	DOR&	S ₁	&	S_2	≠ 0	S ₁	&	S ₂	=0	
222	OR	D OR	S ₁		S ₂	≠ 0	S ₁		S ₂	=0	
223	OR^	DOR^	S ₁	٨	S ₂	≠ 0	S ₁	۸	S ₂	=0	

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

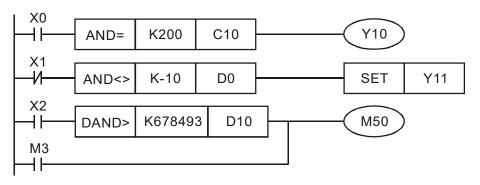
- When X1=ON and you compare the contents of C0 and C10 with the logical AND operation, and the result is not equal to 0, then Y0=ON.
- When X2 and M30 are both equal to ON, or you compare the contents of the 32-bit register D10 (D11) and the 32-bit register D20 (D21) with the logical OR operation, and the result is not equal to 0, or you compare the contents of the 32-bit counter C235 and the 32-bit register D200 (D201) with the logical XOR operation, and the result is not equal to 0, then M60=ON.

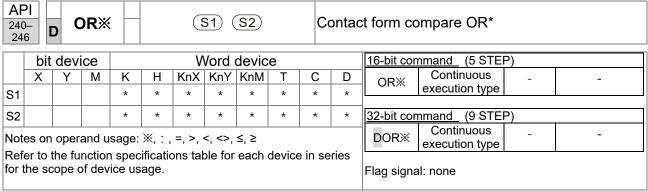


- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of S₁ and S₂. Taking API 224 (LD=) as an example, this command activates when the result of comparison is "equal", and does not activate when the result is "unequal".
- You can use the LD* directly to connect with the busbar.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
224	LD=	D LD =	$S_1 = S_2$	$S_1 \neq S_2$
225	LD <	D LD <	$S_1 < S_2$	$S_1 \leq S_2$
226	LD>	D LD>	$S_1 > S_2$	$S_1 \ge S_2$
228	LD < >	D LD < >	$S_1 \neq S_2$	$S_1 = S_2$
229	LD = >	D LD = >	$S_1 \leq S_2$	$S_1 < S_2$
230	LD = <	D LD = <	$S_1 \ge S_2$	$S_1 > S_2$

- When the content of C10 is equal to K200, then Y10=ON.
- When the content of D200 is greater than K-30, and X1=ON, then Y11=ON and remains in that state.

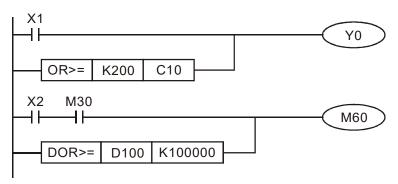



API 232- D AND										С	Contact form compare AND*						
	bit device Word device											16-bit command (5 STEP)					
X Y M K H KnX KnY KnM T C										D	AND* Continuous						
S1	S1 * * * * * *						*	*	*	*	*	execution type					
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)					
		•		•		=, >, •						DANDX Continuous					
Refer to the function specifications table for each device in series for the scope of device usage.											Flag signal: none						

- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of S₁ and S₂. Taking API 232 (AND=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.
- The AND* command is a comparison command in series with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND =	D AND =	$S_1 = S_2$	$S_1 \neq S_2$
233	AND <	D AND <	$S_1 < S_2$	$S_1 \leq S_2$
234	AND >	D AND >	$S_1 > S_2$	$S_1 \ge S_2$
236	AND < >	D AND < >	$S_1 \neq S_2$	$S_1 = S_2$
237	AND = >	D AND = >	$S_1 \leq S_2$	S ₁ < S ₂
238	AND = <	D AND = <	$S_1 \ge S_2$	S ₁ > S ₂

- When X0=ON and the current value of C10 is also equal to K200, then Y10=ON.
- When X1=OFF and the content of register D0 is not equal to K-10, then Y11=ON and remains in that state.
- When X2=ON and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=ON, then M50=ON.



- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of S₁ and S₂. Taking API 240 (OR=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.
- The OR* command is a comparison command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	OR =	D OR =	$S_1 = S_2$	$S_1 \neq S_2$
241	OR <	DOR <	$S_1 < S_2$	$S_1 \leq S_2$
242	OR >	DOR >	$S_1 > S_2$	$S_1 \ge S_2$
244	OR < >	D OR < >	$S_1 \neq S_2$	$S_1 = S_2$
245	OR = >	D OR = >	$S_1 \leq S_2$	$S_1 < S_2$
246	OR = <	D OR = <	$S_1 \ge S_2$	$S_1 > S_2$

- When X0=ON and the current value of C10 is also equal to K200, then Y10=ON.
- When X1=OFF and the content of register D0 is not equal to K-10, then Y11=ON and remains in that state.
- When X2=ON and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=ON, then M50=ON.

275	API										Floating point number contact form compare LD*						
	bit device Word device												nmand_				
	X Y M K H KnX KnY KnM T C										D] - [-	-	-		
S1									*	*	*						
S2									*	*	*	32-bit command_ (9 STEP)					
1									^	_ ^	_ ^	FLD%	Continuous	-	-		
Note	es on	opera	and u	sage:	Ж, : ,	=, >, <	<, <>,	≤, ≥					execution type				
	Refer to the function specifications table for each device in series for the scope of device usage.										Flag signa	I: none					

- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of S₁ and S₂. Taking "FLD=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FLD* command can directly input floating point numbers (for instance: F1.2) to the S₁ and S₂ operands, or store the floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
275	FLD =	$S_1 = S_2$	$S_1 \neq S_2$
276	FLD <	S ₁ < S ₂	S ₁ ≤ S ₂
277	FLD >	$S_1 > S_2$	S ₁ ≥ S ₂
278	FLD < >	$S_1 \neq S_2$	$S_1 = S_2$
279	FLD = >	$S_1 \leq S_2$	S ₁ < S ₂
280	FLD = <	$S_1 \ge S_2$	$S_1 > S_2$

Example

When the floating point number in register D200 (D201) is less than or equal to F1.2, and X1 is activated, then contact Y21 activates and remains in that state.

```
FLD<= D200 F1.2 | SET Y21
```

281 28	_	F	AND	*			S1)	(S2)		FI	oatin	ing point number contact form compare AND*						
	bit device Word device											16-bit commar	<u>nd_</u>					
	X Y M K H KnX KnY KnM T								Т	С	D	-	-	1	-			
S1			* *						*	*								
S2									*	*	*	32-bit commar	<u>nd</u> (9 STEI ontinuous	P) _	_			
Not	es on	oper	and u	sage:	※ .:.	=, >, ·	<, <>,	≤, ≥				FAND% exe	cution type					
Ref	Refer to the function specifications table for each device in series for the scope of device usage.										Flag signal: no	ne						

- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of S₁ and S₂. Taking "FAND=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FAND* command can directly input floating point numbers (for instance: F1.2) to the S₁ and S₂ operands, or store floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND =	$S_1 = S_2$	$S_1 \neq S_2$
282	FAND >	S ₁ < S ₂	$S_1 \leq S_2$
283	FAND <	S ₁ > S ₂	$S_1 \ge S_2$
284	FAND < >	$S_1 \neq S_2$	$S_1 = S_2$
285	FAND < =	$S_1 \leq S_2$	S ₁ < S ₂
286	FAND > =	$S_1 \ge S_2$	S ₁ > S ₂

Example

■ When X1=OFF, and the floating point number in register D100 (D101) is not equal to F1.2, then Y21=ON and remains in that state.

```
X1 FAND<> F1.2 D0 SET Y21
```

API 287-292 FOR% S1 S2										FI	Floating point number contact form compare OR						
	bit	devi	се			٧	Vord	devic		16-bit comma	nd_						
									Т	С	D	-	-	-	-		
S1									*	*	*		•				
S2									*	*	*	<u>32-bit command</u> (9 STEP)					
52										_ ^	_ ^_		ontinuous	-	-		
Note	es on	opera	and u	sage:	Ж , : ,	=, >, •	<, <>,	≤, ≥				exe	cution type				
	Refer to the function specifications table for each device in series for the scope of device usage.										Flag signal: no	one					

- S₁: data source device 1. S₂: data source device 2.
- This command compares the contents of S₁ and S₂. Taking "FOR=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FOR* command can directly input floating point numbers (for instance: F1.2) to the S₁ and S₂ operands, or store floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
287	FOR =	$S_1 = S_2$	$S_1 \neq S_2$
288	FOR <	$S_1 < S_2$	S ₁ ≤ S ₂
289	FOR>	S ₁ > S ₂	$S_1 \ge S_2$
290	FOR < >	$S_1 \neq S_2$	$S_1 = S_2$
291	FOR=>	$S_1 \leq S_2$	S ₁ < S ₂
292	FOR = <	$S_1 \ge S_2$	$S_1 > S_2$

Example

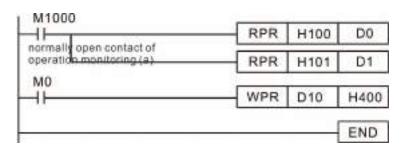
■ When X2 and M30 are both equal to ON, or the floating point number in register D100 (D101) is greater than or equal to F1.234, then M60=ON.

17-6-5 Detailed explanation of drive special application commands

API 139 RPR P S1 S2 Read servo parameter																	
	bit	dev	ice		Word device								16-bit command (5 STEP)				
	Χ	Υ	M	K	Н	KnX	KnY	KnM	Т	С	D		Continuous		Pulse		
S1				*	*						*	RPR	execution type	RPRP	execution type		
S2											*	32-bit command					
Notes on operand usage: none								-	-	-	-						
											Flag signal: none						

Explanation S₁: Parameter address of data to be read. S₂: Register where data that is read is stored.

140		\ \ \	VPF	P	'	(<u>S1</u>	<u>(S2)</u>			Write	servo pa	rameter			
	bit device Word device								e	16-bit command (5 STEP)						
	Х	Υ	М	K	Н	KnX	KnY	KnM	Т	С	D	WPR	Continuous	WPRP	Pulse	
S1				*	*						*		execution type		execution type]
S2				*	*						*	32-bit command				
Note	Notes on operand usage: none									-	-	-	-			
												Flag signal: M1016 parameter read/write error, M1017 parameter written successfully.				


Explanation

ADL

 S_1 : Data to write to specified page. S_2 : Parameter address of data to be written.

Example

- When the data in the MH300-L drive's parameter H01.00 is read and written to D0, data from H01.01 is read and written to D1.
- When M0=ON, the content of D10 is written to the MH300-L drive Pr.04.00 (first speed of multiple speed levels).
- When M1017=ON, the parameter has been written successfully.
- The MH300-L's WPR command does not support writing to the 20XX address, but the RPR command supports reading of 21XX, 22XX.

Recommendation Be cautious when using the WPR command. When writing parameters, most parameters are recorded when they are written, and these parameters may only be revised 10⁹ times: a memory write error may occur if parameters are written more than (MS)10⁶ or (MH)10⁹ times.

The number of times a parameter is written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.

17-7 Error Display and Handling

Code	ID*	Description	Recommended error resolution
PLod	50	Data writing memory error	Check whether the program has an error and download the program again.
PLSv	51	Data write memory error during program execution	Cycle the power and download the program again.
PLdA	52	Program transmission error	Try uploading again; if the error persists, send it to the manufacturer for service.
PLFn	53	Command error while downloading program	Check whether the program has an error and download the program again.
PLor	54	Program exceeds memory capacity or no program.	Cycle the power and download the program again.
PLFF	55	Command error during program execution	Check whether the program has an error and download the program again.
PLSn	56	Check code error	Check whether the program has an error and download the program again.
PLEd	57	Program has no END stop command.	Check whether the program has an error and download the program again
PLCr	58	MC command has been used continuously more than nine times.	Check whether the program has an error and download the program again.
PLdF	59 Download program error		Check whether the program has an error and download again.
PLSF	60	PLC scan time excessively long	Check whether the program code has a writing error and download again.

^{*}ID: Warning code

17-8 Explanation of Each PLC Mode Control (Speed)

Speed control:

Register table for speed mode:

Control special M

Special M	Function Description	
M1025	Drive frequency = set frequency (ON) / drive frequency = 0 (OFF)	RW
M1026	Drive operating direction FWD (OFF) / REV (ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick Stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special M	Function Description	Attributes
M1015	Frequency reached (when used with M1025)	RO
M1056	Hardware already has power (Servo On Ready)	RO
M1058	On Quick Stopping	RO

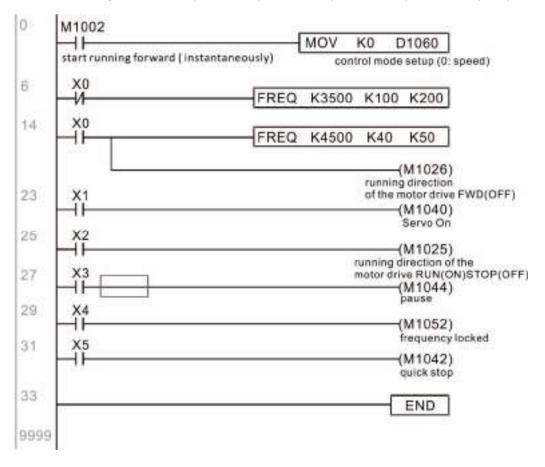
Control special D

Special D	Function Description	Attributes	
D1060	Operation mode setting (speed mode is 0)	RW	

Status special D

Special D	Function Description	
D1037	Drive output frequency (0.00–599.00 Hz)	
D1050	Actual operation mode (speed mode is 0)	RO

Speed mode control commands:


FREQ(P) S1 S2 S3

Target speed The first acceleration time setting The first deceleration time setting

Example of speed mode control:

Before using speed control, if you use the FOC (magnetic field orientation) control method, you must first complete the setting of the electro-mechanical parameters.

- 1. Setting D1060 = 0 shifts the drive to speed mode (default).
- 2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
- 3. Setting M1040 = 1, the drive is now excited, but the frequency is 0.
- 4. Setting M1025 = 1, the drive Frequency command now jumps to the frequency designated by FREQ, and acceleration and deceleration is controlled on the basis of the acceleration time and deceleration time specified by FREQ.
- 5. Use M1052 to lock the current operation frequency.
- 6. Use M1044 to temporarily pause the operation, and the deceleration method uses the deceleration settings.
- 7. Use M1042 to perform Quick Stop, and deceleration is as fast as possible without causing an error. There may still be a jump error if the load is too large.
- 8. Control user rights: M1040 (Servo On) > M1042 (Quick Stop) > M1044 (Halt) > M1052 (LOCK)

17-9 Count Function Using Pulse Input

17-9-1 High-speed count function

The MH300-L's MI7 supports one-way pulse counting, or you can use MI6+MI7 to support AB-phase two-way pulse counting, with a maximum speed of 33 k. The starting method is very simple, and only requires setting M1038 to begin counting. The 32 bit count value is stored in D1054 and D1055 in non-numerical form. M1039 resets the count value to 0.

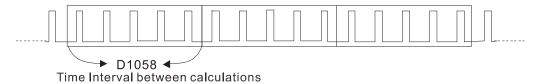
Take MI7 one-way pulse input as an example:

```
M1000
                                                                            D1054
                                                                                           D0
                                                                  MOV
                                                                           Current count value
        Normally open contact of
                                                                           of MI8(L word)
        operation monitoring (a)
                                                                  MOV
                                                                            D1055
                                                                           Current count value
11
         M<sub>0</sub>
                                                                           of MI8(H word)
                                                                                     (M1038)
                                                                         Mi8 START COUNTING
         M1
13
                                                                                     -(M1039)
                                                                          Reset MI8 Count Value
15
                                                                                       END
```

 \times When the PLC program defines MI7 for use as a high-speed counter, that is when M1038 or M1039 is written in PLC procedures, the other functions of MI7 are disabled.

17-9-2 Frequency calculation function

Apart from high-speed counting, the MH300-L's MI7 (one-way pulse counting) or MI6+MI7 (AB-phase two-way pulse counting) can also convert a received pulse to a frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which the MH300-L can perform simultaneously.


PLC speed calculation formula

D1057 Speed

D1058 Interval between calculations

D1059 Decimal places

Assume that there are five input pulses each second, (see figure below) we set D1058 = 1000 ms = 1.0 seconds as the calculation interval. This enables five pulses to be sent to the drive each second.

Assume that each five pulses correspond to 1 Hz, we set D1057 = 5.

Setting D1059 = 2 displays numbers to two decimal places, which is also 1.00 Hz. The numerical value displayed at D1056 is 100. For simplicity, the D1059 conversion formula can be expressed in the following formula:

D1056 = (Pulses per second / D1057) * (1000 / D1058) * (10^D1059)

Chapter 18 Safe Torque Off Function

- 18-1 Basic Function Description
- 18-2 Safe Torque Off Terminal Function Description
- 18-3 Wiring Diagram
- 18-4 Failure Rate of the Drive Safety Function
- 18-5 Reset the Parameter Settings
- 18-6 Timing Diagram Description
- 18-7 Error Code and Troubleshooting Instructions
- 18-8 Test and Fault Confirmation

18-1 Basic Function Description

MH300-L series provides a Safe Torque Off (STO, Safe Torque Off) function. Through the dual-channel S1 and S2 signal input to turn off IGBT switching, thereby preventing the generation of motor torque in order to achieve safe stop. Please refer to Figure 1 for the circuit diagram of Safe Torque Off function.

MH300-L Safe Torque Off function meets the following international specifications:

ISO 13849-1: 2015 Category 3 PL d

IEC 61508 SIL2 EN 62061 SIL CL 2 EN 60204-1 Category 0

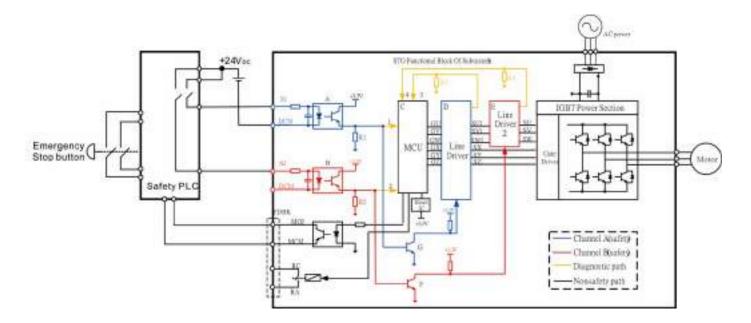


Figure 1: The circuit diagram of Safe Torque Off function

18-2 Safe Torque Off Terminal Function Description

As mentioned earlier STO (Safe torque off) related terminal functions are described in Table 1 below.

Terminals	Terminal Function	Specifications
+24V	When the STO function is not used, the STO function can be disabled by shorting S1 and S2 with + 24 V	Output voltage range: +24 V ± 10 % Output voltage capacity: 100 mA
S1	Signal input of STO function channel 1	S1-DCM / S2-DCM Rated input voltage: +24 V _{DC} ± 10 %; Max. input voltage: +30 V _{DC} ± 10 %
S 2	Signal input of STO function channel 2	Rated input current: 6.67 mA ± 10 % STO activation mode Input voltage level: 0 V _{DC} < S1–DCM and S2–DCM < 5 V _{DC} STO response time: ≤ 20 ms (time required for S1 / S2 operate till
DCM Reference ground of S1 at S2 signal		the drive stop outputting) STO cut-off mode Input voltage level: 11 V _{DC} < S1–DCM and S2–DCM < 30 V _{DC}

Table 1: Terminal function description

Action logic and keypad display after S1 / S2 signal input are described in Table 2 below.

Signal	Status			
S1-DCM	ON	ON	OFF	OFF
S2-DCM	ON	OFF	ON	OFF
Drive output	Ready to output	STL2 mode (Torque output off)	STL1 mode (Torque output off)	STO mode (Torque output off)
Error displayed on keypad	No error displayed	STL2	STL1	STO

Table 2: Description of action logic and keypad display

- $\hfill \square$ STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.
- STL1 means channel 1 operates.
- STL2 means channel 2 operates.
- STL3 means there is error detected in the internal circuit of channel 1 or channel 2.
- □ S1–DCM / S2–DCM ON: means S1–DCM / S2–DCM inputs a power supply > 11 V_{DC}.
- \square S1–DCM / S2–DCM OFF: means S1–DCM / S2–DCM inputs a power supply < 5 V_{DC}.

18-3 Wiring Diagram

- 18-3-1 Internal circuit diagram of safe control loop is shown in Figure 2.
- 18-3-2 Terminals of the safe control loop + 24V-S1-S2 are short-circuited together with jumper wire at the factory, as shown in Figure 2.
- 18-3-3 The safe control loop wiring diagram is as follows:
 - 1. Remove the jumper wire of +24V-S1-S2.
 - 2. The wiring as shown in Figure 3 below. Normally, the switch ESTOP contact must be closed, thereby the drive can output without error displayed.
 - 3. In STO mode, the switch ESTOP is turned on. The drive stops outputting and keypad displays STO.

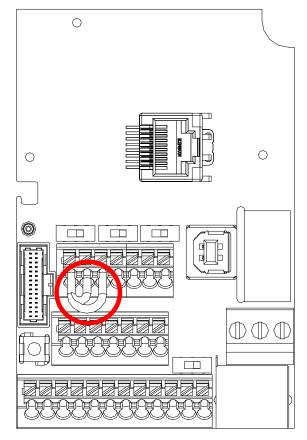


Figure 2

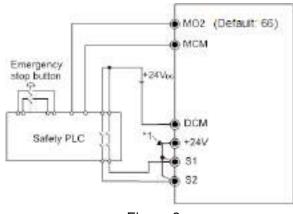


Figure 3

NOTE

^{*1} is factory jumper wire of +24V-S1-S2. To use the Safety function, please remove this jumper wire. Conversely, if the Safety function is disabled, then +24V-S1-S2 should be short-circuit with jumper wire.

18-4 Failure Rate of the Drive Safety Function

Please refer to Table 3 below for relevant safe parameters of safe loop:

Item	Definition	Standard	Performance
SFF	Safe failure fraction	IEC61508	S1-DCM = 88.35 % S2-DCM = 88.2 %
HFT (Type A subsystem)	Hardware fault tolerance	IEC61508	1
OII		IEC61508	SIL 2
SIL	Safety integrity level	IEC62061	SILCL 2
PFH	Average frequency of dangerous failure [h-1]	IEC61508	1.36 x 10 ⁻⁹
PFD _{av}	Probability of dangerous failure on demand	IEC61508	5.99 x 10 ⁻⁶
PTI	Proof test interval	IEC61508	1 year
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF _d	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

Table 3: Relevant safe parameters of safe loop

18-5 Reset the Parameter Settings

Pr. 06-44 can be used to set the reset method when an STO alarm occurs.

Softings 0: STO Alarm lateb

Settings 0: STO Alarm latch 1: STO Alarm no latch

- Pr. 06-44 = 0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is needed to clear STO Alarm.
- Pr. 06-44 = 1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.
- All of STL1-STL3 error are "Alarm latch" mode (in STL1-STL3 mode, the Pr. 06-44 function is not effective).

18-6 Timing Diagram Description

The following timing diagram shows the status of relevant signals under different conditions:

18-6-1 Normal operation status

As shown in Figure 4: When S1–DCM and S2–DCM is ON (STO function is not required), the drive will execute "Operating" or "Output Stop" according to RUN command.

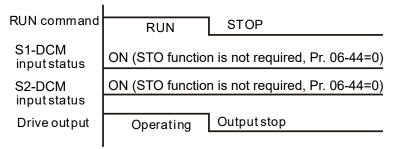
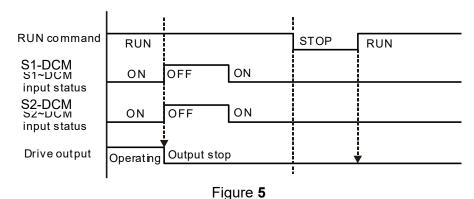
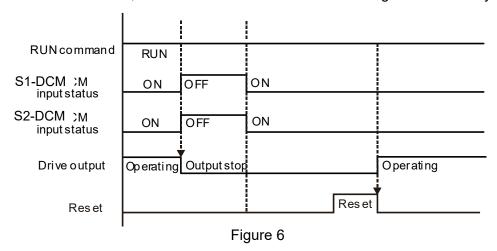
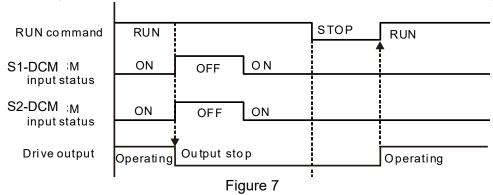



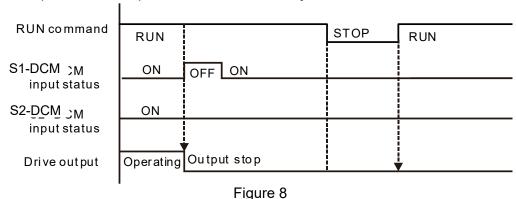
Figure 4


18-6-2-1 STO, Pr. 06-44=0, Pr. 02-35=0 (Selection of external control operation after reset / power on, 0=not valid)

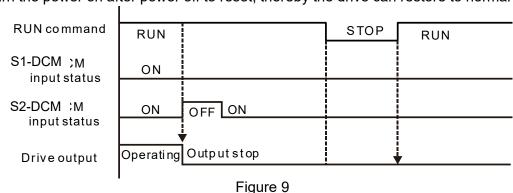
As shown in Figure 5: When both of S1–DCM and s2–DCM are OFF during operation (STO function is required), the drive will stop outputting when enter safe mode regardless of Run command is ON or OFF status.


18-6-2-2 STO, Pr. 06-44=0, Pr. 02-35=1 (Selection of external control operation after reset / power on, 1= the drive will execute RUN if command exists after reset)

As shown in Figure 6, the action is the same as in Figure 5. However, because Pr. 02-35=1, if RUN command still exists after reset, the drive will execute run command again immediately.


18-6-3 STO, Pr. 06-44=1

As shown in Figure 7: When both of S1–DCM and S2–DCM are OFF during operation (STO function is required), the drive will stop outputting. When the S1 / S2 status is restored (ON), the STO automatic alarm is automatically cleared. The drive can output when RUN command is released again.


18-6-4 STL1, Pr. 06-44=0 or 1

As shown in Figure 8: When S1–DCM is OFF during operation (STO function is required) and S2–DCM is ON (STO function is not required), the drive will stop outputting and keypad will show STL1 error. However, STL1 error cannot be reset even if the S1 status is restored (ON) regardless of the parameter setting. Turn the power on after power off to reset, thereby the drive can restore to normal standby state.

18-6-5 STL2, Pr. 06-44=0 or 1

As shown in Figure 9: When S1–DCM is ON during operation (STO function is not required) and S2–DCM is OFF (STO function is required), the drive will stop outputting and keypad will show STL2 error. However, STL2 error cannot be reset even if the S2 status is restored (ON) regardless of the parameter setting. Turn the power on after power off to reset, thereby the drive can restore to normal standby state.

18-7

18-7 Error Code and Troubleshooting Instructions

18-7-1 Error Code Description

Refer to Pr.06-17–Pr.06-22 for fault record, wherein STO relevant error code is 72/76/77/78, the definition is as follows and Table 4:

₿₿- ┆ॏ Fault Record 1
Fault Record 2
Fault Record 3
₿ - ₽ ₽ Fault Record 4
₿ - ३ Fault Record 5
Fault Record 6

Settings

72: Channel 1 (S1–DCM) safety loop error (STL1)

76: Safe torque off (STo)

77: Channel 2 (S2–DCM) safety loop error (STL2)

78: Internal loop error (STL3)

Error code	Name	Description	
76 (STO) Safe torque off		Safe torque off function active	
72 (STL1) Channel 1 (S1–DCM) safety loop error		S1[This page intentionally left blank]DCM internal loop detected error	
77 (STL2)	Channel 2 (S2–DCM) safety loop error	S2[This page intentionally left blank]DCM internal loop detected error	
78 (STL3)	Internal loop error	S1[This page intentionally left blank]DCM and S2–DCM internal loop detected error	

Table 4: Error code description

18-7-2 Troubleshooting Instructions

Refer to the following instructions for troubleshooting when STO / STL1 / STL2 / STL3 shows on keypad. (Refer to Chapter 14 Error Codes)

ID No.	KPMH-LC01 Display	Descriptions
72	57L I	S1–DCM internal loop detected error Corrective Actions Check wiring of S1 terminal. Reset emergency switch (ON: activated) and re-power Check the input voltage to maintain at least 11 V. Check the wiring of S1 and +24 V terminal. After make sure all the wiring is correct, if STL1 fault still exists after re-power, please contact Delta.
76	57a	Safe torque off function active Corrective Actions Check wiring of S1 and S2 terminal. Reset emergency switch (ON: activated) and re-power. Check the input voltage to maintain at least 11 V. Check the wiring of S1 / S2 and +24 V terminal. After make sure all the wiring is correct, if STO fault still exists after re-power, please contact Delta.
77	STLZ	S2–DCM internal loop detected error. Corrective Actions Check wiring of S2 terminal. Reset emergency switch (ON: activated) and re-power. Check the input voltage to maintain at least 11 V. Check the wiring of S2 and +24 V terminal. After make sure all the wiring is correct, if STL2 fault still exists after re-power, please contact Delta.
78	STLB	Internal loop detected error. Corrective Actions After make sure the wiring is correct, if STL3 fault still exists after repower, please contact Delta.

18-8 Test and Fault Confirmation

After wiring in accordance with Section 18-3 Wiring Diagram, please follow the steps below to check whether STO and related detection function are normal.

- 1. When the drive is powered on, make sure that S1–DCM and S2–DCM voltage falls between $11-30 \text{ V}_{DC}$, at this time, the drive should enter standby mode and waits for RUN command. There is no error displayed on keypad.
- 2. Press RUN command on the drive, use the emergency button or other methods to make S1–DCM and S2–DCM voltage falls between 0–5 V_{DC} simultaneously after the output frequency is reached, at this time, the drive should enter torque stop mode STO and stop outputting voltage. Keypad displays STO error, and the response time of S1 and S2 signals to the drive stops outputting voltage should be ≤ 20 ms. Then restore S1–DCM and S2–DCM voltage to 11–30 V_{DC}, press RESET button on keypad and STO error will be cleared. The drive should enter standby mode and waits for RUN command.
- 3. Press RUN command on the drive, use the emergency button or other methods to make S1–DCM voltage fall between 0–5 V_{DC}, and S2–DCM voltage maintain between 11–30 V_{DC} after the output frequency is reached, at this time, the drive should enter torque stop mode STL1 and stop outputting voltage. Keypad displays ST1 error, and the response time of S1 signals to the drive stops outputting voltage should be ≤ 20 ms. Then restore S1–DCM voltage to 11–30 V_{DC}, however press RESET button on keypad cannot clear STL1 error, the drive needs to be re-powered. Make sure that S1–DCM and S2–DCM voltage falls between 11–30 V_{DC} and then re-power the drive, thus STL1 error will be cleared. The drive should enter standby mode and waits for RUN command.
- 4. Press RUN command on the drive, please use the emergency button or other methods to make S2–DCM voltage fall between 0–5 V_{DC}, and S1–DCM voltage maintain between 11–30 V_{DC} after the output frequency is reached, at this time, the drive should enter torque stop mode STL2 and stop outputting voltage. Keypad displays ST2 error, and the response time of S2 signals to the drive stops outputting voltage should be ≤ 20 ms. Then restore S2–DCM voltage to 11–30 V_{DC}, however press RESET button on keypad cannot clear STL1 error, the drive needs to be re-powered. Make sure S1–DCM and S2–DCM voltage falls between 11–30 V_{DC} and then re-power the drive, thus STL2 error will be cleared. The drive should enter standby mode and waits for RUN command.
- 5. If the above four steps can be conducted normally in sequence with no other error, then the safe torque off function loop is normal, as shown in Table 5 below. However, if there are situations differ from the above four steps or if STL3 occurs, the safe torque off function loop is abnormal. Please refer to 18-7 Error Code and Troubleshooting Instructions.

Signal	Status			
S1-DCM	ON	ON	OFF	OFF
S2-DCM	ON	OFF	ON	OFF
Drive output	Ready to output	STL2 mode	STL1 mode	STO mode
Error displayed on keypad	No error displayed	STL2	STL1	STO
Response time	N.A		≤ 20 ms	
RESET mechanism	N.A	Re-power the drive	Re-power the drive	Can be RESET directly

Table 5

- STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.
- STL1 means channel 1 operates.
- STL2 means channel 2 operates.
- STL3 means there is error detected in the internal circuit of channel 1 or channel 2.
- S1-DCM / S2-DCM ON: means S1-DCM / S2-DCM inputs a power supply > 11 V_{DC}.
- □ S1– DCM / S2–DCM OFF: means S1–DCM / S2–DCM inputs a power supply < 5 V_{DC}.

[This page intentionally left blank]

Appendix A. Revision History

Firmware Version: V1.02

Issued Edition: V01

Issued Date: May 25th, 2021

Revision History

Change Description	Affected Chapter/Section
A table for the maximum shielded cable length for drive	7-6 EMC Filter
models with built-in EMC filters is added.	
New section added.	7-9 NEMA Kit
New section added.	7-10 DIN-Rail Mounting
A description that hot swapping is not supported is added	Chapter 8 Option Cards
to the top of Chapter 8.	
Multi-function input (MI) setting value 62 (Mechanical	Chapter 11 (Parameter Group 2)
brake error detection 2) added.	Chapter 12 (Parameter Group 2)
	Chapter 15
Roll-back solution added.	1. Pr.02-39 & Pr.02-40: Elevator Timing
	Diagram revised
	2. Pr.02-42: parameter name, default
	setting, setting range and descriptions
	revised
	3. Pr.02-43 & Pr.02-44: parameters added
EPS function revised.	1. Pr.02-83: descriptions added
	2. Pr.06-81: descriptions added
	3. Pr.06-89: UPS flowchart added
Error code 71 (Mechanical brake error 2: MBF2) added	1. Pr.06-17 to Pr.06-22: fault records in both
	Chapter 11 and Chapter 12
	2. Pr.06-23 to Pr.06-26: fault output options
	(bit table for fault code) in both Chapter 11
	and Chapter 12
	3. Chapter 14: Error code 71 added

[This page intentionally left blank]