Smarter. Greener. Together

Industrial Automation Headquarters
Delta Electronics, Inc.
No. 18, Xinglong Rd., Taoyuan Districl,
Taoyuan City 33068, Taiwan
TEL: 886-3-362-6301/ FAX: 886-3-371-630
Asia
Delta Electronics (Shanghai) Co., Ltd
ost code : 201209
TEL: 86-21-6872-3988 / FAX: 86-21-6872-3996
ustomer Service: 400-820-959
Delta Electronics (Japan), Inc.
Tokyo Office
Industrial Automation Sales Department
$2-1-14$ Shibadaimon, Minato
OKkyo, Japan 1005-0012
ELL: 81--3-5733-11155/FAX: 81-3-5733-1255
elta Electronics (Korea), Inc.
Seoul Office
511, 219, Gasan Digital 1-Ro., Geumcheon-gu,
Seoul, 08501 South Korea
Delta Energy Systems (Singapore) Pte Ltd. Kaki Bukituenue 1 , \#\#F-04, Singapore 417939
D. 6.67 sis fax: 6

Delta Electronics (India) Pvt. Ltd.
Plot No. 43, Sector 35, HSIIDC Gurgaon
IN 122001 , Haryana India
TEL: 91-124-4874990 / /AX: : 91-124-4874945
Delta Electronics (Thailand) PCL Pattana 1 Rd., T.Phraksso, A.Muang, amutprakarn 10280, Thailand
TEL: 66-2709-2800 / FAX : 662-709-2827
Delta Electronics (Australia) Pty Ltd. Unit $20-21 / 45$ Normanby Rd., Notting Hill Vic 3168 , Australia

Americas
Eelta Electronis (Americas) Ltd.
aaleigh Office
p.o. Box 12173,5101 Davis Drive,
Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3813/ FAX: 1-919-767-396
Delta Electronics Brazi
Säo Paulo Sales office
Rua Itapeva, $26-3^{\circ}$, andar Edificio Itapeva,
De - Bela Vista $01332-000$ - São Paulo - SP - Braz
LE: 55-12-3932-2300 / FAX: 55-12-3932-237
Delta Electronics International Mexico S.A. de C.V
Sustavo Baz No. 309 Edificio E PB 103
Coltonia La Loma, CP 54060
Tlamepantla, Estado de México
EL: 52-55-3603-9200

EMEA
Headquarters: Delta Electronics (Nats) B.
Sales: Sales.IA.EMEA@deltaww.com
Marketing: Marketing.IA.EMEA@deltaww.com
Technical Support: iatechnicalsupport@deltaww.com
Customer Support: Customer-Suppor@deltaww.com
Serice: Service.IA.emea
TEL: $31(0) 40800$ 3900
benelux: Delta Electronics (Netherlands) B.
Mail: Sales. IA. Benelux@deltaww.com
TEL: 31 (0)40 800390
DACH: Delta Electronics (Netherlands) B...
Coesterweg 45, D-59494 Soest, Germ
Mail: Sales.IA.DACH@deltaww.com
TTEL: 49(0) (02211 987
France: Delta Electronics (France) S.A.
Zl du bois Challand 2, 15 rue des Pyrie
Lisses, 91090 Evry Cedex, France
Lisses, 91090 Evry Cedex, Franc
Mail: Sales.IA.FR@deltaww.com
TEL: $33(0) 169778260$
Iberia: Delta Electronics Solutions (Spain) S.L.U
Ctra. De Villaverde a Vallecas, 2651° Dcha
Hormiqueras - P.I. de Vallecas 28031 Madrid
Hormigueras - P.I. de Va
TEL: $34(0) 9112237420$
Carrer LLacuna 166,08018 Barcelona, Spain
Mail: Sales. $1 \mathrm{~A} . \mid$ Iberi@@deltaww.con
Italy: Delta Electronics (Italy) S
Piazza Graziol 1800186 Roma ltaly
Piazza Graziolil 1800186 Roma Ital
Mail: Sales. AA. Italy@dettaww.com
TEL: 390398900365
Russia: Delta Energy System LLC
17121337 Moscow Russia
17121357 Moscow Russia
Mail: Sales.IA.RU@deltaww.com
MTL: 74956443240
Turkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey)
Şerifili Mah. Hendem Cad. Kule Sok. No: 16 -
34775 Ümraniye - Istanbul
Mail: Sales.IA. Turkey@
GCC: Delta Energy Systems AG (Dubai BR)
P.0. Box 185668, Gate 7, 3rd Floor, Hamarain Centre

Dubai, United A Arab Emirates
Mail: Sales./A MA A deltaw
Mail: Salss.|A.MEA@d
TEL: $971(0) 4$ 2690148
Egypt + North Africa: Delta Electronic
Egyt + North Africa: Delta Electronics
Unit 318, ,
New Cairo, Cairo, Egypt
Mail: Sales.IA.MEA@deltaww.com

Delta IP55 Fan and Pump Drive CFP2000 Series User Manual

Copyright notice

©Delta Electronics, Inc. All rights reserved.
All information contained in this user manual is the exclusive property of Delta Electronics Inc. (hereinafter referred to as "Delta ") and is protected by copyright law and all other laws. Delta retains the exclusive rights of this user manual in accordance with the copyright law and all other laws. No parts in this manual may be reproduced, transmitted, transcribed, translated or used in any other ways without the prior consent of Delta.

Limitation of Liability

The contents of this user manual are only for the use of the AC motor drives manufactured by Delta. Except as defined in special mandatory laws, Delta provides this user manual "as is" and does not offer any kind of warranty through this user manual for using the product, either express or implied, including but not limited to the following: (i) this product will meet your needs or expectations; (ii) the information contained in the product is current and correct; (iii) the product does not infringe any rights of any other person. You shall bear your own risk to use this product.

In no event shall Delta, its subsidiaries, affiliates, managers, employees, agents, partners and licensors be liable for any direct, indirect, incidental, special, derivative or consequential damages (including but not limited to the damages for loss of profits, goodwill, use or other intangible losses) unless the laws contains special mandatory provisions to the contrary.

Delta reserves the right to make changes to the user manual and the products described in the user manual without prior notice and afterwards.

\square Disconnect AC input power before connecting any wiring to the AC motor drive.
\square Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Do NOT touch the internal circuits and components.
\boxtimes There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Take anti-static measure before touching these components or the circuit boards.
\square Never modify the internal components or wiring.
\square Ground the AC motor drive by using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
\square Do NOT install the AC motor drive in a location with high temperature, direct sunlight or inflammable materials or gases.

CAUTION
\square Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
∇ After finishing the wiring of the AC motor drive, check if U/T1, V/T2, and W/T3 are short-circuited to ground with a multimeter. Do NOT power the drive if short circuits occur. Eliminate the short circuits before the drive is powered.
\square The rated voltage of power system to install motor drives is listed below. Ensure that the installation voltage is in the correct range when installing a motor drive.

1. For 230 V models, the range is between $170-264 \mathrm{~V}$.
2. For 460 V models, the range is between $323-528 \mathrm{~V}$.
3. For 575 V models, the range is between $446-660 \mathrm{~V}$.
\square Refer to the table below for short circuit rating:

Model (Power)	Short circuit rating
$230 \mathrm{~V} / 460 \mathrm{~V}$	100 kA
$575 \mathrm{~V}(2-50 \mathrm{HP})$	5 kA
$575 \mathrm{~V}(60-125 \mathrm{HP})$	10 kA

च Only qualified persons are allowed to install, wire and maintain the AC motor drives.
∇ Even if the three-phase AC motor is stopped, a charge with hazardous voltages may still remain in the main circuit terminals of the AC motor drive.
\square The performance of electrolytic capacitor will degrade if it is not charged for a long time. It is recommended to charge the drive which is stored in no charge condition every 2 years for 3-4 hours to restore the performance of electrolytic capacitor in the motor drive.
NOTE: When power up the motor drive, use adjustable AC power source (ex. AC autotransformer) to charge the drive at $70 \%-80 \%$ of rated voltage for 30 minutes (do not run the motor drive). Then charge the drive at 100% of rated voltage for an hour (do not run the motor drive). By doing these, restore the performance of electrolytic capacitor before starting to run the motor drive. Do NOT run the motor drive at 100% rated voltage right away.
\square Pay attention to the following precautions when transporting and installing this package (including wooden crate and wood stave)

1. If you need to deworm the wooden crate, do NOT use fumigation or you will damage the drive. Any damage to the drive caused by using fumigation voids the warranty.
2. Use other methods, such as heat treatment or any other non-fumigation treatment, to deworm the wood packaging material.
3. If you use heat treatment to deworm, leave the packaging materials in an environment of over $56^{\circ} \mathrm{C}$ for a minimum of thirty minutes.

\square	Connect the drive to a three-phase three-wire or three-phase four-wire Wye system to comply with UL standards.
∇If the motor drive generates leakage current over AC 3.5 mA or over DC 10 mA on a grounding conductor, compliance with local grounding regulations or IEC61800-5-1 standard is the minimum requirement for grounding.	

NOTE:

The content of this manual may be revised without prior notice. Consult our distributors or download the latest version at http://www.deltaww.com/iadownload acmotordrive

Table of Contents

CHAPTER 1 INTRODUCTION 1-1
1-1 Nameplate Information 1-2
1-2 Model Name 1-3
1-3 Serial Number 1-3
1-4 Apply After Service by Mobile Device 1-4
1-5 RFI Jumper 1-5
1-6 Dimensions 1-13
1-7 Digital Keypad 1-28
CHAPTER 2 INSTALLATION 2-1
2-1 Mounting Clearance 2-2
2-2 Airflow and Power Dissipation 2-5
CHAPTER 3 UNPACKING 3-1
3-1 Unpacking 3-2
3-2 The Lifting Hook 3-6
CHAPTER 4 WIRING 4-1
4-1 System Wiring Diagram 4-3
4-2 Wiring 4-4
4-3 Wiring Plate Diagram 4-7
4-4 Basic Waterproof Component Wiring Diagram 4-8
CHAPTER 5 MAIN CIRCUIT TERMINALS 5-1
5-1 Main Circuit Diagram. 5-4
5-2 Specifications of Main Circuit Terminals 5-5
CHPATER 6 CONTROL TERMINALS 6-1
6-1 Remove the Cover for Wiring 6-4
6-2 Specifications of Control Terminal 6-7
6-3 Remove the Terminal Block 6-10
CHAPTER 7 OPTIONAL ACCESSORIES 7-1
7-1 Brake Resistors and Brake Units Used in AC Motor Drives 7-2
7-2 Magnetic Contactor / Air Circuit Breaker and Non-fuse Circuit Breaker. 7-9
7-3 Fuse Specification Chart 7-12
7-4 AC Reactor 7-14
7-5 Zero Phase Reactor. 7-50
7-6 EMC Filter. 7-51
7-7 Panel Mounting 7-57
7-8 Fan Kit 7-59
7-9 USB/RS-485 Communication Interface IFD6530 7-71
CHAPTER 8 OPTION CARDS 8-1
8-1 Option Card Installation. 8-2
8-2 EMC-D42A -- Extension card for 4-point digital input / 2-point digital input. 8-10
8-3 EMC-D611A -- Extension card for 6 -point digital input ($110 \mathrm{~V}_{\mathrm{AC}}$ input voltage) 8-10
8-4 EMC-R6AA -- Relay output extension card (6-point N.O. output contact)....... 8-10
8-5 EMC-BPS01 -- +24V power card 8-11
8-6 EMC-A22A -- Extension card for 2-point analog input/ 2-point analog output. 8-12
8-7 CMC-PD01 -- Communication card, PROFIBUS DP. 8-14
8-8 CMC-DN01 -- Communication card, DeviceNet. 8-16
8-9 CMC-EIP01 -- Communication card, EtherNet/IP 8-19
8-10 CMC-PN01 -- Communication card, PROFINET. 8-23
8-11 eZVFD-CC -- Communication card, BACnet Ethernet/BACnet IP 8-27
8-12 EMC-COP01 -- Communication card, CANopen 8-31
8-13 Delta Standard Fieldbus Cables. 8-32
CHAPTER 9 SPECIFICATION 9-1
9-1 230V Models 9-2
9-2 460V Models 9-4
9-3 575V Models 9-6
9-4 General Specifications 9-8
9-5 Environment for Operation, Storage and Transportation 9-9
9-6 Specification for Operation Temperature and Protection Level 9-10
9-7 Derating Curve for Ambient Temperature, Altitude and Carrier Frequency. 9-11
9-8 Efficiency Curve. 9-16
CHAPTER 10 DIGITAL KEYPAD 10-1
10-1 Descriptions of Digital Keypad 10-2
10-2 Function of Digital Keypad KPC-CC01 10-5
10-3 TPEditor Installation Instruction 10-24
10-4 Fault Code Description of Digital Keypad KPC-CC01 10-33
10-5 Unsupported Functions when using TPEditor with the KPC-CC01 10-39
CHAPTER 11 SUMMARY OF PARAMETERS 11-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS 12-1
12-1 Description of Parameter Settings 12.1-00-1
00 Drive Parameters 12.1-00-1
01 Basic Parameters 12.1-01-1
02 Digital Input / Output Parameters 12.1-02-1
03 Analog Input / Output Parameters 12.1-03-1
04 Multi-step Speed Parameters. 12.1-04-1
05 Motor Parameters 12.1-05-1
06 Protection Parameters 12.1-06-1
07 Special Parameters 12.1-07-1
08 High-function PID Parameters 12.1-08-1
09 Communication Parameters 12.1-09-1
10 Sensorless Motor Control Parameters 12.1-10-1
11 Advanced Parameters. 12.1-11-1
12 Pump Parameters 12.1-12-1
13 Application Parameters by Industry 12.1-13-1
14 Extension Card Parameter 12.1-14-1
12-2 Adjustment \& Application. 12.2-1
CHAPTER 13 WARNING CODES 13-1
CHAPTER 14 FAULT CODES AND DESCRIPTIONS 14-1
CHAPTER 15 CANOPEN OVERVIEW 15-1
15-1 CANopen Overview 15-3
15-2 Wiring for CANopen. 15-6
15-3 CANopen Communication Interface Description. 15-7
15-4 CANopen Supporting Index 15-15
15-5 CANopen Fault Codes 15-21
15-6 CANopen LED Function 15-29
CHAPTER 16 PLC FUNCTION APPLICATIONS 16-1
16-1 PLC Summary 16-2
16-2 Notes before PLC Use 16-3
16-3 Turn On 16-5
16-4 Basic Principles of PLC Ladder Diagrams 16-15
16-5 Various PLC Device Functions 16-26
16-6 Introduction to the Command Window. 16-40
16-7 Error Display and Handling 16-130
16-8 CANopen Master Control Applications 16-131
16-9 Explanation of Various PLC Speed Mode Controls 16-144
16-10 Internal Communications Main Node Control 16-146
16-11 Modbus Remote IO Control Applications (use MODRW). 16-150
16-12 Calendar Function 16-157
CHAPTER 17 INTRODUCTION TO BACnet. 17-1
17-1 About BACnet 17-2
17-2 CFP2000 BACnet-Object and Property 17-2
17-3 Steps to Setup the Parameters about BACnet in CFP2000 17-8
CHAPTER 18 SAFE TORQUE OFF FUNCTION 18-1
18-1 The Drive Safety Function Failure Rate 18-2
18-2 Safe Torque Off Terminal Function Description 18-3
18-3 Wiring Diagram 18-4
18-4 Parameter 18-6
18-5 Operating Sequence Description 18-7
18-6 New Error Code for STO Function. 18-9
APPENDIX A. REVISION HISTORY A-1
Issued Edition: 02
Firmware Version: V1.07 (Refer to Parameter 00-06 on the product to get the firmware version.) Issued Date: 2021/03

Chapter 1 Introduction

1-1 Nameplate Information
1-2 Model Name
1-3 Serial Number
1-4 Apply After Service by Mobile Device
1-5 RFI Jumper
1-6 Dimensions
1-7 Digital Keypad

Receiving and Inspection

After receiving the AC motor drive, check for the following:

1. Inspect the unit after unpacking to ensure that it was not damaged during shipment. Make sure that the part number printed on the package matches the part number indicated on the nameplate.
2. Make sure that the mains voltage is within the range indicated on the nameplate. Install the AC motor drive according to the instructions in this manual.
3. Before applying power, make sure that all devices, including mains power, motor, control board and digital keypad, are connected correctly.
4. When wiring the $A C$ motor drive, make sure that the wiring of input terminals " $R / L 1, S / L 2, T / L 3$ " and output terminals "U/T1, V/T2, W/T3" are correct to prevent damage to the drive.
5. When power is applied, use the digital keypad (KPC-CC01) to select the language and set parameters. When executing a trial run, begin with a low speed and then gradually increase the speed to the desired speed.

1-1 Nameplate Information

Figure 1-1

1-2 Model Name

1-3 Serial Number

1-4 Apply After Service by Mobile Device

1-4-1 Location of Service Link Label

Frame A-D

Service link label (Service Label) is pasted on the area as the drawing below shows:

1-4-2 Service Link Label

Scan QR Code to apply

1. Find the QR code sticker (as shown above).
2. Use a smartphone to run a QR Code reader APP.
3. Point your camera at the QR Code. Hold your camera steady until the QR code comes into focus.
4. Access the Delta After Service website.
5. Fill your information into the column marked with an orange star.
6. Enter the CAPTCHA and click "Submit" to complete the application.

Cannot find the QR Code?

1. Open a web browser on your computer or smart phone.
2. Enter https://service.deltaww.com/ia/repair in browser bar and press the Enter key.
3. Fill your information into the columns marked with an orange star.
4. Enter the CAPTCHA and click "Submit" to complete the application.

1-5 RFI Jumper

(1) The drive contains Varistor / MOVs that are connected from phase-to-phase and from phase-to-ground to prevent the drive from unexpected stop or damage caused by mains surges or voltage spikes. Because the Varistors / MOVs from phase-to-ground are connected to ground with the RFI jumper, removing the RFI jumper disables the protection.
(2) In the models with a built-in EMC filter, the RFI jumper connects the filer capacitors to ground to form a return path for high frequency noise in order to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the built-in EMC filter. Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filter can trigger the RCD. Removing the RFI jumper helps, but the EMC performance of each drive would be no longer guaranteed.

Frame A

Figure 1-4

Frame B

Figure 1-5

Frame C

By switching the position of the RFI jumper to control ON / OFF.

Figure 1-6

Frame D0
By switching the position of the RFI jumper to control ON / OFF.

RFI-1 ON (default)

RFI-2 ON (default)

Figure 1-7

Frame D

By switching the position of the RFI jumper to control ON / OFF.

Figure 1-8

Remove the built-in EMC Filter:

In some specific power system, the shunt capacitors might cause damage to the motor drive or electrically charge the enclosure to cause electrical shock. Because of this, follow these recommendations for jumper / screw installation of these three power systems:

Jumper / screw	TN-S System	Corner Grounded TN	TT System	IT System
RFI-1	Keep (Default)	Remove	Remove	Remove
RFI-2	Keep (Default)	Remove	Remove	Remove

Note:

1. If any of the RFIs is removed, the EMC effect is affected.
2. Use a LCB (leakage circuit breaker) designed for the motor drive. If an LCB has tripped, remove the RFI-2 (jumper / screw) or contact an authorized Delta dealer near you.
3. Grounding Systems:

The international standard IEC60364 distinguishes three different grounding system categories, using the two-letter codes TN, TT, IT.
The first letter indicates the grounding type for the power supply equipment (generator or transformer).
T: Connect one or more points on the power supply directly to the same grounding point.
I: Do not connect to ground (isolated) or connect to ground with high impedance.
The second letter indicates the connection between ground and the power supply equipment.
T: Connected directly to ground. This grounding point is separated from other grounding points in the power supply.
\mathbf{N} : Connected to ground by the conductor that is provided by the power supply system

Isolating main power from ground:

When the power distribution system for the drive is a floating ground system (IT Systems) or an asymmetric ground system (Corner Grounded TN Systems), you must remove the RFI Jumper. Removing the RFI Jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

Important points regarding ground connection:
\boxtimes To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, you must properly ground the motor and drive during installation.
\square The diameter of the grounding cables must comply with the local safety regulations.
■ You must connect the shielded calbe to the motor drive's ground to meet safety regulations.
\square Only use the shielded cables as the ground for equipment when the aforementioned points are met.
\boxtimes When installing multiple drives, do not connect the grounds of the drives in series but connect each drive to ground. The following pictures show the correct and wrong ways to connect the grounds.

Figure 1-9

Figure 1-10

Pay particular attention to the following points:
\square Do not remove the RFI jumper while the power is on.
\square Removing the RFI jumper also cuts the capacitor conductivity of the surge absorver to ground and the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
\boxtimes Do not remove the RFI jumper if the mains power is a symmetrical grounded power system in order to maintain the efficiency for EMC circuit.
\boxtimes Remove the RFI jumper when conducting high voltage tests. When conducting a high voltage test to the entire facility, disconnect the mains power and the motor if the leakage current is too high.

Floating Ground System(IT Systems)

A floating ground system is also called an IT system, an ungrounded system, or a high impedance / resistance (greater than 30Ω) grounded system.
\square Remove the RFI jumper to disconnect the ground cable from the internal filter capacitor and surge absorber.
\square In situations where EMC is required, check for excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase shielding.
च Do not install an external RFI / EMC filter. The external EMC filter passes through a filter capacitors and connects power input to the ground. This is very dangerous and damages the motor drive.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution:

Do not remove the RFI jumper while power to the input terminal of the drive is ON.
In the following four situations, you must remove the RFI jumper. This is to prevent the system from grounding through the RFI and filter capacitors and damaging the drive.

Figure 1-11
2. Grounding at a midpoint in a polygonal configuration

Figure 1-12
3. No stable neutral grounding in a three-phase autotransformer configuration

Figure 1-13

In the following situation, you can use the RFI jumper for a symmetrical grounding power system.

You can use the RFI jumper for a symmetrical grounding power system		
In a situation with a symmetrical grounding power system,		
you can use the RFI jumper to maintain the effect of the		
built-in EMC filter an dsurge absorber. For example, the		
diagram on the right is a symmetrical grounding power		
system.		

1-6 Dimensions

Frame A
A-1: VFD007FP2EA-52, VFD015FP2EA-52, VFD022FP2EA-52, VFD037FP2EA-52, VFD055FP2EA-52, VFD007FP4EA-52, VFD015FP4EA-52, VFD022FP4EA-52, VFD037FP4EA-52, VFD040FP4EA-52, VFD055FP4EA-52, VFD075FP4EA-52, VFD015FP5EA-52, VFD022FP5EA-52, VFD037FP5EA-52, VFD055FP5EA-52, VFD075FP5EA-52

See Detail B

Detail A
(Mounting Hole)

Detail B
(Mounting Hole)

Figure 1-15
Unit: mm (inch)

Frame	W	W 1	H	H 1	D	D 1	S 1	Ф1	Ф2	Ф3
A-1	161.0	135.0	366.4	356.0	-	199.0	6.5	25.4	20.3	20.3
	(6.34)	(5.31)	(14.43)	(14.02)		(7.83)	(0.26)	(1.00)	(0.80)	(0.80)

Table 1-2

Frame A
A-2: VFD007FP2EA-52S, VFD015FP2EA-52S, VFD022FP2EA-52S, VFD037FP2EA-52S, VFD055FP2EA-52S, VFD007FP4EA-52S, VFD015FP4EA-52S, VFD022FP4EA-52S, VFD037FP4EA-52S, VFD040FP4EA-52S, VFD055FP4EA-52S, VFD075FP4EA-52S, VFD015FP5EA-52S, VFD022FP5EA-52S, VFD037FP5EA-52S, VFD055FP5EA-52S, VFD075FP5EA-52S

See Detail B

Figure 1-16
Unit: mm (inch)

Frame	W	W1	H	H1	D	D1	S1	Ф1	Ф2	Ф3
	161.0	135.0	366.4	356.0	244.0	199.0	6.5	25.4	20.3	20.3
A-2	(6.34)	(5.31)	(14.43)	(14.02)	(9.61)	(7.83)	(0.26)	(1.00)	(0.80)	(0.80)

Table 1-3

Frame A
A-3: VFD007FP2EA-41, VFD015FP2EA-41, VFD022FP2EA-41, VFD037FP2EA-41, VFD055FP2EA-41, VFD007FP4EA-41, VFD015FP4EA-41, VFD022FP4EA-41, VFD037FP4EA-41, VFD040FP4EA-41, VFD055FP4EA-41, VFD075FP4EA-41, VFD015FP5EA-41, VFD022FP5EA-41, VFD037FP5EA-41, VFD055FP5EA-41, VFD075FP5EA-41

- See Detail B

Figure 1-17
Unit: mm (inch)

Frame	W	W1	H	H1	D	D1	S1	Ф1	Ф2	Ф3
A-3	161.0	135.0	366.4	356.0	-	199.0	6.5	28.0	22.0	-
	(6.34)	(5.31)	(14.43)	(14.02)		(7.83)	(0.26)	(1.10)	(0.87)	

Table 1-4

Frame B
B-1: VFD075FP2EA-52, VFD110FP2EA-52, VFD110FP4EA-52, VFD150FP4EA-52, VFD185FP4EA-52, VFD220FP4EA-52, VFD110FP5EA-52, VFD150FP5EA-52, VFD185FP5EA-52,

Figure 1-18
Unit: mm (inch)

Frame	W	W1	H	H1	D	D1	S1	Ф1	Ф2	Ф3
B-1	216.0	181.0	491.4	479.0		229.0	8.5	41.0	25.4	20.3
	(8.50)	(7.13)	(19.35)	(18.86)		(9.02)	(0.33)	(1.61)	(1.00)	(0.80)

Table 1-5

Frame B
B-2: VFD075FP2EA-52S, VFD110FP2EA-52S, VFD110FP4EA-52S, VFD150FP4EA-52S, VFD185FP4EA-52S, VFD220FP4EA-52S, VFD110FP5EA-52S, VFD150FP5EA-52S, VFD185FP5EA-52S

See Detail B

Detail A
(Mounting Hole)

Detail B (Mounting Hole)

Figure 1-19
Unit: mm (inch)

Frame	W	W 1	H	H 1	D	D 1	S 1	Ф1	Ф2	Ф3
$\mathrm{B}-2$	216.0	181.0	491.4	479.0	274.0	229.0	8.5	41.0	25.4	20.3
	(8.50)	(7.13)	(19.35)	(18.86)	(10.79)	(9.02)	(0.33)	(1.61)	(1.00)	(0.80)

Table 1-6

Frame B
B-3: VFD075FP2EA-41, VFD110FP2EA-41, VFD110FP4EA-41, VFD150FP4EA-41, VFD185FP4EA-41, VFD220FP4EA-41, VFD110FP5EA-41, VFD150FP5EA-41, VFD185FP5EA-41

Detail A
(Mounting Hole)

Detail B
(Mounting Hole)

Figure 1-20
Unit: mm (inch)

Frame	W	W 1	H	H 1	D	D 1	S 1	11	Ф2	Ф3
$\mathrm{B}-3$	216.0	181.0	491.4	479.0		229.0	8.5	41.8	28.0	22.0
	(8.50)	(7.13)	(19.35)	(18.86)	-	(9.02)	(0.33)	(1.65)	(1.10)	(0.87)

Table 1-7

Frame C
C-1: VFD150FP2EA-52, VFD185FP2EA-52, VFD300FP4EA-52, VFD370FP4EA-52, VFD220FP5EA-52, VFD300FP5EA-52, VFD370FP5EA-52

Figure 1-21
Unit: mm (inch)

Frame	W	W1	W2	H	H1	H2	D
C-1	282.0	231.0	271.0	630.0	611.0	602.5	265.0
	(11.10)	(9.09)	(10.67)	(24.8)	(24.06)	(23.72)	(10.43)

Frame	D1	S1	S2	Ф1	Ф2	3 3	4
C-1	27.8	9.0	16.0	51.0	41.0	25.4	20.3
	(1.09)	(0.35)	(0.63)	(2.01)	(1.61)	(1.00)	(0.80)

Frame C
C-2: VFD150FP2EA-52S, VFD185FP2EA-52S, VFD220FP5EA-52S, VFD300FP4EA-52S, VFD370FP4EA-52S, VFD300FP5EA-52S, VFD370FP5EA-52S

Figure 1-22
Unit: mm (inch)

Frame	W	W1	W2	H	$H 1$	$H 2$	D	D1
C-2	282.0	231.0	271.0	630.0	611.0	602.5	310.0	265.0
	(11.10)	(9.09)	(10.67)	(24.8)	(24.06)	(23.72)	(12.20)	(10.43)

Frame	D2	S1	S2	Ф1	Ф2	Ф3	Ф4
C-2	27.8	9.0	16.0	51.0	41.0	25.4	20.3
	(1.09)	(0.35)	(0.63)	(2.01)	(1.61)	(1.00)	(0.80)

Frame C
C-3: VFD150FP2EA-41, VFD185FP2EA-41, VFD300FP4EA-41, VFD370FP4EA-41, VFD220FP5EA-41, VFD300FP5EA-41, VFD370FP5EA-41

Figure 1-23
Unit: mm (inch)

Frame	W	W1	W2	H	H1	H2	D
C-3	282.0	231.0	271.0	630.0	611.0	602.5	265.0
	(11.10)	(9.09)	(10.67)	(24.80)	(24.06)	(23.72)	(10.43)

Frame	D1	S1	S2	Ф1	Ф2	Ф3	Ф4
C-3	27.8	9.0	16.0	51.0	34.0	28.0	22.0
	(1.09)	(0.35)	(0.63)	(2.01)	(1.34)	(1.10)	(0.87)

Table 1-10

Frame D0

D0-1: VFD220FP2EA-52, VFD300FP2EA-52, VFD450FP4EA-52, VFD550FP4EA-52, VFD450FP5EA-52, VFD550FP5EA-52

See Detail A

Figure 1-24
Unit: mm (inch)

Frame	W	W1	H	H1	H2	D (inch)
	308.0	272.0	680.0	651.0	622.0	307.0
D0-1	(12.13)	(10.71)	(26.77)	(25.63)	(24.49)	(12.09)

Frame	D1	S1	S2	Ф1	Ф2	Ф3	Ф4
	17.0	13.0	18.0	51.0	41.0	25.4	20.3
D0-1	(0.67)	(0.51)	(0.71)	(2.01)	(1.61)	(1.00)	(0.80)

Frame D0
D0-2: VFD220FP2EA-52S, VFD300FP2EA-52S, VFD450FP4EA-52S, VFD550FP4EA-52S, VFD450FP5EA-52S, VFD550FP5EA-52S

Figure 1-25
Unit: mm (inch)

Frame	W	W1	H	H1	H2	D	D1
D0-2	308.0	272.0	680.0	651.0	622.0	352.0	307.0
	(12.13)	(10.71)	(26.77)	(25.63)	(24.49)	(13.86)	(12.09)

Frame	D2	S1	S2	$\Phi 1$	$\Phi 2$	$\Phi 3$	$\Phi 4$
D0-2	17.0	13.0	18.0	51.0	41.0	25.4	20.3
	(0.67)	(0.51)	(0.71)	(2.01)	(1.61)	(1.00)	(0.80)

Table 1-12

Frame D0

D0-3: VFD220FP2EA-41, VFD300FP2EA-41, VFD450FP4EA-41, VFD550FP4EA-41, VFD450FP5EA-41, VFD550FP5EA-41

Figure 1-26
Unit: mm (inch)

Frame	W	W1	H	H1	H2	D
Do-3	308.0	272.0	680.0	651.0	622.0	307.0
	(12.13)	(10.71)	(26.77)	(25.63)	(24.49)	(12.09)

Frame	D1	S1	S2	Ф1	Ф2	Ф3	Ф4
D0-3	17.0	13.0	18.0	51.0	44.0	28.0	22.0
	(0.67)	(0.51)	(0.71)	(2.01)	(1.73)	(1.10)	(0.87)

Frame D
D-1: VFD370FP2EA-52, VFD450FP2EA-52, VFD750FP4EA-52, VFD900FP4EA-52, VFD750FP5EA-52, VFD900FP5EA-52

Detail B
(Mounting Hole) (Mounting Hole)

Figure 1-27
Unit: mm (inch)

Frame	W	W1	H	H1	H2	D
D-1	370.0	334.0	770.0	739.0	707.0	335.0
	(14.57)	(13.15)	(30.31)	(29.09)	(27.83)	(13.19)

Frame	D1	S1	S2	Ф1	Ф2	Ф3	Ф4
D-1	17.0	13.0	18.0	64.0	51.0	25.4	20.3
	(0.67)	(0.51)	(0.71)	(2.52)	(2.01)	(1.00)	(0.80)

Table 1-14

Frame D
D-2: VFD370FP2EA-52S, VFD450FP2EA-52S, VFD750FP4EA-52S, VFD900FP4EA-52S, VFD750FP5EA-52S, VFD900FP5EA-52S

See Detail B

Detail A
Detail B (Mounting Hole) (Mounting Hole)

Figure 1-28
Unit: mm (inch)

Frame	W	W1	H	H1	H2	D	D1
D-2	370.0	334.0	770.0	739.0	707.0	380.0	335.0
	(14.57)	(13.15)	(30.31)	(29.09)	(27.83)	(14.96)	(13.19)

Frame	D2	S1	S2	Ф1	Ф2	Ф3	Ф4
D-2	17.0	13.0	18.0	64.0	51.0	25.4	20.3
	(0.67)	(0.51)	(0.71)	(2.52)	(2.01)	(1.00)	(0.80)

Frame D
D-3: VFD370FP2EA-41, VFD450FP2EA-41, VFD750FP4EA-41, VFD900FP4EA-41, VFD750FP5EA-41, VFD900FP5EA-41

Detail A
Detail B (Mounting Hole) (Mounting Hole)

Figure 1-29
Unit: mm (inch)

Frame	W	W 1	H	H 1	H 2	D
$\mathrm{D}-3$	370.0	334.0	770.0	739.0	707.0	335.0
	(14.57)	(13.15)	(30.31)	(29.09)	(27.83)	(13.19)

Frame	D1	S1	S2	Ф1	Ф2	Ф3	Ф4
D-3	17.0	13.0	18.0	62.0	28.0	22.0	-
	(0.67)	(0.51)	(0.71)	(2.44)	(1.10)	(0.87)	

Table 1-16

1-7 Digital Keypad

KPC-CC01

Figure 1-30

Chapter 2 Installation

2-1 Mounting Clearance

2-2 Airflow and Power Dissipation

2-1 Mounting Clearance

\square Prevent fiber particles, scraps of paper, shredded wood, sawdust, metal particles, etc. from adhering to the heat sink
$\nabla \quad$ Install the AC motor drive in a metal cabinet (IP41 models). When installing one drive below another one, use a metal separator between the AC motor drives to prevent mutual heating and to prevent the risk of fire accident.
$\square \quad$ Install the AC motor drive in Pollution Degree 2 environments only:
Normally only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.

The appearances shown in the following figures are for reference only. The actual motor drives may look different.

Airflow direction: $\longleftarrow==$ (Blue arrow) Inflow \longleftrightarrow (Red arrow) Outflow \longleftrightarrow (Black) Distance
Single drive installation (Frame A-D)

Figure 2-1

Side-by-side horizontal installation (Frame A-D)

Figure 2-2

Multiple drives side-by-side vertical installation (Frame A-D)
Ta: Frame A-D
When installing one AC motor drive below another one (top-bottom installation), use a metal separator between the drives to prevent mutual heating. The temperature measured at the fan's inflow side must be lower than the temperature measured at the operation side. If the fan's inflow temperature is higher, use a thicker or larger size of metal separator. Operation temperature is the temperature measured at 50 mm away from the fan's inflow side (as shown in the figure below).

Figure 2-3

Minimum mounting clearance

Frame	$A(\mathrm{~mm})$	$B(\mathrm{~mm})$	$C(\mathrm{~mm})$	$D(\mathrm{~mm})$
A-B	60	15	-	-
C-D	100	25	-	-

NOTE:
Table 2-1
The minimum mounting clearances A-D stated in the table above apply to AC motor drives installation. Failing to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problems.

Frame A	VFD007FP2EA-41, VFD007FP2EA-52, VFD007FP2EA-52S, VFD015FP2EA-41, VFD015FP2EA-52, VFD015FP2EA-52S, VFD022FP2EA-41, VFD022FP2EA-52, VFD022FP2EA-52S, VFD037FP2EA-41, VFD037FP2EA-52, VFD037FP2EA-52S, VFD055FP2EA-41, VFD055FP2EA-52, VFD055FP2EA-52S, VFD007FP4EA-41, VFD007FP4EA-52, VFD007FP4EA-52S, VFD015FP4EA-41, VFD015FP4EA-52, VFD015FP4EA-52S, VFD022FP4EA-41,VFD022FP4EA-52, VFD022FP4EA-52S, VFD037FP4EA-41,VFD037FP4EA-52, VFD037FP4EA-52S, VFD040FP4EA-41,VFD040FP4EA-52, VFD040FP4EA-52S, VFD055FP4EA-41,VFD055FP4EA-52, VFD055FP4EA-52S, VFD075FP4EA-41, VFD075FP4EA-52, VFD075FP4EA-52S, VFD015FP5EA-41, VFD015FP5EA-52, VFD015FP5EA-52S, VFD022FP5EA-41, VFD022FP5EA-52, VFD022FP5EA-52S, VFD037FP5EA-41, VFD037FP5EA-52, VFD037FP5EA-52S, VFD055FP5EA-41, VFD055FP5EA-52, VFD055FP5EA-52S, VFD075FP5EA-41, VFD075FP5EA-52, VFD075FP5EA-52S
Frame B	VFD075FP2EA-41, VFD075FP2EA-52, VFD075FP2EA-52S, VFD110FP2EA-41, VFD110FP2EA-52, VFD110FP2EA-52S, VFD110FP4EA-41,VFD110FP4EA-52, VFD110FP4EA-52S, VFD150FP4EA-41,VFD150FP4EA-52, VFD150FP4EA-52S, VFD185FP4EA-41,VFD185FP4EA-52, VFD185FP4EA-52S, VFD220FP4EA-41, VFD220FP4EA-52, VFD220FP4EA-52S VFD110FP5EA-41, VFD110FP5EA-52, VFD110FP5EA-52S, VFD150FP5EA-41, VFD150FP5EA-52, VFD150FP5EA-52S, VFD185FP5EA-41, VFD185FP5EA-52, VFD185FP5EA-52S
Frame C	VFD150FP2EA-41, VFD150FP2EA-52, VFD150FP2EA-52S, VFD185FP2EA-41, VFD185FP2EA-52, VFD185FP2EA-52S, VFD300FP4EA-41, VFD300FP4EA-52, VFD300FP4EA-52S, VFD370FP4EA-41,VFD370FP4EA-52, VFD370FP4EA-52S, VFD220FP5EA-41, VFD220FP5EA-52, VFD220FP5EA-52S, VFD300FP5EA-41, VFD300FP5EA-52, VFD300FP5EA-52S, VFD370FP5EA-41, VFD370FP5EA-52, VFD370FP5EA-52S

Frame D0	VFD220FP2EA-41, VFD220FP2EA-52, VFD220FP2EA-52S, VFD300FP2EA-41, VFD300FP2EA-52, VFD300FP2EA-52S, VFD450FP4EA-41,VFD450FP4EA-52, VFD450FP4EA-52S, VFD550FP4EA-41,VFD550FP4EA-52, VFD550FP4EA-52S, VFD450FP5EA-41, VFD450FP5EA-52, VFD450FP5EA-52S, VFD550FP5EA-41, VFD550FP5EA-52, VFD550FP5EA-52S
Frame D	VFD370FP2EA-41, VFD370FP2EA-52, VFD370FP2EA-52S, VFD450FP2EA-41, VFD450FP2EA-52, VFD450FP2EA-52S, VFD750FP4EA-41,VFD750FP4EA-52, VFD750FP4EA-52S, VFD900FP4EA-41,VFD900FP4EA-52, VFD900FP4EA-52S VFD750FP5EA-41, VFD750FP5EA-52, VFD750FP5EA-52S, VFD900FP5EA-41, VFD900FP5EA-52, VFD900FP5EA-52S

Table 2-2

NOTE:

1. The mounting clearance stated in the figure is for installing the drive in an open area. To install the drive in a confined space (such as cabinet or electric box), follow the following rules: (1) Keep the minimum mounting clearances. (2) Install a ventilation equipment or an air conditioner to keep surrounding temperature lower than operation temperature. (3) Refer to parameter setting and set up Pr.00-16, Pr.00-17 and Pr.06-55.
2. Table 2-3 below shows the heat dissipation and the required air volume when installing a single drive in a confined space. When installing multiple drives, the required air volume shall be multiplied by the number of the drives.
3. See Table 2-3 below (Airflow Rate for Cooling) for ventilation equipment design and selection.
4. See Table 2-3 below (Power Dissipation for AC Motor Drive) for air conditioner design and selection.
5. Different control mode affects the derating. See Pr.06-55 for more information.
6. See Section 9-6 for ambient temperature derating curve and derating curves under different control modes.

2-2 Airflow and Power Dissipation

Model No.	Airflow Rate for Cooling			Power Dissipation for AC Motor Drive		
	Flow Rate (cfm)			Power Dissipation (watt)		
	External	Internal	Total	Loss External	Internal	Total
VFD007FP2EA-41/-52/-52S	-	14	14	34	23	57
VFD015FP2EA-41/-52/-52S	-	14	14	52	25	77
VFD022FP2EA-41/-52/-52S	34	14	48	70	28	98
VFD037FP2EA-41/-52/-52S	34	14	48	115	30	145
VFD055FP2EA-41/-52/-52S	34	14	48	171	33	204
VFD075FP2EA-41/-52/-52S	88	14	102	242	40	282
VFD110FP2EA-41/-52/-52S	88	14	102	375	45	420
VFD150FP2EA-41/-52/-52S	200	29	229	467	70	537
VFD185FP2EA-41/-52/-52S	200	29	229	553	76	629
VFD220FP2EA-41/-52/-52S	285	29	314	738	82	820
VFD300FP2EA-41/-52/-52S	285	29	314	894	85	979
VFD370FP2EA-41/-52/-52S	330	29	359	1017	114	1131
VFD450FP2EA-41/-52/-52S	330	29	359	1296	123	1419
VFD007FP4EA-41/ 52 / 52S	-	14	14	32	20	52
VFD015FP4EA-41/ 52 / 52S	-	14	14	43	21	64
VFD022FP4EA-41/ 52 / 52S	34	14	48	74	25	99
VFD037FP4EA-41/ 52 / 52S	34	14	48	92	26	118
VFD040FP4EA-41/ 52 / 52S	34	14	48	113	26	139
VFD055FP4EA-41/ 52 / 52S	34	14	48	139	27	166
VFD075FP4EA-41/ 52 / 52S	34	14	48	195	29	224
VFD110FP4EA-41/ 52 / 52S	88	14	102	240	34	274
VFD150FP4EA-41/ 52 / 52S	88	14	102	309	38	347
VFD185FP4EA-41/ 52 / 52S	88	14	102	353	39	392
VFD220FP4EA-41/ 52 / 52S	88	14	102	449	47	496
VFD300FP4EA-41/ 52 / 52S	200	29	229	618	84	702
VFD370FP4EA-41/ 52 / 52S	200	29	229	726	87	813
VFD450FP4EA-41/ 52 / 52S	285	29	314	864	82	946
VFD550FP4EA-41/ 52 / 52S	285	29	314	1068	84	1152
VFD750FP4EA-41/ 52 / 52S	330	29	359	1407	111	1518
VFD900FP4EA-41/ 52 / 52S	330	29	359	1623	114	1737
VFD015FP5EA-41/-52/-52S	-	14	14	40	18	58
VFD022FP5EA-41/-52/-52S	34	14	48	55	21	76
VFD037FP5EA-41/-52/-52S	34	14	48	75	24	99
VFD055FP5EA-41/-52/-52S	34	14	48	109	28	137
VFD075FP5EA-41/-52/-52S	34	14	48	133	29	162
VFD110FP5EA-41/-52/-52S	88	14	102	207	32	239

Chapter 2 Installation | CFP2000

M	Model No.	Airflow Rate for Cooling			Power Dissipation for AC Motor Drive			
		Flow Rate (cfm)			Power Dissipation (watt)			
	External	Internal	Total	Loss External	Internal	Total		
VFD150FP5EA-41/-52/-52S	88	14	102	274	36	310		
VFD185FP5EA-41/-52/-52S	88	14	102	392	39	431		
VFD220FP5EA-41/-52/-52S	200	29	229	360	41	401		
VFD300FP5EA-41/-52/-52S	200	29	229	455	45	500		
VFD370FP5EA-41/-52/-52S	200	29	229	605	60	665		
VFD450FP5EA-41/-52/-52S	285	29	314	774	72	846		
VFD550FP5EA-41/-52/-52S	285	29	314	1036	75	1111		
VFD750FP5EA-41/-52/-52S	330	29	359	1207	84	1291		
VFD900FP5EA-41/-52/-52S	330	29	359	1481	102	1583		

NOTE:

1. The required airflow shown in the table is for installing single drive in a confined space.
2. When installing multiple drives, the required air volume should be the required air volume for single drive X the number of the drives.

NOTE:

1. The heat dissipation shown in the table is for installing single drive in a confined space.
2. When installing multiple drives, volume of heat dissipation should be the heat dissipated for single drive X the number of the drives.
3. Heat dissipation for each model is calculated by rated voltage, current and default carrier.

Table 2-3

Chapter 3 Unpacking

3-1 Unpacking
3-2 The Lifting Hook

The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time.

3-1 Unpacking

Follow these steps to unpack the AC motor drive:
Frame D0
VFD200FP2EA-41/-52/-52S, VFD300FP2EA-41/-52/-52S, VFD450FP4EA-41/-52/-52S,
VFD550FP4EA-41/-52/-52S, VFD450FP5EA-41/-52/-52S, VFD550FP5EA-41/-52/-52S

1. Remove the 4 clips by slotted screwdriver.

Figure 3-1
2. Remove the cover of wood box and then take out the EPE tray and user manual.

Figure 3-2
3. Loosen the 5 screws that fastened on the pallet.

Figure 3-3
4. Lift up the drive by using hooks through the holes.

Figure 3-4

Frame D
VFD370FP2EA-41/-52/-52S, VFD450FP2EA-41/-52/-52S, VFD750FP4EA-41/-52/-52S, VFD750FP5EA-41/-52/-52S, VFD900FP4EA-41/-52/-52S, VFD900FP5EA-41/-52/-52S

1. Remove the 6 clips by slotted screwdriver.

Figure 3-5
2. Remove the cover of wood box and then take out the EPE tray and user manual.

Figure 3-6
3. Loosen the 4 screws that fastened on the pallet.

Figure 3-7
4. Lift up the drive by using hooks through the holes.

Figure 3-8

3-2 The Lifting Hook

The arrows indicate the location of the lifting holes, as shown in figure below:
Frame DO
Frame D

Figure 3-9

Figure 3-10

Ensure the lifting hook properly goes through the lifting hole, as shown in the following diagram.

Figure 3-11

Figure 3-12

Ensure the angle between the lifting holes and the lifting device is within the specification, as shown in the following figure.

Figure 3-13

Figure 3-14

Weight

Frame	VFDXXXFP2EA-41, VFDXXXFP2EA-52 VFDXXXFP4EA-41, VFDXXXFP4EA-52 VFDXXXFP5EA-41, VFDXXXFP5EA-52	VFDXXXFP2EA-52S VFDXXXFP4EA-52S VFDXXXFP5EA-52S
D0	41.5 kg [91.4 lbs.] Figure 3-15	41.7 kg [91.9 lbs.] Figure 3-16
D	$59.0 \mathrm{~kg}[130.0 \mathrm{lbs} .]$ Figure 3-17	60.2 kg [132.6 lbs.] Figure 3-18

Chapter 4 Wiring

4-1 System Wiring Diagram
4-2 Wiring
4-3 Wiring Plate Diagram
4-4 Basic Waterproof Component Wiring Diagram

After removing the front cover, verify if the power and control terminals are clearly noted. Read following precautions to avoid wiring mistakes.

च Turn off the AC motor drive power before doing any wiring. A charge with hazardous voltages may remain in the DC bus capacitors even after the power has been turned off for a short time. Measure the remaining voltage with a DC voltmeter before doing any wiring. For your safety, do not start wiring before the voltage drops to a safe level (less than $25 \mathrm{~V}_{\mathrm{DC}}$). Installing wiring with a residual voltage may cause personal injury, sparkes and a short circuit.
\square Only qualified personnel familiar with AC motor drives are allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.
\boxtimes Make sure that power is only applied to the R/L1, S/L2 and T/L3 terminals. Failure to comply may result in damage to the equipment. The voltage and current must be in the range indicated on the nameplate (refer to Section 1-1 Nameplate Information for details).
\boxtimes All units must be grounded directly to a common ground terminal to prevent damage from a lightning strike or electric shock and reduce noise interference.
\boxtimes Tighten the screws of the main circuit terminals to prevent sparks caused by screws loosened due to vibration
\square For you safety, choose wires that comply with local regulation when wiring
\square Check following items after finishing the wiring:

1. Are all connections correct?
2. Are there any loose wires?
3. Are there any short-circuits between the terminals or to ground?

4-1 System Wiring Diagram

Figure 4-1
NOTE:
Refer to Section 4-2 Wiring Diagram for detailed wiring information.

Power input terminal	Supply power according to the rated power specifications indicated in the user manual (refer to Chapter 9 Specification).
NFB or fuse	There may be a large inrush current during power on. Refer to Section 7-2 NFB to select a suitable NFB or Section 7-3 Fuse Specification Chart.
Electromagnetic contactor	Switching the power ON / OFF on the primary side of the electromagnetic contactor can turn the drive ON / OFF, but frequent switching can cause machine failure. Do not switch ON / OFF more than once an hour. Do not use the electromagnetic contactor as the power switch for the drive; doing so shortens the life of the drive. Refer to Serction 7-2 Magnetic Contactor / Air Circuit Breaker to select the electromagnetic contactor that meets your requirement.
AC reactor (input terminal)	When the main power capacity is $>500 \mathrm{kVA}$, or when it switches into the phase capacitor, the instantaneous peak voltage and current generated may destroy the internal circuit of the drive. It is recommended that you install an input side AC reactor in the drive. This also improves the power factor and reduces power harmonics. The wiring distance should be within 10 m . Refer to Section 7-4 AC/DC Reactor for details.
Zero-phase reactor	Used to reduce radiated interference, especially in environments with audio devices, and reduce input and output side interference. The effective range is AM band to 10 MHz . Refer to Section 7-5 Zero Phase Reactor for details.
EMC filter	Can be used to reduce electromagnetic interference. Refer to Section 7-6 EMC Filter for details.
Brake module \& Brake resistor (BR)	Used to shorten the deceleration time of the motor. Refer to Section 7-1 Brake Resistors and Brake Units Used in AC Motor Drives for details.
AC reactor (output terminal)	The motor cable length affects the size of the reflected wave on the motor end. It is recommended that you install an AC output reactor when the motor wiring length exceeds the value listed in Section 7-4.

Chapter 4 Wiring | CFP2000

4-2 Wiring

Wiring Diagram for Frame A-C in 460V / 575V
Input: 3-phase power

*1. Refer to Section 7-1 for brake units and resistor selection.
Figure 4-2

Wiring Diagram for 460V / 575VFrame D0-D
and 230V Frame A-D

Input: 3-phase power

*1. Refer to Section 7-1 for brake units and resistor selection.

Wiring Diagram for Frame A-D

Input: 3-phase power

Figure 4-4

4-2-1 SINK (NPN) / SOURCE (PNP) Mode

4-3 Wiring Plate Diagram

Figure 4-9

Frame B

Screw torque:

1-4: [14-16 kg-cm]
5: [6-8 kg-cm]

Figure 4-10

Frame C

Screw torque:

1-6: [12-15 kg-cm]
7-8: [12-15 kg-cm]

Figure 4-11

4-4 Basic Waterproof Component Wiring Diagram

Frame A

Figure 4-12

Frame B

Figure 4-13

Frame C/D0

Figure 4-14

Frame D

Figure 4-15

Chapter 5 Main Circuit Terminals

5-1 Main Circuit Diagram
5-2 Main Circuit Terminals
$\boxtimes \quad$ Tighten the screws in the main circuit terminal to prevent sparks caused by screws loosened due to vibration.
च If necessary, use an inductive filter only at the motor output terminals U/T1, V/T2, W/T3 of the AC motor drive. DO NOT use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
$\boxtimes \quad$ DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
च DO NOT short circuit [+1, -], [+2, -], [+1/DC+, -/DC-] or connect brake resistor directly to any of them to prevent damage to the drive or to the brake resistors.
\square Ensure proper insulation of the main circuit wiring in accordance with the relevant safety regulations.

Main input power terminals

\boxtimes Do not connect three-phase model to single-phase power. R/L1, S/L2 and T/L3 have no phase-sequence requirement, they can be connected in any sequence.

- Add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when the AC motor drive protection function activates. Both ends of the MC should have an R-C surge absorber.
■ Use voltage and current within the specification in Chapter 09. Refer to Chapter 09 Specifications for details.
$\boxtimes \quad$ When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above and not less than 0.1 -second operation time to avoid nuisance tripping.
\square Use shielded wire or conduit for the power wiring and ground the two ends of the shielded wire or conduit.
$\boxtimes \quad$ Do NOT run and stop AC motor drives by turning the power ON and OFF. Run and stop the AC motor drives by sending RUN and STOP command through the control terminals or the keypad. If you still need to run and stop AC motor drives by turning the power ON and OFF, do so no more often than ONCE per hour.
\boxtimes To comply with UL standards, connect the drive to a three-phase three-wire or three-phase four-wire Wye system type of mains power system.

Output terminals of the main circuit

\square Use well-insulated motor, suitable for inverter operation.
\boxtimes When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3 respectively, the motor will rotate counterclockwise (as viewed on the shaft end of the motor, refer to the pointed direction in the figure below) upon a forward operation command is received. To permanently reverse the direction of motor rotation, switch over any of the two motor leads.

Figure 5-1

Terminals for connecting DC reactor, external brake resistor and DC circuit
$\boxtimes \quad$ Install an external brake resistor for applications in frequent deceleration to stop, short deceleration time (such as high frequency operation and heavy load operation), too low braking torque, or increased braking torque.

Figure 5-2
$\boxtimes \quad$ The external brake resistor of Frame A, B and C should connect to the terminals (B1, B2) of AC motor drives.
\square For those models without built-in brake resistor, connect external brake unit and brake resistor (both of them are optional) to increase brake torque.
\square When the terminals +1/DC+ and -/DC- are not used, leave the terminals open.
■ DC+ and DC- are connected by common DC bus, refer to Section 5-1 (Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.
\square Refer to the VFDB manual for more information on wire gauge when installing the brake unit.

5-1 Main Circuit Diagram

Wiring diagram for frame A-C of $460 \mathrm{~V} / 575 \mathrm{~V}$ models
Input: 3-phase power

Figure 5-3
Wiring diagram for frame D0-D of $460 \mathrm{~V} / 575 \mathrm{~V}$ models and frame A-D of 230 V models Input: 3-phase power

*1 Refer to Section 7-1 for brake units and resistors selection.
Figure 5-4

Terminals	Descriptions
R/L1, S/L2, T/L3	AC line input terminals three-phase
U/T1, V/T2, W/T3	AC drive output terminals for connecting three-phase induction motor
$+1 / D C+,-/ D C-$	Connections for brake module (VFDB series) $(\leq 37 \mathrm{~kW}$, built-in brake module) Common DC bus
B1, B2	Connections for brake resistor (optional) $(\leq 37 \mathrm{~kW}$, built-in brake module)
Θ	Ground connection; comply with local regulations.

5-2 Specifications of Main Circuit Terminals

- Use the specified ring lug for main circuit terminal wiring. See figure 5-5 and figure 5-6 for ring lug specifications. For other types of wiring use the wires that comply with the local regulations.
- After crimping the wire to the ring lug (must be UL approved), UL and CSA approved recognized component (YDPU2), install heat shrink tube rated at a minimum of $600 \mathrm{~V}_{\mathrm{AC}}$ insulation over the live part. Refer to figure 5-6 below.

Figure 5-5

Figure 5-6

- Terminal Specification

The part number of the ring lugs (produced by K.S. Terminals Inc.) in the table below are for reference only. You can buy the ring lugs of your choice to match with different frame sizes.

Frame	AWG*1	Kit P/N	$\begin{gathered} A \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \text { B } \\ (\text { MAX }) \end{gathered}$	$\begin{gathered} C \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\text { MAX } \end{gathered}$	$\begin{gathered} \mathrm{d} 2 \\ (\mathrm{MIN}) \end{gathered}$	$\underset{(\mathrm{MIN})}{\mathrm{E}}$	$\begin{gathered} F \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \text { W } \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \stackrel{t}{\prime} \\ \text { (MAX) } \end{gathered}$
A	$12 / 4 \mathrm{~mm}^{2}$	RNBL5-4	12.1	3.6	6.1	5.6	4.3	7.0	6.1	7.3	1.0
	$10 / 6 \mathrm{~mm}^{2}$	RNBL5-4									
B	$8 / 10 \mathrm{~mm}^{2}$	RNBM8-5	23.8	6.0	13.3	9.0	5.3	11.0	13.3	12.0	1.5
	$6 / 16 \mathrm{~mm}^{2}$	RNB14-5									
C	6	RNB14-8	40.0	10.0	10.0	15.0	8.3	13.0	12.0*2	22.0	2.5
	4	RNB22-8									
	2	RNBS38-8									
D0	6	RNB14-8	40.0	11.0	10.0	23.0	8.3	13.0	14.0*3	24.0	4.5
	4	SQNBS22-8									
	2	SQNBS38-8									
	1	SQNBS60-8									
	1/0	SQNBS60-8									
D	2	RNBL38-8	50.0	16.0	10.0	27.0	8.3	13.0	14.0	28.0	6.0
	1/0	RNB60-8									
	2/0	RNB70-8									
	3/0	RNB80-8									
	4/0	SQNBS100-8									

[^0]Frame A-1 / A-3

Figure 5-7

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD055FP2EA-41, VFD055FP2EA-52 models: if you install at Ta $40^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, B1, B2			Terminals:$\mathrm{DC}-\mathrm{DC}+, \stackrel{(1)}{ }$		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD007FP2EA-41 VFD007FP2EA-52	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in}) \\ (1.77 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$
VFD015FP2EA-41 VFD015FP2EA-52		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
$\begin{aligned} & \text { VFD022FP2EA-41 } \\ & \text { VFD022FP2EA-52 } \end{aligned}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD037FP2EA-41		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	
VFD055FP2EA-41 VFD055FP2EA-52		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$	
$\begin{aligned} & \text { VFD007FP4EA-41 } \\ & \text { VFD007FP4EA-52 } \\ & \hline \end{aligned}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 3.5 \\ 10 \mathrm{~kg}-\mathrm{cm} \\ (8.7 \mathrm{lb}-\mathrm{in} .) \\ (0.98 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD015FP4EA-41 VFD015FP4EA-52		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
$\begin{aligned} & \text { VFD022FP4EA-41 } \\ & \text { VFD022FP4EA-52 } \end{aligned}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
$\begin{aligned} & \text { VFD037FP4EA-41 } \\ & \text { VFD037FP4EA-52 } \end{aligned}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
$\begin{aligned} & \text { VFD040FP4EA-41 } \\ & \text { VFD040FP4EA-52 } \end{aligned}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ \text { (10 AWG) } \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
$\begin{aligned} & \text { VFD055FP4EA-41 } \\ & \text { VFD055FP4EA-52 } \end{aligned}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	
$\begin{aligned} & \text { VFD075FP4EA-41 } \\ & \text { VFD075FP4EA-52 } \\ & \hline \end{aligned}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$	

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, B1, B2			Terminals:$\mathrm{DC}-\mathrm{DC}+,{ }^{(}$		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD015FP5EA-41 VFD015FP5EA-52	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 10 \mathrm{~kg}-\mathrm{cm} \\ (8.7 \mathrm{lb}-\mathrm{in}) \\ (0.98 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$
VFD022FP5EA-41 VFD022FP5EA-52		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD037FP5EA-41 VFD037FP5EA-52		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
VFD055FP5EA-41 VFD055FP5EA-52	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD075FP5EA-41 VFD075FP5EA-52		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	

Table 5-3

Frame A-2

Figure 5-8

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD055FP2EA-52S models: if you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: U/T1, V/T2, W/T3, B1, B2			Terminals:$\mathrm{DC}-, \mathrm{DC}+, \stackrel{(}{\ominus}$		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD007FP2EA-52S	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$
VFD015FP2EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD022FP2EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD037FP2EA-52S		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	
VFD055FP2EA-52S		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD007FP4EA-52S	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M3.5 } \\ 10 \mathrm{~kg}-\mathrm{cm} \\ (8.7 \mathrm{lb}-\mathrm{in} .) \\ (0.98 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
VFD015FP4EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \\ \hline \end{gathered}$	
VFD022FP4EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
VFD037FP4EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD040FP4EA-52S	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ \text { (10 AWG) } \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
VFD055FP4EA-52S		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	
VFD075FP4EA-52S		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ \text { (10 AWG) } \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	

Model Name	Main Circuit Terminals: U/T1, V/T2, W/T3, B1, B2			Terminals:$\stackrel{(}{=} \text {, DC-, DC+ }$		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD015FP5EA-52S	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	M3.5 $10 \mathrm{~kg}-\mathrm{cm}$ (8.7 lb-in.) (0.98 Nm)	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ (15.6 \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$
VFD022FP5EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD037FP5EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$	
VFD055FP5EA-52S	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 18 \mathrm{~kg}-\mathrm{cm} \\ \text { (15.6 } \mathrm{lb}-\mathrm{in} .) \\ (1.77 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
VFD075FP5EA-52S		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \\ \hline \end{gathered}$	

Table 5-4

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3 (stranded wire use only)		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD007FP2EA-52S	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$4 \mathrm{~mm}^{2}$ (12 AWG)	$8 \mathrm{~kg}-\mathrm{cm}$ ($6.9 \mathrm{lb}-\mathrm{in}$) (0.78 Nm)
VFD015FP2EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD022FP2EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD037FP2EA-52S		$6 \mathrm{~mm}^{2}$ (10 AWG)	
VFD055FP2EA-52S		$6 \mathrm{~mm}^{2}$ (10 AWG)	
VFD007FP4EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD015FP4EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD022FP4EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD037FP4EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD040FP4EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD055FP4EA-52S		$6 \mathrm{~mm}^{2}$ (10 AWG)	
VFD075FP4EA-52S		$6 \mathrm{~mm}^{2}$ (10 AWG)	
VFD015FP5EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD022FP5EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD037FP5EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD055FP5EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	
VFD075FP5EA-52S		$4 \mathrm{~mm}^{2}$ (12 AWG)	

Table 5-5

Frame B-1 / B-3

Figure 5-9

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at Ta $50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD110FP2EA-41, VFD110FP2EA-52 models: if you install at Ta $35^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD220FP4EA-41, VFD220FP4EA-52 models: if you install at Ta $40^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+, B1, B2			Terminals: (ㅏ)		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
$\begin{aligned} & \text { VFD075FP2EA-41 } \\ & \text { VFD075FP2EA-52 } \end{aligned}$	$16 \mathrm{~mm}^{2}$ (6 AWG)	$\begin{gathered} \hline 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \text { M5 } \\ 25 \mathrm{~kg}-\mathrm{cm} \\ \left(\begin{array}{c} \text { (1.m.in.) } \\ (2.45 \mathrm{Nm}) \end{array}\right. \end{gathered}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & \text { (} 6 \mathrm{AWG} \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { M5 } \\ 25 \mathrm{~kg}-\mathrm{cm} \\ (21.7 \mathrm{Ib}-\mathrm{in} .) \\ (2.45 \mathrm{Nm}) \end{gathered}$
VFD110FP2EA-41 VFD110FP2EA-52		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$		$\begin{array}{r} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{array}$	$16 \mathrm{~mm}^{2}$ (6 AWG)	
$\begin{aligned} & \text { VFD110FP4EA-41 } \\ & \text { VFD110FP4EA-52 } \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$	
VFD150FP4EA-41 VFD150FP4EA-52		$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$		$\begin{array}{r} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{array}$	$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	
VFD185FP4EA-41 VFD185FP4EA-52		$16 \mathrm{~mm}^{2}$ (6 AWG)		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	$16 \mathrm{~mm}^{2}$ (6 AWG)	
VFD220FP4EA-41 VFD220FP4EA-52		$16 \mathrm{~mm}^{2}$ (6 AWG)		$16 \mathrm{~mm}^{2}$ (6 AWG)	$16 \mathrm{~mm}^{2}$ (6 AWG)	
VFD110FP5EA-41 VFD110FP5EA-52		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD150FP5EA-41 VFD150FP5EA-52		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$	
VFD185FP5EA-41 VFD185FP5EA-52		$10 \mathrm{~mm}^{2}$ (8 AWG)		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$	$10 \mathrm{~mm}^{2}$ (8 AWG)	

Table 5-6

Figure 5-10

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD110FP2EA-52S models: if you install at Ta $35^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD220FP4EA-52S models: if you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: U/T1, V/T2, W/T3, DC-, DC+, B1, B2			Terminals:		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD075FP2EA-52S	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M5 } \\ 25 \mathrm{~kg}-\mathrm{cm} \\ \text { (21.7 lb-in.) } \\ (2.45 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 5 \\ 25 \mathrm{~kg}-\mathrm{cm} \\ (21.7 \mathrm{lb}-\mathrm{in} .) \\ (2.45 \mathrm{Nm}) \end{gathered}$
VFD110FP2EA-52S		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	
VFD110FP4EA-52S		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	
VFD150FP4EA-52S		$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD185FP4EA-52S		$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	
VFD220FP4EA-52S		$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD110FP5EA-52S		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	
VFD150FP5EA-52S		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$	$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	
VFD185FP5EA-52S		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$	

Table 5-7

Chapter 5 Main Circuit Terminals | CFP2000

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3 (stranded wire use only)		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD075FP2EA-52S	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$16 \mathrm{~mm}^{2}$ (6 AWG)	$21 \mathrm{~kg}-\mathrm{cm}$ ($18.2 \mathrm{lb}-\mathrm{in}$) (2.06 Nm)
VFD110FP2EA-52S		$16 \mathrm{~mm}^{2}$ (6 AWG)	
VFD110FP4EA-52S		$10 \mathrm{~mm}^{2}$ (8 AWG)	
VFD150FP4EA-52S		$16 \mathrm{~mm}^{2}$ (6 AWG)	
VFD185FP4EA-52S		$16 \mathrm{~mm}^{2}$ (6 AWG)	
VFD220FP4EA-52S		$16 \mathrm{~mm}^{2}$ (6 AWG)	
VFD110FP5EA-52S		$10 \mathrm{~mm}^{2}$ (8 AWG)	
VFD150FP5EA-52S		$10 \mathrm{~mm}^{2}$ (8 AWG)	
VFD185FP5EA-52S		$10 \mathrm{~mm}^{2}$ (8 AWG)	

Table 5-8

Frame C-1 / C-3

Figure 5-11

- If you install at Ta $50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD185FP2EA-41, VFD185FP2EA-52, VFD370FP4EA-41, and VFD370FP4EA-52 models: if you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC+, DC-, B1, B2			Terminal:		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD150FP2EA-41 VFD150FP2EA-52	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 81.6 \mathrm{~kg}-\mathrm{cm} \\ (70.8 \mathrm{lb}-\mathrm{in} .) \\ (8.00 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 81.6 \mathrm{~kg}-\mathrm{cm} \\ (70.8 \mathrm{lb}-\mathrm{in} .) \\ (8.00 \mathrm{Nm}) \end{gathered}$
VFD185FP2EA-41 VFD185FP2EA-52		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
$\begin{aligned} & \text { VFD300FP4EA-41 } \\ & \text { VFD300FP4EA-52 } \end{aligned}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD370FP4EA-41 VFD370FP4EA-52		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD220FP5EA-41 VFD220FP5EA-52		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	
VFD300FP5EA-41 VFD300FP5EA-52		$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & (4 \mathrm{AWG}) \end{aligned}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD370FP5EA-41 VFD370FP5EA-52		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	

Table 5-9

Frame C-2

Figure 5-12

- If you install at Ta $50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD185FP2EA-52S, VFD370FP4EA-52S models: if you install at Ta $45^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: U/T1, V/T2, W/T3, DC-, DC+, B1, B2			Terminals:		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD150FP2EA-52S	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \hline 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 81.6 \mathrm{~kg}-\mathrm{cm} \\ (70.8 \mathrm{lb}-\mathrm{in} .) \\ (8.00 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} \hline 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 81.6 \mathrm{~kg}-\mathrm{cm} \\ (70.8 \mathrm{lb}-\mathrm{in} .) \\ (8.00 \mathrm{Nm}) \end{gathered}$
VFD185FP2EA-52S		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	
VFD300FP4EA-52S		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD370FP4EA-52S		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} \hline 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \hline 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	
VFD220FP5EA-52S		$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$		$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{aligned} & 35 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	
VFD300FP5EA-52S		$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD370FP5EA-52S		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (3 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \\ \hline \end{gathered}$	

Table 5-10

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3 (stranded wire use only)		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD150FP2EA-52S	$\begin{gathered} 33.6 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$35 \mathrm{~mm}^{2}$ (2 AWG)	$21 \mathrm{~kg}-\mathrm{cm}$ (18.2 lb-in) (2.06 Nm)
VFD185FP2EA-52S		$35 \mathrm{~mm}^{2}$ (2 AWG)	
VFD300FP4EA-52S		$35 \mathrm{~mm}^{2}$ (3 AWG)	
VFD370FP4EA-52S		$35 \mathrm{~mm}^{2}$ (2 AWG)	
VFD220FP5EA-52S		$16 \mathrm{~mm}^{2}$ (6 AWG)	
VFD300FP5EA-52S		$25 \mathrm{~mm}^{2}$ (4 AWG)	
VFD370FP5EA-52S		$35 \mathrm{~mm}^{2}$ (3 AWG)	

Table 5-11

Frame D0-1 / D0-3

Figure 5-13

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD300FP2EA-41, VFD300FP2EA-52, VFD450FP4EA-41, and VFD450FP4EA-52 models: if you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD550FP4EA-41 and VFD550FP4EA-52 models: if you install at Ta $35^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC+, DC-			Terminal:		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD220FP2EA-41 VFD220FP2EA-52	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$
$\begin{aligned} & \text { VFD300FP2EA-41 } \\ & \text { VFD300FP2EA-52 } \\ & \hline \end{aligned}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD450FP4EA-41 VFD450FP4EA-52		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \end{gathered}$	
VFD550FP4EA-41 VFD550FP4EA-52		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \end{gathered}$	
VFD450FP5EA-41 VFD450FP5EA-52		$\begin{gathered} \hline 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} \hline 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD550FP5EA-41 VFD550FP5EA-52		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	

Table 5-12

Frame D0-2

Figure 5-14

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at Ta $50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD300FP2EA-52S, VFD450FP4EA-52S models: if you install at Ta $40^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD550FP4EA-52S models: if you install at Ta $35^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: U/T1, V/T2, W/T3, DC-, DC+			Terminals:		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD220FP2EA-52S	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$
VFD300FP2EA-52S		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD450FP4EA-52S		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD550FP4EA-52S		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \end{gathered}$	
VFD450FP5EA-52S		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	
VFD550FP5EA-52S		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \\ \hline \end{gathered}$	

Table 5-13

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3 (stranded wire use only)		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD220FP2EA-52S	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$50 \mathrm{~mm}^{2}$ (1/0 AWG)	$\begin{gathered} \text { M8 } \\ 63 \mathrm{~kg}-\mathrm{cm} \\ (55.0 \mathrm{lb}-\mathrm{in} .) \\ (6.20 \mathrm{Nm}) \end{gathered}$
VFD300FP2EA-52S		$50 \mathrm{~mm}^{2}$ (1/0 AWG)	
VFD450FP4EA-52S		$50 \mathrm{~mm}^{2}$ (1/0 AWG)	
VFD550FP4EA-52S		$50 \mathrm{~mm}^{2}$ (1/0 AWG)	
VFD450FP5EA-52S		$35 \mathrm{~mm}^{2}$ (2 AWG)	
VFD550FP5EA-52S		$50 \mathrm{~mm}^{2}$ (1/0 AWG)	

Table 5-14

Figure 5-15

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD370FP2EA-41, VFD370FP2EA-52 models: if you install at Ta $35^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD750FP4EA-41, VFD750FP4EA-52 models: if you install at Ta $35^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD450FP2EA-41, VFD450FP2EA-52, VFD900FP4EA-41, and VFD900FP4EA-52 models: if you install at Ta $30^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC+, DC-			Terminal:		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque ($\pm 10 \%$)
VFD370FP2EA-41 VFD370FP2EA-52	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ \text { (2/0 AWG) } \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$
VFD450FP2EA-41 VFD450FP2EA-52		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$	
VFD750FP4EA-41 VFD750FP4EA-52		$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	
VFD900FP4EA-41 VFD900FP4EA-52		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$	
VFD750FP5EA-41 VFD750FP5EA-52		$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	
VFD900FP5EA-41 VFD900FP5EA-52		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$	

Table 5-15

Frame D-2

Figure 5-16

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD370FP2EA-52S models: if you install at Ta $45^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD750FP4EA-52S models: if you install at $\mathrm{Ta} 35^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- For VFD450FP2EA-52S, VFD900FP4EA-52S models: if you install at Ta $30^{\circ} \mathrm{C}$ above environment, use copper wires that have a voltage rating of 600 V and are temperature resistance to $90^{\circ} \mathrm{C}$ or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wire.

Model Name	Main Circuit Terminals: U/T1, V/T2, W/T3, DC-, DC+			Terminals:		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD370FP2EA-52S	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{~kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$
VFD450FP2EA-52S		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD750FP4EA-52S		$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$		$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD900FP4EA-52S		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ \text { (4/0 AWG) } \end{gathered}$		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$70 \mathrm{~mm}^{2}$ (2/0 AWG)	
VFD750FP5EA-52S		$\begin{gathered} 70 \mathrm{~mm}^{2} \\ \text { (2/0 AWG) } \\ \hline \end{gathered}$		$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \\ \hline \end{gathered}$	
VFD900FP5EA-52S		$\begin{aligned} & 120 \mathrm{~mm}^{2} \\ & (4 / 0 \mathrm{AWG}) \end{aligned}$		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$	

Table 5-16

Model Name	Main Circuit Terminals: R/L1, S/L2, T/L3 (stranded wire use only)		
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque $(\pm 10 \%)$
VFD370FP2EA-52S	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$	$120 \mathrm{~mm}^{2}$ (4/0 AWG)	$\begin{gathered} \text { M8 } \\ 63 \mathrm{~kg}-\mathrm{cm} \\ (55.0 \mathrm{lb}-\mathrm{in} .) \\ (6.20 \mathrm{Nm}) \end{gathered}$
VFD450FP2EA-52S		$120 \mathrm{~mm}^{2}$ (4/0 AWG)	
VFD750FP4EA-52S		95 mm² (3/0 AWG)	
VFD900FP4EA-52S		$120 \mathrm{~mm}^{2}$ (4/0 AWG)	
VFD750FP5EA-52S		$70 \mathrm{~mm}^{2}$ (2/0 AWG)	
VFD900FP5EA-52S		$120 \mathrm{~mm}^{2}$ (4/0 AWG)	

Table 5-17
[This page intentionally left blank]

Chapter 6 Control Terminals

6-1 Remove the Cover for Wiring
6-2 Specifications of Control Terminal
6-3 Remove the Terminal Block

Analog input terminals (AVI1, AVI2, ACI, ACM)

$\square \quad$ Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible ($<20 \mathrm{~m}$) with proper grounding. If the noise is inductive, connecting the shield to the ACM terminal can reduce interference.
■ Use twisted-pair wire for weak analog signals.
\square If the analog input signals are affected by noise from the AC motor drive, connect a capacitor and a ferrite core as shown in Figure 6-1.

Ferrite core
Figure 6-1

Contact input terminals (FWD, REV, MI1-MI8, COM)

\square The "COM" terminal is a common terminal of the photo-coupler in all the wiring methods.

Figure 6-2

Figure 6-4
(2) Source Mode
with internal power $\left(+24 \mathrm{~V}_{\mathrm{DC}}\right)$

Figure 6-3

> (4) Source Mode with external power

Figure 6-5
\boxtimes When the photo-coupler uses the internal power supply, the switch connection for Sink and Source modes shows as Figure 6-2 and Figure 6-3:

MI-DCM: Sink mode
MI-+24V: Source mode
\square When the photo-coupler uses the external power supply, remove the short-circuit cable between +24 V and COM terminals. The switch connection for Sink and Source modes shows as Figure 6-4 and Figure 6-5:
The " + " of 24 V connecting to COM: Sink mode
The "-" of 24 V connecting to COM : Source mode

6-1 Remove the Cover for Wiring

Remove the top cover before wiring the multi-function input and output terminals.
NOTE: The drive appearances shown in the figures are for reference only, a real drive may look different.
Frame A \& B
Applicable models:
VFD007FP2EA-41/-52/-52S, VFD015FP2EA-41/-52/-52S, VFD022FP2EA-41/-52/-52S, VFD037FP2EA-41/-52/-52S, VFD055FP2EA-41/-52/-52S, VFD075FP2EA-41/-52/-52S, VFD110FP2EA-41/-52/-52S, VFD007FP4EA-41/-52/-52S, VFD015FP4EA-41/-52/-52S, VFD022FP4EA-41/-52/-52S, VFD037FP4EA-41/-52/-52S, VFD040FP4EA-41/-52/-52S, VFD055FP4EA-41/-52/-52S, VFD075FP4EA-41/-52/-52S, VFD110FP4EA-41/-52/-52S, VFD150FP4EA-41/-52/-52S, VFD185FP4EA-41/-52/-52S, VFD220FP4EA-41/-52/-52S, VFD015FP5EA-41/-52/-52S, VFD022FP5EA-41/-52/-52S, VFD037FP5EA-41/-52/-52S, VFD055FP5EA-41/-52/-52S, VFD075FP5EA-41/-52/-52S, VFD110FP5EA-41/-52/-52S, VFD150FP5EA-41/-52/-52S, VFD185FP5EA-41/-52/52S

Screw torque: $14-16 \mathrm{~kg}-\mathrm{cm} /(12.2-13.9 \mathrm{lb}-\mathrm{in}) /.(1.4-1.6 \mathrm{Nm})$

1) Remove the keypad. (As shown in figure 6-7)
2) Loosen the screws and press the tabs on both sides to remove the cover. (As shown in figure 6-8)

Figure 6-6

Figure 6-7

Figure 6-8

Frame C

Applicable models:
VFD150FP2EA-41/-52/-52S, VFD185FP2EA-41/-52/-52S, VFD300FP4EA-41/-52/-52S, VFD370FP4EA-41/-52/-52S, VFD220FP5EA-41/-52/-52S, VFD300FP5EA-41/-52/-52S, VFD370FP5EA-41/-52/-52S

Screw torque: 12-16 kg-cm / (10.4-13.9 lb-in.) / (1.2-1.6 Nm)

1) Remove the keypad. (As shown in figure 6-10)
2) Loosen the screws and press the tabs on both sides to remove the cover. (As shown in figure 6-11)

Figure 6-9

Frame D0

Applicable models:
VFD220FP2EA-41/-52/-52S, VFD300FP2EA-41/-52/-52S, VFD450FP4EA-41/-52/-52S, VFD550FP4EA-41/-52/-52S, VFD450FP5EA-41/-52/-52S, VFD550FP5EA-41/-52/-52S

Screw torque: $14-16 \mathrm{~kg}-\mathrm{cm} /(12.1-13.9 \mathrm{lb}-\mathrm{in}) /.(1.4-1.6 \mathrm{Nm})$

1) Remove the keypad. (As shown in figure 6-13)
2) Loosen the screws and press the tabs on both sides to remove the cover. (As shown in figure 6-14)

Figure 6-12

Figure 6-13

Figure 6-14

Frame D
Applicable models:
VFD370FP2EA-41/-52/-52S, VFD450FP2EA-41/-52/-52S, VFD750FP4EA-41/-52/-52S,
VFD900FP4EA-41/-52/-52S, VFD750FP5EA-41/-52/-52S, VFD900FP5EA-41/-52/-52S
Screw torque: $14-16 \mathrm{~kg}-\mathrm{cm} /(12.1-13.9 \mathrm{lb}-\mathrm{in}) /(1.4-1.6 \mathrm{Nm})$

1) Remove the keypad. (As shown in figure 6-16)
2) Loosen the screw and press the tabs on both sides to remove the cover. (As shown in figure 6-17)

Figure 6-15

Figure 6-16

Figure 6-17

6-2 Specifications of Control Terminal

Terminal Function	Group	Conductor	Stripping Length (mm)	Max. wire Gauge	Min. wire Gauge	Torque ($\pm 10 \%$)
Relay	(A)	Solid	4-5	$\begin{gathered} 1.5 \mathrm{~mm}^{2} \\ (16 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 0.2 \mathrm{~mm}^{2} \\ (26 \mathrm{AWG}) \end{gathered}$	$5 \mathrm{~kg}-\mathrm{cm}$
		Strand				(0.49 Nm)
Control board	(B)	Solid	6-7			$8 \mathrm{~kg}-\mathrm{cm}$ ($6.9 \mathrm{lb}-\mathrm{in}$)
		Strand				$(0.78 \mathrm{Nm})$
Control board	(C)	Solid				$\begin{gathered} 2 \mathrm{~kg}-\mathrm{cm} \\ 17 \mathrm{ll}-\mathrm{in}) \end{gathered}$
		Strand				$(0.20 \mathrm{Nm})$

Wiring precautions:

Table 6-1

- In the figure above, the default for STO1, STO2, +24V and SCM1, SCM2, DCM are short circuit. The +24 V from section (C) of above figure is for STO only, and cannot be used for other purposes. The default for +24 V -COM is short circuit and SINK mode (NPN); refer to Chapter 4 Wiring for more detail.
- Tighten the wiring with slotted screwdriver:
(A) (B) is 3.5 mm (wide) $\times 0.6 \mathrm{~mm}$ (thick);
(C) is 2.5 mm (wide) $\times 0.4 \mathrm{~mm}$ (thick)
- When wiring bare wires, ensure that they are perfectly arranged to go through the wiring holes.

Terminals	Terminal Function	Default (NPN mode)
+24 V	Digital control signal common (Source)	$+24 \mathrm{~V} \pm 5 \% 200 \mathrm{~mA}$
COM	Digital control signal common (Sink)	Common for multi-function input terminals
FWD	Forward-Stop command	FWD-DCM: ON \rightarrow forward running OFF \rightarrow deceleration to stop
REV	Reverse-Stop command	REV-DCM: ON \rightarrow reverse running OFF \rightarrow deceleration to stop

Terminals	Terminal Function	Default (NPN mode) MI1 I MI8
Multi-function input 1-8	Refer to parameters 02-01-02-08 to program the multi-function inputs MI1-MI8. Source Mode	
ON: the activation voltage $\geq 11 \mathrm{VDC}$		
OFF: cut-off current voltage $\leq 5 \mathrm{VDC}$		
Sink Mode		

\begin{tabular}{|c|c|c|}
\hline Terminals \& Terminal Function \& Default (NPN mode) \\
\hline AVI2 \& \begin{tabular}{l}
Auxiliary analog voltage input \\
Figure 6-21
\end{tabular} \& \begin{tabular}{l}
Impedance: \(20 \mathrm{k} \Omega\) \\
Range: 0-10 VDC = 0-Max. Output Frequency (Pr.01-00)
\end{tabular} \\
\hline AFM1

AFM2 \& \begin{tabular}{l}
Multi-function analog voltage output

Figure 6-22

 \&

$0-10 \mathrm{~V}$ Max. output current 2 mA , Max. load $5 \mathrm{k} \Omega$ 0-20 mA Max. load 500Ω

Output current: 20 mA max.

Resolution: 0-10 V corresponds to Max. operation frequency

Range: 0-10 V $\rightarrow 4-20 \mathrm{~mA}$

AFM1 / AFM2 Switch, default is $0-10 \mathrm{~V}$
\end{tabular}

\hline ACM \& Analog Signal Common \& Common for analog terminals

\hline STO1 \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{| Default setting is shorted |
| :--- |
| Power removal safety function for EN ISO 13849 and IEC 61508 |
| When STO1-SCM1; STO2-SCM2 is activated, the voltage of STO1-SCM1 / STO2-SCM2 must be $\geq 11 \mathrm{~V}$ DC , the internal resistance for STO1-SCM1 / STO2-SCM2 is $3.6 \mathrm{k} \Omega$ |
| Note: Refer to Chapter 18 Safe Torque Off Function. |}}

\hline SCM1 \& \&

\hline STO2 \& \&

\hline SCM2 \& \&

\hline SG+ \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| Modbus RS-485 |
| :--- |
| Note: Refer to Chapter 12 DESCRIPTION OF PARAMETER SETTINGS group 09 Communication Parameters for more information. |}}

\hline SG- \& \&

\hline SGND \& \&

\hline RJ45 \& \multicolumn{2}{|l|}{| PIN 1, 2, 7, $8:$ Reserved | PIN 3, 6: SGND |
| :--- | :--- |
| PIN 4: SG- | PIN 5: SG+ |}

\hline
\end{tabular}

NOTE: Wire size of analog control signals: $0.75 \mathrm{~mm}^{2}$ (18 AWG) with shielded wire.
Table 6-2

6-3 Remove the Terminal Block

1. Loosen the screws by screwdriver. (As shown in figure below).

Screw torque: 6-8 kg-cm / (5.2-6.9 lb-in) / (0.59-0.78 Nm)

Figure 6-23
2. Remove the control board by pulling it out for a distance $6-8 \mathrm{~cm}$ (as 1 in the figure) then lift the control board upward (as 2 in the figure).

Figure 6-24

Chapter 7 Optional Accessories

7-1 Brake Resistors and Brake Units Used in AC Motor Drives
7-2 Magnetic Contactor / Air Circuit Breaker and Non-fuse Circuit Breaker
7-3 Fuse Specification Chart
7-4 AC Reactor
7-5 Zero Phase Reactor
7-6 EMC Filter
7-7 Panel Mounting
7-8 Fan Kit
7-9 USB/RS-485 Communication Interface IFD6530

The optional accessories listed in this chapter are available upon request．Installing additional accessories to your drive can substantially improve the drive＇s performance．Select accessories according to your needs or contact your local distributor for suggestion．

7－1 Brake Resistors and Brake Units Used in AC Motor Drives

230 V Model

Applicable Motor		125\％Braking Torque／10\％ED＊1							Max．Braking Torque＊2		
		Braking Torque （kg－m）	Brake Unit	Brake Resistor Series for Each Brake Unit＊3			Resistor Value Spec．for Each AC Motor Drive	Total Braking Current （A）	Min． Resistor Value（ Ω ）	Max． Total Braking Current （A）	Peak Power （kW）
HP	kW		VFDB＊4	P／N	Q＇ty	Configuration					
1	0.7	0.5	2015	BR080W200	1	－	80W 200Ω	1.9	63.3	6.0	2.3
2	1.5	0.5	2015	BR080W200	1	－	80W 200』	1.9	63.3	6.0	2.3
3	2.2	1	2015	BR200W091	1	－	200W 91』	4.2	47.5	8.0	3.0
5	3.7	1.5	2015	BR300W070	1	－	300W 70Ω	5.4	38	10.0	3.8
7.5	5.5	2.5	2015	BR400W040	1	－	400W 40ת	9.5	19	20.0	7.6
10	7.5	2.7	2015	BR1K0W020	1	－	1000W 20Ω	19	14.6	26.0	9.9
15	11	3.7	2015	BR1K0W020	1	－	1000W 20Ω	19	14.6	26.0	9.9
20	15	5.1	2015	BR1K5W013	1	－	1500W 13ת	29	11.6	32.8	12.4
25	18	7.4	2022	BR1K0W4P3	2	2 in series	2000W 8.6Ω	44	9.6	39.6	15.0
30	22	10.2	2022	BR1K0W4P3	2	2 in series	2000W 8.6Ω	44	6.4	59.4	22.6
40	30	12.2	2015×2	BR1K5W3P3	2	2 in series	6000W 3.3Ω	58	5.8	65.5	24.9
50	37	14.9	2015×2	BR1K0W5P1	2	2 in series	4000W 5．1过	75	4.8	79.2	30.1
60	45	20.3	2022×2	BR1K2W3P9	2	2 in series	4800W 3．98	97	3.2	118.8	45.1

Table 7－1

460V Model

Applicable Motor		125\％Braking Torque 10\％ED＊1							Max．Braking Torque＊2		
		Braking Torque （kg－m）	Brake Unit	Brake Resistor Series for Each Brake Unit＊3			Resistor Value Spec．for Each AC Motor Drive	Total Braking Current （A）	Min． Resistor Value（ Ω ）	Max． Total Braking Current （A）	Peak Power （kW）
HP	kW		VFDB＊4	P／N	Q＇ty	Configuration					
1	0.75	0.5	－	BR080W750	1	－	80W750ת	1	190.0	4	3.0
2	1.5	0.5	－	BR080W750	1	－	80W750ת	1	190.0	4	3.0
3	2.2	1.0	－	BR200W360	1	－	200W360ת	2.1	126.7	6	4.6
5	3.7	1.5	－	BR300W250	1	－	300W250	3	108.6	7	5.3
5	4.0	2.5	－	BR400W150	1	－	400W150	5.1	84.4	9	6.8
7.5	5.5	2.7	－	BR1K0W075	1	－	1000W75	10.2	54.3	14	10.6
10	7.5	3.7	－	BR1K0W075	1	－	1000W75	10.2	54.3	14	10.6
15	11	5.1	－	BR1K0W075	1	－	1000W75	10.2	47.5	16	12.2
20	15	7.4	－	BR1K5W043	1	－	1500W43ת	17.6	42.2	18	13.7
25	18	10.2	－	BR1K0W016	2	2 in series	2000W32	24	26.2	29	22.0
30	22	12.2	－	BR1K0W016	2	2 in series	2000W32ת	24	23.0	33	25.1
40	30	14.9	－	BR1K5W013	2	2 in series	$3000 \mathrm{~W} 26 \Omega$	29	23.0	33	25.1
50	37	20.3	－	BR1K0W016	4	2 parallel， 2 in series	4000W16』	47.5	14.1	54	41.0
60	45	25	4045×1	BR1K2W015	4	2 parallel， 2 in series	4800W15	50	12.7	60	45.6
75	55	30.5	4045×1	BR1K5W013	4	2 parallel， 2 in series	6000W13	59	12.7	60	45.6
100	75	37.2	4030×2	BR1K0W5P1	4	4 in series	8000W10．2 2	76	9.5	80	60.8
125	90	50.8	4045×2	BR1K2W015	4	2 parallel， 2 in series	9600W7．5』	100	6.3	120	91.2

Table 7－2

575V Model

Applicable Motor		125\%Braking Torque / 10\%ED*1							Max. Braking Torque*2		
HP	kW	Braking Torque (kg-m)	Brake Unit	Brake Resistor Series for Each Brake Unit*3			Resistor Value Spec. for Each AC Motor Drive	Total Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Peak Power (kW)
			VFDB*4	P/N	Q'ty	Configuration					
2	1.5	0.5	-	BR300W400	1	-	300W 400	2.2	164.3	5.4	4.9
3	2.2	1	-	BR200W360	1	-	200W 360Ω	2.5	164.3	5.4	4.9
5	3.7	1.5	-	BR300W250	1	-	300W 250』	3.6	87.6	10.2	9.1
7.5	5.5	2.7	-	BR750W140	1	-	750W 140』	6.4	52.6	17.0	15.2
10	7.5	3.7	-	BR1K1W091	1	-		9.8	52.6	17.0	15.2
15	11	5.1	-	BR1K0W075	1	-	1000W 75S	11.9	37.6	23.8	21.3
20	15	7.4	-	BR1K0W025	2	2 in series	2000W 50Ω	17.9	33.7	26.6	23.8
25	18.5	10.2	-	BR1K2W015	3	3 in series	3600W 45@	19.9	23.0	38.9	34.8
30	22.5	12.2	-	BR1K5W012	3	3 in series	4500W 36Ω	24.9	18.4	48.6	43.5
40	30	14.9	-	BR1K5W013	2	2 in series	3000W 26Ω	34.4	18.4	48.6	43.5
50	37	20.3	-	BR1K1W091	4	4 parallel	4000W 23ת	38.9	12.3	73.0	65.3
60	45	25	5055	BR2250W020	4	2 parallel, 2 in series	9000W 20ת	44.8	15.2	58.9	52.7
75	55	30.5	5055×2	BR1K0W9P5	3	3 in series	6000W 14.3Ω	62.6	7.6	117.8	105.4
100	75	37.2	5055×2	BR1K0W5P8	4	4 in series	8000W 11.6Ω	77.2	7.6	117.8	105.4
125	90	50.8	5055×2	BR1K5W3P3	5	5 in series	15000W 8.3Ω	107.8	7.6	117.8	105.4

Table 7-3
*1: Calculation for 125% brake torque: $(\mathrm{kW}) \times 125 \% \times 0.8$; where 0.8 is the motor efficiency.
Since there is a resistor power consumption limit, the longest operation time for 10% ED is 10 seconds (ON: 10 seconds / OFF: 90 seconds).
*2: See Chapter 7 "Brake Module and Brake Resistors" in the application manual for "Operation Duration \& ED" vs. "Braking Current".
*3: To dissipate heat, mount resistors of 400 W or lower to a frame to keep the surface temperature below $250^{\circ} \mathrm{C}$. Fix a resistor of 1000 W or higher to a surface to keep the surface temperature below $350^{\circ} \mathrm{C}$. (If the surface temperature is higher than the temperature limit, install extra cooling or increase the size of the resistor.)
*4: The calculation of the brake resistor is based on a four-pole motor (1800 rpm). See VFDB series Braking Module Instruction for more details on brake resistor.

NOTE:

1. Specification and Appearances of Brake Resistors
(1) Wire wound resistors: For 1000W and above, see the following appearance of wire wound resistor (Figure 7-1) and its model and specification comparison table (Table 7-2) for details.

Figure 7-1

Chapter 7 Optional Accessories CFP2000

Model and Specification Comparison Table of Wire Wound Resistors:
Unit: mm

MODEL	A	B	C	D	E	F	G	H	$\phi 1$	ϕ J	K	L
BR1K0W4P3	470 ± 10	445 ± 5	48 ± 0.2	9.1 ± 0.1	390 ± 3	98 ± 5	47 ± 5	15 ± 1	55 ± 5	8.1 ± 0.1	21 ± 0.2	8 ± 1
BR1K0W5P1												
BR1K0W016												
BR1K0W020												
BR1K0W075												
BR1K2W3P9												
BR1K2W015												
BR1K5W3P3												
BR1K5W012												
BR1K5W013												
BR1K5W043												

Table 7-4
(2) Aluminum housed resistors: For below 1000W, see the following appearance of aluminum-housed resistor (Figure 7-2) and its model and specification comparison table (Table 7-3) for details.

Figure 7-2
Model and Specification Comparison Table of Aluminum Housed Resistors:

MODEL	L1	L2	L3	W	H	A	L
BR080W200	140 ± 2	125 ± 2	100 ± 1	40 ± 0.5	20 ± 0.5	5.3 ± 0.5	200 ± 20
BR080W750							
BR200W091	165 ± 2	150 ± 2	125 ± 1	60 ± 0.5	30 ± 0.5		
BR200W360							
BR300W070	215 ± 2	200 ± 2	175 ± 1				
BR300W250							
BR400W040	265 ± 2	250 ± 2	225 ± 1				
BR400W150							

Unit: mm
Table 7-5
2. How to install brake resistors?
(1) Clearance around brake resistors (See Figure 7-3-7-8)

- The side clearance around the brake resistor should be over 150 mm .
- The top clearance above the brake resistor should be over 500 mm .
- The clearance between two brake resistors should be at least 150 mm .

Single brake resistor

Multiple brake resistor

Figure 7-7

Vertical Mounting							
		Floor					

Figure 7-8
(2) Installation limits

Both horizontal and vertical mounting is safe if there is sufficient clearance and the brake resistor is installed in the correct position. Note the following:

- Do NOT install brake resistors on another brake resistor or above any hot air source.
(Do NOT mount as shown in Figure 7-9)
- When mounting vertically, the cable connection should not be on the top of the brake resistor. (Do NOT mount as shown in Figure 7-10)

Figure 7-9

Figure 7-10
3. Select the resistance value, power and brake usage (ED \%) according to Delta rules. 100\%

$E D \%=T 1 / T 0 \times 100(\%)$
Explanation:
Brake usage ED (\%) is the amount of time needed for the brake unit and brake resistor to dissipate heat generated by braking. When the brake resistor heats up, the resistance increases with temperature, and braking torque decreases accordingly.

Figure 7-11
For safety, install a thermal overload relay between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) at the drive mains input for additional protection. The thermal overload relay protects the brake resistor from overheat damage due to frequent or continuous braking. Under such circumstances, turn off the power to prevent damage to the brake resistor, brake unit and the drive. NOTE: Never use it to disconnect the brake resistor.

- When AC Drive is equipped with a DC reactor, please read user manual for the correct wiring for the brake unit input circuit $+(\mathrm{P})$.
- DO NOT connect input circuit -(N) to the neutral point of the power system.

Figure 7-12
4. Any damage to the drive or other equipment caused by using brake resistors and brake modules that are not provided by Delta voids the warranty.
5. Consider environmental safety factors when installing the brake resistors. If you use the minimum resistance value, consult your local dealers for the power calculation.
6. When using more than two brake units, the equivalent resistor value of the parallel brake unit cannot be less than the value in the column "Min. Resistor Value (Ω)". Read the wiring information in the brake unit instruction sheet thoroughly prior to operation. Visit the following links to get the instruction sheets for the wiring in the brake unit:

- VFDB2015 / 2022 / 4030 / 4045 / 5055 Braking Modules Instruction Sheet http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA IA-MDS VFDB I EN 20070719.pdf
- VFDB4110 / 4160 / 4185 Braking Modules Instruction Sheet http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA IA-MDS VFDB4110-41 60-4185 | EN 20101011.pdf
- VFDB6055 / 6110 / 6160 / 6200 Braking Modules Instruction Sheet http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA IA-MDS VFDB6055-61 10-6160-6200 | TSE 20121030.pdf

7. The selection tables are for normal use. If the $A C$ motor drive requires frequent braking, increase the Watts by two to three times.
8. Thermal Overload Relay (TOR), for $230 \mathrm{~V} / 460 \mathrm{~V} / 575 \mathrm{~V}$ models:

Thermal overload relay selection is based on its overload capacity. A standard braking capacity of the CFP2000 is 10% ED (Tripping time $=10 \mathrm{sec}$.). As shown in the figure below, a $460 \mathrm{~V}, 110 \mathrm{~kW}$ CFP2000 requires the thermal relay to take 260% overload capacity for 10 seconds (hot starting) and the braking current is 126 A . In this case, select a thermal overload relay rated at 50 A . The specification of each thermal relay may vary among different manufacturers. Carefully read the specification before using it.

Figure 7-13

7-2 Magnetic Contactor / Air Circuit Breaker and Non-fuse Circuit Breaker

Magnetic Contactor (MC) and Air Circuit Breaker (ACB)

It is recommended the surrounding temperature for MC should be $\geq 60^{\circ} \mathrm{C}$ and that for ACB should be $\geq 50^{\circ} \mathrm{C}$. In the meanwhile, consider temperature derating for components with ON/OFF switch in accordance with the ambient temperature of the on-site distribution panel.

230V Model

Frame	Model	Light Duty Output Current (A)	Light Duty Input Current (A)	MC/ACB Selection (A)
	VFD007FP2EA-41/-52/-52S	5	5	9
	VFD015FP2EA-41/-52/-52S	7.5	7.5	13
	VFD022FP2EA-41/-52/-52S	10	10	18
	VFD037FP2EA-41/-52/-52S	15	15	32
	VFD055FP2EA-41/-52/-52S	21	21	40
B	VFD075FP2EA-41/-52/-52S	31	31	55
	VFD110FP2EA-41/-52/-52S	46	46	75
C	VFD150FP2EA-41/-52/-52S	61	61	105
	VFD185FP2EA-41/-52/-52S	75	75	130
D0	VFD220FP2EA-41/-52/-52S	90	90	150
	VFD300FP2EA-41/-52/-52S	105	105	185
D	VFD370FP2EA-41/-52/-52S	146	146	265
	VFD450FP2EA-41/-52/-52S	180	180	330

460V Model
Table 7-6

Frame	Model	Light Duty Output Current (A)	Light Duty Input Current (A)	MC/ACB Selection (A)
A	VFD007FP4EA-41/-52/-52S	3	3	7
	VFD015FP4EA-41/-52/-52S	4.2	4.2	7
	VFD022FP4EA-41/-52/-52S	5.5	5.5	9
	VFD037FP4EA-41/-52/-52S	8.5	8.5	18
	VFD040FP4EA-41/-52/-52S	10.5	10.5	18
	VFD055FP4EA-41/-52/-52S	13	13	22
	VFD075FP4EA-41/-52/-52S	18	18	32
B	VFD110FP4EA-41/-52/-52S	24	24	40
	VFD150FP4EA-41/-52/-52S	32	32	50
	VFD185FP4EA-41/-52/-52S	38	38	65
	VFD220FP4EA-41/-52/-52S	45	45	75
C	VFD300FP4EA-41/-52/-52S	60	60	105
	VFD370FP4EA-41/-52/-52S	73	73	130
D0	VFD450FP4EA-41/-52/-52S	91	91	150
	VFD550FP4EA-41/-52/-52S	110	110	185
D	VFD750FP4EA-41/-52/-52S	150	150	265
	VFD900FP4EA-41/-52/-52S	180	180	330

575V Model

Frame	Model	Light Duty Output Current (A)	Light Duty Input Current (A)	MC/ACB Selection (A)
	VFD015FP5EA-41/-52/-52S	3	3	5
	VFD022FP5EA-41/-52/-52S	4.3	4.3	9
	VFD037FP5EA-41/-52/-52S	6.7	6.7	18
	VFD055FP5EA-41/-52/-52S	9.9	9.9	18
	VFD075FP5EA-41/-52/-52S	12.1	12.1	23
B	VFD110FP5EA-41/-52/-52S	18.7	18.7	35
	VFD150FP5EA-41/-52/-52S	24.2	24.2	45
	VFD185FP5EA-41/-52/-52S	30	30	60
	VFD220FP5EA-41/-52/-52S	VFD300FP5EA-41/-52/-52S	36	36
D0	VFD370FP5EA-41/-52/-52S	54	45	60
	VFD450FP5EA-41/-52/-52S	67	67	120
	VFD550FP5EA-41/-52/-52S	VFD750FP5EA-41/-52/-52S	104	86

Table 7-8

Non-fuse Circuit Breaker

Comply with the UL standard: Per UL 508, paragraph 45.8.4, part a.
The rated current of the non-fuse circuit breaker should be 1.6-2.6 times the drive's rated input current.

230V Model

Model	Breaker Rated Input Recommended Current (A)
VFD007FP2EA-41/-52/-52S	8
VFD015FP2EA-41/-52/-52S	12
VFD022FP2EA-41/-52/-52S	15
VFD037FP2EA-41/-52/-52S	25
VFD055FP2EA-41/-52/-52S	35
VFD075FP2EA-41/-52/-52S	50
VFD110FP2EA-41/-52/-52S	80
VFD150FP2EA-41/-52/-52S	100
VFD185FP2EA-41/-52/-52S	125
VFD220FP2EA-41/-52/-52S	150
VFD300FP2EA-41/-52/-52S	175
VFD370FP2EA-41/-52/-52S	225
VFD450FP2EA-41/-52/-52S	300

Table 7-9

460V Model

Model	Breaker Rated Input Recommended Current (A)
VFD007FP4EA-41/-52/-52S	6
VFD015FP4EA-41/-52/-52S	6
VFD022FP4EA-41/-52/-52S	10
VFD037FP4EA-41/-52/-52S	15
VFD040FP4EA-41/-52/-52S	15
VFD055FP4EA-41/-52/-52S	20
VFD075FP4EA-41/-52/-52S	25
VFD110FP4EA-41/-52/-52S	35
VFD150FP4EA-41/-52/-52S	50
VFD185FP4EA-41/-52/-52S	60
VFD220FP4EA-41/-52/-52S	60
VFD300FP4EA-41/-52/-52S	90
VFD370FP4EA-41/-52/-52S	100
VFD450FP4EA-41/-52/-52S	125
VFD550FP4EA-41/-52/-52S	150
VFD750FP4EA-41/-52/-52S	200
VFD900FP4EA-41/-52/-52S	250

Table 7-10
575V Model

Model	Breaker Rated Input Recommended Current (A)
VFD015FP5EA-41/-52/-52S	6
VFD022FP5EA-41/-52/-52S	10
VFD037FP5EA-41/-52/-52S	15
VFD055FP5EA-41/-52/-52S	20
VFD075FP5EA-41/-52/-52S	25
VFD110FP5EA-41/-52/-52S	30
VFD150FP5EA-41/-52/-52S	40
VFD185FP5EA-41/-52/-52S	50
VFD220FP5EA-41/-52/-52S	60
VFD300FP5EA-41/-52/-52S	75
VFD370FP5EA-41/-52/-52S	90
VFD450FP5EA-41/-52/-52S	110
VFD550FP5EA-41/-52/-52S	150
VFD750FP5EA-41/-52/-52S	175
VFD900FP5EA-41/-52/-52S	200

Table 7-11

7-3 Fuse Specification Chart

\square Fuse specifications lower than the table below are allowed.
\square For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. Use UL classified fuses to fulfill this requirement."
\square For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. Use UL classified fuses to fulfill this requirement."

230V Model	Input Current I (A)		Line Fuse	
	Light Duty	Normal Duty	I (A)	Bussmann P/N
VFD007FP2EA-41/-52/-52S	5	3	8	JJS-8
VFD015FP2EA-41/-52/-52S	7.5	5	12	JJS-12
VFD022FP2EA-41/-52/-52S	10	8	15	JJS-15
VFD037FP2EA-41/-52/-52S	15	11	25	JJS-25
VFD055FP2EA-41/-52/-52S	21	17	35	JJS-35
VFD075FP2EA-41/-52/-52S	31	25	50	JJS-50
VFD110FP2EA-41/-52/-52S	46	33	80	JJS-80
VFD150FP2EA-41/-52/-52S	61	49	100	JJS-100
VFD185FP2EA-41/-52/-52S	75	65	125	JJS-125
VFD220FP2EA-41/-52/-52S	90	75	150	JJS-150
VFD300FP2EA-41/-52/-52S	105	90	175	JJS-175
VFD370FP2EA-41/-52/-52S	146	120	225	JJS-225
VFD450FP2EA-41/-52/-52S	180	146	300	JJS-300

Table 7-12

460V Model	Input Current I (A)		Line Fuse	
	Light Duty	Normal Duty	I (A)	Bussmann P/N
VFD007FP4EA-41/-52/-52S	3.0	1.7	6	JJS-6
VFD015FP4EA-41/-52/-52S	4.2	3	6	JJS-6
VFD022FP4EA-41/-52/-52S	5.5	4	10	JJS-10
VFD037FP4EA-41/-52/-52S	8.5	6	15	JJS-15
VFD040FP4EA-41/-52/-52S	10.5	9	15	JJS-15
VFD055FP4EA-41/-52/-52S	13	10.5	20	JJS-20
VFD075FP4EA-41/-52/-52S	18	12	25	JJS-25
VFD110FP4EA-41/-52/-52S	24	18	35	JJS-35
VFD150FP4EA-41/-52/-52S	32	24	50	JJS-50
VFD185FP4EA-41/-52/-52S	38	32	60	JJS-60
VFD220FP4EA-41/-52/-52S	45	38	60	JJS-60
VFD300FP4EA-41/-52/-52S	60	45	90	JJS-90
VFD370FP4EA-41/-52/-52S	73	60	100	JJS-100
VFD450FP4EA-41/-52/-52S	91	73	125	JJS-125
VFD550FP4EA-41/-52/-52S	110	91	150	JJS-150

460V Model	Input Current I (A)		Line Fuse	
	Light Duty	Normal Duty	I (A)	Bussmann P/N
VFD750FP4EA-41/-52/-52S	150	110	200	JJS-200
VFD900FP4EA-41/-52/-52S	180	150	250	JJS-250

Table 7-13

575V Model	Input Current I (A)		Line Fuse	
	Light Duty	Normal Duty	I (A)	Bussmann P/N
VFD015FP5EA-41/-52/-52S	3	2.5	6	JJS-6
VFD022FP5EA-41/52/-52S	4.3	3.6	10	JJS-10
VFD037FP5EA-41/-52/-52S	6.7	5.5	15	JJS-15
VFD055FP5EA-41/-52/-52S	9.9	8.2	20	JJS-20
VFD075FP5EA-41/-52/-52S	12.1	10	25	JJS-25
VFD110FP5EA-41/-52/-52S	18.7	15.5	30	JJS-30
VFD150FP5EA-41/-52/-52S	24.2	20	40	JJS-40
VFD185FP5EA-41/-52/-52S	30	24	50	JJS-50
VFD220FP5EA-41/-52/-52S	36	30	60	JJS-60
VFD300FP5EA-41/-52/-52S	45	36	75	JJS-75
VFD370FP5EA-41/-52/-52S	54	45	90	JJS-90
VFD450FP5EA-41/-52/-52S	67	54	110	JJS-110
VFD550FP5EA-41/-52/-52S	86	67	150	JJS-150
VFD750FP5EA-41/-52/-52S	104	86	175	JJS-175
VFD900FP5EA-41/-52/-52S	125	104	200	JJS-200

7-4 AC Reactor

AC Input Reactor

Installing an AC reactor on the input side of an AC motor drive can increase line impedance, improve power factor, reduce input current, and reduce interference generated from the motor drive. It also reduces momentary voltage surges or abnormal current spikes. For example, when the main power capacity is higher than 500 kVA , or when using a switching capacitor bank, momentary voltage and current spike may damage the AC motor drive's internal circuit. An AC reactor on the input side of the AC motor drive protects it by suppressing surges.

Installation

Install an AC input reactor in series with the mains power to the three input phases R, S \& T as shown below:

Figure 7-14 Wiring an AC input reactor

Following table shows the standard AC reactors specification of Delta CFP2000:
200-230V / 50-60 Hz, Light Duty

Model	kW	HP		Saturation Current (Arms)	$\begin{array}{\|c\|} \hline 3 \% \\ \text { Reactor } \\ (\mathrm{mH}) \\ \hline \end{array}$	$\begin{gathered} 5 \% \\ \text { Reactor } \\ (\mathrm{mH}) \\ \hline \end{gathered}$	Built-in DC Reactor	Input AC Reactor Delta Part \#	Heat Dissipation (W)
VFD007FP2EA-41/-52 / VFD007FP2EA-52S	0.75	1	5	6	2.536	4.227	Yes	DR005A0254	21
VFD015FP2EA-41/-52 / VFD015FP2EA-52S	1.5	2	7.5	9	1.585	2.642	Yes	DR008A0159	37
$\begin{aligned} & \text { VFD022FP2EA-41/-52 } \\ & \text { / VFD022FP2EA-52S } \end{aligned}$	2.2	3	10	12	1.152	1.92	Yes	DR011A0115	38
VFD037FP2EA-41/-52 / VFD037FP2EA-52S	3.7	5	15	18	0.746	1.243	Yes	DR017AP746	40
VFD055FP2EA-41/-52 / VFD055FP2EA-52S	5.5	7.5	21	25.2	0.507	0.845	Yes	DR025AP507	61
VFD075FP2EA-41/-52 / VFD075FP2EA-52S	7.5	10	31	37.2	0.38	0.633	Yes	DR033AP320	60
VFD110FP2EA-41/-52 / VFD110FP2EA-52S	11	15	46	55.2	0.26	0.433	Yes	DR049AP215	70
$\begin{aligned} & \text { VFD150FP2EA-41/-52 } \\ & \text { VFD150FP2EA-52S } \end{aligned}$	15	20	61	73.2	0.196	0.327	Yes	DR065AP162	83
VFD185FP2EA-41/-52 / VFD185FP2EA-52S	18.5	25	75	90	0.169	0.282	Yes	DR075AP170	150
VFD220FP2EA-41/-52 / VFD200FP2EA-52S	22	30	90	108	0.141	0.235	Yes	DR090AP141	120
VFD300FP2EA-41/-52 / VFD300FP2EA-52S	30	40	105	126	0.12	0.2	Yes	DR105AP106	150
VFD370FP2EA-41/-52 / VFD370FP2EA-52S	37	50	146	175.2	0.087	0.145	Yes	DR146AP087	110
$\begin{aligned} & \text { VFD450FP2EA-41/-52 } \\ & \text { / VFD450FP2EA-52S } \end{aligned}$	45	60	180	216	0.07	0.117	Yes	DR180AP070	120

Table 7-15
200-230V / 50-60 Hz, Normal Duty

Model	kW	HP		Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Input AC Reactor Delta Part \#	Heat Dissipation (W)
VFD007FP2EA-41/-52 / VFD007FP2EA-52S	0.75	1	4.6	7.36	2.536	4.227	Yes	DR005A0254	21
$\begin{aligned} & \text { VFD015FP2EA-41/-52 } \\ & \text { / VFD015FP2EA-52S } \end{aligned}$	1.5	2	5	8	2.536	4.227	Yes	DR005A0254	21
VFD022FP2EA-41/-52 / VFD022FP2EA-52S	2.2	3	8	12.8	1.585	2.642	Yes	DR008A0159	37
VFD037FP2EA-41/-52 / VFD037FP2EA-52S	3.7	5	11	17.6	1.152	1.92	Yes	DR011A0115	38
VFD055FP2EA-41/-52 / VFD055FP2EA-52S	5.5	7.5	17	27.2	0.746	1.243	Yes	DR017AP746	40
VFD075FP2EA-41/-52 / VFD075FP2EA-52S	7.5	10	25	40	0.507	0.845	Yes	DR025AP507	61
VFD110FP2EA-41/-52 / VFD110FP2EA-52S	11	15	33	52.8	0.38	0.633	Yes	DR033AP320	60
VFD150FP2EA-41/-52 / VFD150FP2EA-52S	15	20	49	78.4	0.26	0.433	Yes	DR049AP215	70
VFD185FP2EA-41/-52 / VFD185FP2EA-52S	18.5	25	65	104	0.196	0.327	Yes	DR065AP162	83
VFD220FP2EA-41/-52 / VFD220FP2EA-52S	22	30	75	120	0.169	0.282	Yes	DR075AP170	150
VFD300FP2EA-41/-52 / VFD300FP2EA-52S	30	40	90	144	0.141	0.235	Yes	DR090AP141	120

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC	Input AC Reactor	Heator Delta Part \#
Dissipation (W)									
/VFD70FP2EA-41/-52	37	50	120	192	0.12	0.2	Yes	DR105AP106	150
VFD450FP2EA-41/-52 /VFD450FP2EA-52S	45	60	146	233.6	0.087	0.145	Yes	DR146AP087	110

NOTE: The above heat dissipation is calculated based on AC reactor's rated current; the actual dissipation varies with the operation current.

Table 7-16
380V-460V / 50-60 Hz, Light Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC reactor	Input AC Reactor Delta part \#	Heat Dissipation (W)
VFD007FP4EA-41/-52 $/$ VFD007FP4EA-52S	0.75	1	3	3.9	8.102	13.502	Yes	DR003A0810	20
VFD015FP4EA-41/-52 $/$ VFD015FP4EA-52S	1.5	2	4.2	5.46	6.077	10.127	Yes	DR004A0607	21
VFD022FP4EA-41/-52 $/$ VFD022FP4EA-52S	2.2	3	5.5	7.15	4.05	6.752	Yes	DR006A0405	31
VFD037FP4EA-41/-52 $/$ VFD037FP4EA-52S	3.7	5	8.5	11.05	2.7	4.501	Yes	DR009A0270	40
VFD040FP4EA-41/-52 $/$ VFD040FP4EA-52S	4	5	10.5	13.65	2.315	3.858	Yes	DR010A0231	50
VFD055FP4EA-41/-52 $/$ VFD055FP4EA-52S	5.5	7.5	13	16.9	2.025	3.375	Yes	DR012A0202	50
VFD075FP4EA-41/-52 $/$ VFD075FP4EA-52S	7.5	10	18	23.4	1.174	1.957	Yes	DR018A0117	54
VFD110FP4EA-41/-52 $/$ VFD110FP4EA-52S	11	15	24	31.2	0.881	1.468	Yes	DR024AP881	60
VFD150FP4EA-41/-52 $/$ VFD150FP4EA-52S	15	20	32	41.6	0.66	1.101	Yes	DR032AP660	80
VFD185FP4EA-41/-52 $/$ VFD185FP4EA-52S	18.5	25	38	49.4	0.639	1.066	Yes	DR038AP639	85
VFD220FP4EA-41/-52 $/$ VFD220FP4EA-52S	22	30	45	58.5	0.541	0.9	Yes	DR045AP541	95
VFD300FP4EA-41/-52 $/$ VFD300FP4EA-52S	30	40	60	78	0.405	0.675	Yes	DR060AP405	100
VFD370FP4EA-41/-52 $/$ VFD370FP4EA-52S	37	50	73	94.9	0.334	0.555	Yes	DR073AP334	115
VFD450FP4EA-41/-52 $/$ VFD450FP4EA-52S	45	60	91	118.3	0.267	0.445	Yes	DR091AP267	130
VFD550FP4EA-41/-52 $/$ VFD550FP4EA-52S	55	75	110	143	0.221	0.368	Yes	DR110AP221	150
VFD750FP4EA-41/-52 $/$ VFD750FP4EA-52S	75	100	150	195	0.162	0.27	Yes	DR150AP162	170
VFD900FP4EA-41/-52 $/$ VFD900FP4EA-52S	90	125	180	234	0.135	0.225	Yes	DR180AP135	190

Table 7-17
380V-460V / 50-60 Hz, Normal Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC	Input AC Reactor	Heat Delta part \#
Dissipation (W)									
VFD007FP4EA-41/-52 /VFD007FP4EA-52S	0.75	1	2.8	2.72	13.344	22.241	Yes	DR003A0810*1	20
VFD015FP4EA-41/-52 $/$ VFD015FP4EA-52S	1.5	2	3	4.8	8.102	13.502	Yes	DR003A0810	20
VFD022FP4EA-41/-52 / VFD022FP4EA-52S	2.2	3	4	6.4	6.077	10.127	Yes	DR004A0607	21

Model	kW	HP	Rated Current (Arms)	$\begin{array}{\|c\|} \hline \text { Saturation } \\ \text { Current } \\ \text { (Arms) } \end{array}$	$\begin{array}{\|c\|} \hline 3 \% \\ \text { Reactor } \\ (\mathrm{mH}) \\ \hline \end{array}$	$\begin{gathered} 5 \% \\ \text { Reactor } \\ (\mathrm{mH}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Built-in } \\ \text { DC } \\ \text { Reactor } \\ \hline \end{gathered}$	Input AC Reactor Delta part \#	Heat Dissipation (W)
VFD037FP4EA-41/-52 / VFD037FP4EA-52S	3.7	5	6	9.6	4.05	6.752	Yes	DR006A0405	31
VFD040FP4EA-41/-52 / VFD040FP4EA-52S	4	5	9	14.4	2.7	4.501	Yes	DR009A0270	40
VFD055FP4EA-41/-52 / VFD055FP4EA-52S	5.5	7.5	10.5	16.8	2.315	3.858	Yes	DR010A0231	50
VFD075FP4EA-41/-52 / VFD075FP4EA-52S	7.5	10	12	19.2	2.025	3.375	Yes	DR012A0202	50
VFD110FP4EA-41/-52 / VFD110FP4EA-52S	11	15	18	28.8	1.174	1.957	Yes	DR018A0117	54
VFD150FP4EA-41/-52 / VFD150FP4EA-52S	15	20	24	38.4	0.881	1.468	Yes	DR024AP881	60
VFD185FP4EA-41/-52 / VFD185FP4EA-52S	18.5	25	32	51.2	0.66	1.101	Yes	DR032AP660	80
VFD220FP4EA-41/-52 / VFD220FP4EA-52S	22	30	38	60.8	0.639	1.066	Yes	DR038AP639	85
VFD300FP4EA-41/-52 / VFD300FP4EA-52S	30	40	45	72	0.541	0.9	Yes	DR045AP541	95
VFD370FP4EA-41/-52 / VFD370FP4EA-52S	37	50	60	96	0.405	0.675	Yes	DR060AP405	100
$\begin{aligned} & \text { VFD450FP4EA-41/-52 } \\ & \text { / VFD450FP4EA-52S } \end{aligned}$	45	60	73	116.8	0.334	0.555	Yes	DR073AP334	115
VFD550FP4EA-41/-52 / VFD550FP4EA-52S	55	75	91	145.6	0.267	0.445	Yes	DR091AP267	130
$\begin{aligned} & \text { VFD750FP4EA-41/-52 } \\ & \text { / VFD750FP4EA-52S } \end{aligned}$	75	100	110	176	0.221	0.368	Yes	DR110AP221	150
VFD900FP4EA-41/-52 / VFD900FP4EA-52S	90	125	150	240	0.162	0.27	Yes	DR150AP162	170

NOTE:

*1: The inductance value for the above applications of Delta's reactors will be closer, but less than 3%.
2: The above heat dissipation is calculated based on AC reactor's rated current; the actual dissipation varies with the operation current.

Table 7-18
575V-600V / 50-60 Hz, Light Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Input AC Reactor Delta part \#	Heat Dissipation (W)
VFD015FP5EA-41/-52 $/$ VFD015FP5EA-52S	1.5	2	2.5	4	19.10	19.10	Yes	N / A	N / A
VFD022FP5EA-41/-52 $/$ VFD022FP5EA-52S	2.2	3	3.6	6	13.26	13.26	Yes	N / A	N / A
VFD037FP5EA-41/-52 $/$ VFD037FP5EA-52S	3.7	5	5.5	9	8.68	8.68	Yes	N / A	N / A
VFD055FP5EA-41/-52 $/$ VFD055FP5EA-52S	5.5	5	8.2	13	5.82	5.82	Yes	N / A	N / A
VFD075FP5EA-41/-52 $/$ VFD075FP5EA-52S	7.5	7.5	10	16	4.77	4.77	Yes	N / A	N / A
VFD110FP5EA-41/-52 $/$ VFD110FP5EA-52S	11	10	15.5	25	3.08	3.08	Yes	N / A	N / A
VFD150FP5EA-41/-52 $/$ VFD150FP5EA-52S	15	15	20	32	2.39	2.39	Yes	N / A	N / A
VFD185FP5EA-41/-52 $/$ VFD185FP5EA-52S	18.5	25	30	38	1.99	1.99	Yes	N / A	N / A
VFD220FP5EA-41/-52 $/$ VFD220FP5EA-52S	22	30	36	38	1.59	1.59	Yes	N / A	N / A
VFD300FP5EA-41/-52 $/$ VFD300FP5EA-52S	30	40	45	48	1.33	1.33	Yes	N / A	N / A

Chapter 7 Optional Accessories | CFP2000

Model	kW	HP	Rated Current $($ Arms $)$	Saturation Current $($ Arms $)$	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Input AC Reactor Delta part \#	Heat Dissipation (W)
VFD370FP5EA-41/-52 $/$ VFD370FP5EA-52S	37	50	54	58	1.06	1.06	Yes	N / A	N/A
VFD450FP5EA-41/-52 / VFD450FP5EA-52S	45	60	67	72	0.88	0.88	Yes	N / A	N / A
VFD550FP5EA-41/-52 $/$ VFD550FP5EA-52S	55	75	86	86	0.71	0.71	Yes	N / A	N / A
VFD750FP5EA-41/-52 / VFD750FP5EA-52S	75	100	104	107	0.56	0.56	Yes	N / A	N/A
VFD900FP5EA-41/-52 $/$ VFD900FP5EA-52S	90	125	128	138	0.46	0.46	Yes	N/A	N/A

Table 7-19
575V-600V / 50-60 Hz, Normal Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	$\begin{array}{\|c\|} \hline \text { Built-in } \\ \text { DC } \\ \text { Reactor } \end{array}$	Input AC Reactor Delta part \#	Heat Dissipation (W)
VFD015FP5EA-41/-52 / VFD015FP5EA-52S	1.5	2	3	4	15.92	26.53	Yes	N/A	N/A
VFD022FP5EA-41/-52 / VFD022FP5EA-52S	2.2	3	4.3	5	11.10	18.51	Yes	N/A	N/A
VFD037FP5EA-41/-52 / VFD037FP5EA-52S	3.7	5	6.7	8	7.13	11.88	Yes	N/A	N/A
VFD055FP5EA-41/-52 / VFD055FP5EA-52S	5.5	5	9.9	12	4.82	8.04	Yes	N/A	N/A
VFD075FP5EA-41/-52 / VFD075FP5EA-52S	7.5	7.5	12.1	15	3.95	6.58	Yes	N/A	N/A
VFD110FP5EA-41/-52 / VFD110FP5EA-52S	11	10	18.7	22	2.55	4.26	Yes	N/A	N/A
VFD150FP5EA-41/-52 / VFD150FP5EA-52S	15	15	24.2	29	1.97	3.29	Yes	N/A	N/A
VFD185FP5EA-41/-52 / VFD185FP5EA-52S	18.5	25	24	36	1.59	2.65	Yes	N/A	N/A
VFD220FP5EA-41/-52 / VFD220FP5EA-52S	22	30	30	36	1.33	2.21	Yes	N/A	N/A
VFD300FP5EA-41/-52 / VFD300FP5EA-52S	30	40	36	43	1.06	1.77	Yes	N/A	N/A
VFD370FP5EA-41/-52 / VFD370FP5EA-52S	37	50	45	54	0.88	1.47	Yes	N/A	N/A
VFD450FP5EA-41/-52 / VFD450FP5EA-52S	45	60	54	65	0.71	1.19	Yes	N/A	N/A
VFD550FP5EA-41/-52 / VFD550FP5EA-52S	55	75	67	80	0.56	0.93	Yes	N/A	N/A
VFD750FP5EA-41/-52 / VFD750FP5EA-52S	75	100	86	103	0.46	0.77	Yes	N/A	N/A
VFD900FP5EA-41/-52 / VFD900FP5EA-52S	90	125	104	125	0.37	0.62	Yes	N/A	N/A

Table 7-20

The following table is spec. of THDi that Delta AC motor drives use with AC reactors.

Motor Drive Spec	Without installation AC/DC Reactor	3% Input AC Reactor	5% Input AC Reactor	
Reactor Spec.	31.16%	27.01%	25.5%	
$5^{\text {th }}$	23.18%	9.54%	8.75%	
$7^{\text {th }}$	8.6%	4.5%	4.2%	
$11^{\text {th }}$	7.9%	0.22%	0.17%	
$13^{\text {th }}$	42.28%	30.5%	28.4%	
THDi	THDi may have some difference due to different installation conditions and environment.			
Note:				

Table 7-21
THDi Spec.

AC input reactor dimensions and specification:

Tightening torque: F Nm
Tightening torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /$
[5.3-7.1 lb-in.] / [0.6-0.8 Nm]

Figure 7-15
Unit: mm

Input AC Reactor Delta Part \#	A	B	C	D1*D2	E	G1	G2	PE D
DR005A0254	100	115	65	$6 * 9$	45	60	40	M4
DR008A0159	100	115	65	$6 * 9$	45	60	40	M4
DR011A0115	130	135	95	$6 * 12$	60	80.5	60	M4
DR017AP746	130	135	100	$6 * 12$	65	80.5	60	M4

Table 7-22

Figure 7-16
Unit: mm

Input AC Reactor Delta Part \#	A	B	C	D1*D2	H	G1	G2	PE D
DR025AP215	130	195	100	$6 * 12$	65	80.5	60	M4
DR033AP163	130	195	100	$6 * 12$	65	80.5	60	M4
DR049AP163	160	200	125	$6 * 12$	90	107	75	M4

Table 7-23

Figure 7-17
Unit: mm

Input AC Reactor Delta Part \#	Dimensions
DR065AP162	Refer to the diagram above

Table 7-24

Figure 7-19
Unit: mm

Input AC Reactor	
Delta Part \#	Dimensions
DR090AP141	Refer to the diagram above

Table 7-26

Figure 7-20
Unit: mm

Input AC Reactor Delta Part \#	Dimensions
DR105AP106	Refer to the diagram above

Table 7-27

Terminal: $4 \mathrm{~mm}^{2}$
Tightening torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /$
[5.3-7.1 lb-in] / [0.6-0.8 Nm]

PE ScrewM8 x 23
Tightening torque: $6 \pm 0.3 \mathrm{Nm}$

All dimensions in mm

Figure 7-21
Unit: mm

Input AC Reactor Delta Part \#	Dimensions
DR146AP087	Refer to the diagram above

Table 7-28

Terminal: $4 \mathrm{~mm}^{2}$
Tightening torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /$ [5.3-7.1 lb-in] / [0.6-0.8 Nm]

Tightening torque: $6 \pm 0.3 \mathrm{Nm}$

Figure 7-22
Unit: mm

Input AC Reactor	
Delta Part \#	Dimensions
DR180AP070	Refer to the diagram above

Table 7-29

Tightening torque: F Nm
Tightening torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /$ [5.3-7.1 lb-in] / [0.6-0.8 Nm]

Figure 7-23
Unit: mm

Input AC Reactor Delta Part \#	A	B	C	D1*D2	H	G1	G2	PE D
DR003A0810	100	125	65	$6 * 9$	43	60	40	M4
DR004A0607	100	125	65	$6 * 9$	43	60	40	M4
DR006A0405	130	15	95	$6 * 12$	60	80.5	60	M4
DR009A0270	160	160	105	$6 * 12$	75	107	75	M4
DR010A0231	160	160	115	$6 * 12$	90	107	75	M4
DR012A0202	160	160	115	$6 * 12$	90	107	75	M4
DR018A0117	160	160	115	$6 * 12$	90	107	75	M4

Table 7-30

Tightening torque: F Nm

Figure 7-24
Unit: mm

Input AC Reactor Delta Part \#	A	B	C	D1*D2	H	G1	G2	PE D
DR024AP881	160	175	115	$6 * 12$	90	107	75	M4
DR032AP660	195	200	145	$6 * 12$	115	122	85	M6
DR038AP639	190	200	145	$6 * 12$	115	122	85	$M 6$
DR045AP541	190	200	145	$6 * 12$	115	122	85	$M 6$

Table 7-31

Tightening torque: $3 \pm 1.5 \mathrm{~N}$

Figure 7-25
Unit: mm

Input AC Reactor	Dimensions
Delta Part \#	Refer to the diagram above
DR060AP405	Res

Table 7-32

Terminals: $4 \mathrm{~mm}^{2}$
4:5

2:5

4 Tightening torque: $8.2-10.2 \mathrm{~kg}-\mathrm{cm} /$

Figure 7-26
Unit: mm

Input AC Reactor Delta Part \#	A	A1	B	B1	B2	C	D	D1*D2	E	C1	G1	G2	H
DR073AP334	228	240	215	40	170	133	8.5	$7 * 13$	152	75	176	200	97
DR091AP267	228	240	245	40	195	133	8.8	$7 * 13$	152	90	176	200	97
DR110AP221	228	240	245	40	195	138	8.5	$7 * 13$	152	75	176	200	102

Table 7-33

Tightening torque: $8.2-10.2 \mathrm{~kg}-\mathrm{cm} /$

Figure 7-27
Unit: mm

Input AC Reactor Delta Part \#	A	A1	B	B1	B2	C	C1	D	D1*D2	F	G1	G2	H	M*T
DR150AP162	240	250	245	40	200	151	105	9	$11 * 18$	160	190	220	125	$20 * 3$
DR180AP135	240	250	245	40	200	151	105	9	$11 * 18$	160	190	220	125	$20 * 3$

Table 7-34

AC Output Reactor

When using drives in long wiring output application, ground fault (GFF), over-current (oc) and motor over-voltage (ov) often occur. GFF and oc cause errors due to the drive's self-protective mechanism; over-voltage damages motor insulation.

The excessive length of the output wires makes the grounded stray capacitance too large, increase the three-phase output common mode current, and the reflected wave of the long wires makes the motor $\mathrm{dv} / \mathrm{dt}$ and the motor terminal voltage too high. Thus, installing a reactor on the drive's output side can increase the high-frequency impedance to reduce the $\mathrm{dv} / \mathrm{dt}$ and terminal voltage to protect the motor.

Installation

Install an AC output reactor in series between the three output phases $U \vee W$ and the motor, as shown in the figure below:

Figure 7-28 Wiring an AC output reactor

Specifications of AC output reactors (standard item)
Following tables show the standard AC output reactors specification of Delta CFP2000:
$230 \mathrm{~V} / 50-60 \mathrm{~Hz}$, Light Duty

Model	kW	HP	Rated Current $($ Arms $)$	Saturation Current $($ Arms $)$	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD007FP2EA-41/-52 $/$ VFD007FP2EA-52S	0.75	1	5	6	2.536	4.227	Yes	DR005L0254	15
VFD015FP2EA-41/-52 $/$ VFD015FP2EA-52S	1.5	2	7.5	9	1.585	2.642	Yes	DR008L0159	30
VFD022FP2EA-41/-52 $/$ VFD022FP2EA-52S	2.2	3	10	12	1.152	1.92	Yes	DR011L0115	33
VFD037FP2EA-41/-52 $/$ VFD037FP2EA-52S	3.7	5	15	18	0.746	1.243	Yes	DR017LP746	34
VFD055FP2EA-41/-52 $/$ VFD055FP2EA-52S	5.5	7.5	21	25.2	0.507	0.845	Yes	DR025LP507	50
VFD075FP2EA-41/-52 $/$ VFD075FP2EA-52S	7.5	10	31	37.2	0.38	0.633	Yes	DR033LP320	50
VFD110FP2EA-41/-52 $/$ VFD110FP2EA-52S	11	15	46	55.2	0.26	0.433	Yes	DR049LP215	62
VFD150FP2EA-41/-52 $/$ VFD150FP2EA-52S	15	20	61	73.2	0.196	0.327	Yes	DR065LP162	70
VFD185FP2EA-41/-52 $/$ VFD185FP2EA-52S	18.5	25	75	90	0.169	0.282	Yes	DR075LP170	80
VFD220FP2EA-41/-52 $/$ VFD220FP2EA-52S	22	30	90	108	0.141	0.235	Yes	DR090LP141	80
VFD300FP2EA-41/-52 $/$ VFD300FP2EA-52S	30	40	105	126	0.12	0.2	Yes	DR105LP106	95
VFD370FP2EA-41/-52 $/$ VFD370FP2EA-52S	37	50	146	175.2	0.087	0.145	Yes	DR146LP087	110
VFD450FP2EA-41/-52 $/$ VFD450FP2EA-52S	45	60	180	216	0.07	0.117	Yes	DR180LP070	125

Table 7-35
230V / 50-60 Hz, Normal Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3\% Reactor (mH)	5\% Reactor (mH)	Built-in DC Reactor	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD007FP2EA-41/-52 / VFD007FP2EA-52S	0.75	1	4.6	7.36	2.536	4.227	Yes	DR005L0254	15
VFD015FP2EA-41/-52 / VFD015FP2EA-52S	1.5	2	5	8	2.536	4.227	Yes	DR005L0254	15
VFD022FP2EA-41/-52 / VFD022FP2EA-52S	2.2	3	8	12.8	1.585	2.642	Yes	DR008L0159	30
VFD037FP2EA-41/-52 / VFD037FP2EA-52S	3.7	5	11	17.6	1.152	1.92	Yes	DR011L0115	33
VFD055FP2EA-41/-52 / VFD055FP2EA-52S	5.5	7.5	17	27.2	0.746	1.243	Yes	DR017LP746	34
$\begin{aligned} & \text { VFD075FP2EA-41/-52 } \\ & \text { VFD075FP2EA-52S } \end{aligned}$	7.5	10	25	40	0.507	0.845	Yes	DR025LP507	50
VFD110FP2EA-41/-52 / VFD110FP2EA-52S	11	15	33	52.8	0.38	0.633	Yes	DR033LP320	50
VFD150FP2EA-41/-52 / VFD150FP2EA-52S	15	20	49	78.4	0.26	0.433	Yes	DR049LP215	62
VFD185FP2EA-41/-52 / VFD185FP2EA-52S	18.5	25	65	104	0.196	0.327	Yes	DR065LP162	70
VFD220FP2EA-41/-52 / VFD220FP2EA-52S	22	30	75	120	0.169	0.282	Yes	DR075LP170	80
VFD300FP2EA-41/-52 / VFD300FP2EA-52S	30	40	90	144	0.141	0.235	Yes	DR090LP141	80

Model	kW	HP	Rated Current (Arms)	Saturation Current $($ Arms $)$	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD370FP2EA-41/-52 / VFD370FP2EA-52S	37	50	120	192	0.12	0.2	Yes	DR105LP106	95
VFD450FP2EA-41/-52 / VFD450FP2EA-52S	45	60	146	233.6	0.087	0.145	Yes	DR146LP087	110

Table 7-36
380V-460V / 50-60 Hz, Light Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current $($ Arms $)$	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD007FP4EA-41/-52 $/$ VFD007FP4EA-52S	0.75	1	3	3.9	8.102	13.502	Yes	DR003L0810	13
VFD015FP4EA-41/-52 $/$ VFD015FP4EA-52S	1.5	2	4.2	5.46	6.077	10.127	Yes	DR004L0607	18
VFD022FP4EA-41/-52 $/$ VFD022FP4EA-52S	2.2	3	5.5	7.15	4.05	6.752	Yes	DR006L0405	22
VFD037FP4EA-41/-52 $/$ VFD037FP4EA-52S	3.7	5	8.5	11.05	2.7	4.501	Yes	DR009L0270	35
VFD040FP4EA-41/-52 $/$ VFD040FP4EA-52S	4	5	10.5	13.65	2.315	3.858	Yes	DR010L0231	40
VFD055FP4EA-41/-52 $/$ VFD055FP4EA-52S	5.5	7.5	13	16.9	2.025	3.375	Yes	DR012L0202	45
VFD075FP4EA-41/-52 $/$ VFD075FP4EA-52S	7.5	10	18	23.4	1.174	1.957	Yes	DR018L0117	48
VFD110FP4EA-41/-52 $/$ VFD110FP4EA-52S	11	15	24	31.2	0.881	1.468	Yes	DR024LP881	52
VFD150FP4EA-41/-52 $/$ VFD150FP4EA-52S	15	20	32	41.6	0.66	1.101	Yes	DR032LP660	66
VFD185FP4EA-41/-52 $/$ VFD185FP4EA-52S	18.5	25	38	49.4	0.639	1.066	Yes	DR038LP639	70
VFD220FP4EA-41/-52 $/$ VFD220FP4EA-52S	22	30	45	58.5	0.541	0.9	Yes	DR045LP541	85
VFD300FP4EA-41/-52 $/$ VFD300FP4EA-52S	30	40	60	78	0.405	0.675	Yes	DR060LP405	85
VFD370FP4EA-41/-52 $/$ VFD370FP4EA-52S	37	50	73	94.9	0.334	0.555	Yes	DR073LP334	110
VFD450FP4EA-41/-52 $/$ VFD450FP4EA-52S	45	60	91	118.3	0.267	0.445	Yes	DR091LP267	130
VFD550FP4EA-41/-52 $/$ VFD550FP4EA-52S	55	75	110	143	0.221	0.368	Yes	DR110LP221	150
VFD750FP4EA-41/-52 $/$ VFD750FP4EA-52S	75	100	150	195	0.162	0.27	Yes	DR150LP162	175
VFD900FP4EA-41/-52 $/$ VFD900FP4EA-52S	90	125	180	234	0.135	0.225	Yes	DR180LP135	195

Table 7-37
380V-460V / 50-60 Hz, Normal Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD007FP4EA-41/-52 / VFD007FP4EA-52S	0.75	1	2.8	2.72	13.344	22.241	Yes	DR003L0810*1	13
VFD015FP4EA-41/-52 / VFD015FP4EA-52S	1.5	2	3	4.8	8.102	13.502	Yes	DR003L0810	13
VFD022FP4EA-41/-52 /VFD022FP4EA-52S	2.2	3	4	6.4	6.077	10.127	Yes	DR004L0607	18
VFD037FP4EA-41/-52 /VFD037FP4EA-52S	3.7	5	6	9.6	4.05	6.752	Yes	DR006L0405	22

Chapter 7 Optional Accessories | CFP2000

Model	kW	HP	Rated Current (Arms)	$\begin{array}{\|c\|} \hline \text { Saturation } \\ \text { Current } \\ \text { (Arms) } \\ \hline \end{array}$	3% Reactor (mH)	5% Reactor (mH)	$\begin{array}{\|c\|} \hline \text { Built-in } \\ \text { DC } \\ \text { Reactor } \\ \hline \end{array}$	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD040FP4EA-41/-52 / VFD040FP4EA-52S	4	5	9	14.4	2.7	4.501	Yes	DR009L0270	35
VFD055FP4EA-41/-52 / VFD055FP4EA-52S	5.5	7.5	10.5	16.8	2.315	3.858	Yes	DR010L0231	40
VFD075FP4EA-41/-52 / VFD075FP4EA-52S	7.5	10	12	19.2	2.025	3.375	Yes	DR012L0202	45
VFD110FP4EA-41/-52 / VFD110FP4EA-52S	11	15	18	28.8	1.174	1.957	Yes	DR018L0117	48
VFD150FP4EA-41/-52 / VFD150FP4EA-52S	15	20	24	38.4	0.881	1.468	Yes	DR024LP881	52
VFD185FP4EA-41/-52 / VFD185FP4EA-52S	18.5	25	32	51.2	0.66	1.101	Yes	DR032LP660	66
VFD220FP4EA-41/-52 / VFD220FP4EA-52S	22	30	38	60.8	0.639	1.066	Yes	DR038LP639	70
VFD300FP4EA-41/-52 / VFD300FP4EA-52S	30	40	45	72	0.541	0.9	Yes	DR045LP541	85
VFD370FP4EA-41/-52 / VFD370FP4EA-52S	37	50	60	96	0.405	0.675	Yes	DR060LP405	85
VFD450FP4EA-41/-52 / VFD450FP4EA-52S	45	60	73	116.8	0.334	0.555	Yes	DR073LP334	110
VFD550FP4EA-41/-52 / VFD550FP4EA-52S	55	75	91	145.6	0.267	0.445	Yes	DR091LP267	130
VFD750FP4EA-41/-52 / VFD750FP4EA-52S	75	100	110	176	0.221	0.368	Yes	DR110LP221	150
VFD900FP4EA-41/-52 / VFD900FP4EA-52S	90	125	150	240	0.162	0.27	Yes	DR150LP162	175

NOTE:

*1: The inductance value for the above applications of Delta's reactors will be closer, but less than 3\%.
2: The above heat dissipation is calculated based on AC reactor's rated current; the actual dissipation varies with the operation current.

Table 7-38

575V-600V / 50-60 Hz, Light Duty

Model	kW	HP		Saturation Current (Arms)	$\begin{gathered} \hline 3 \% \\ \text { Reactor } \\ (\mathrm{mH}) \\ \hline \end{gathered}$	5\% Reactor (mH)	$\begin{aligned} & \hline \text { Built-in } \\ & \text { DC } \\ & \text { Reactor } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Output AC } \\ \text { Reactor Delta } \\ \text { Part \# } \\ \hline \end{gathered}$	Heat Dissipation (W)
VFD015FP5EA-41/-52 / VFD015FP5EA-52S	1.5	2	2.5	4	19.10	19.10	Yes	N/A	N/A
VFD022FP5EA-41/-52 / VFD022FP5EA-52S	2.2	3	3.6	6	13.26	13.26	Yes	N/A	N/A
VFD037FP5EA-41/-52 / VFD037FP5EA-52S	3.7	5	5.5	9	8.68	8.68	Yes	N/A	N/A
VFD055FP5EA-41/-52 / VFD055FP5EA-52S	5.5	5	8.2	13	5.82	5.82	Yes	N/A	N/A
VFD075FP5EA-41/-52 / VFD075FP5EA-52S	7.5	7.5	10	16	4.77	4.77	Yes	N/A	N/A
VFD110FP5EA-41/-52 / VFD110FP5EA-52S	11	10	15.5	25	3.08	3.08	Yes	N/A	N/A
VFD150FP5EA-41/-52 / VFD150FP5EA-52S	15	15	20	32	2.39	2.39	Yes	N/A	N/A
VFD185FP5EA-41/-52 / VFD185FP5EA-52S	18.5	25	30	38	1.99	1.99	Yes	N/A	N/A
VFD220FP5EA-41/-52 / VFD220FP5EA-52S	22	30	36	38	1.59	1.59	Yes	N/A	N/A
VFD300FP5EA-41/-52 / VFD300FP5EA-52S	30	40	45	48	1.33	1.33	Yes	N/A	N/A

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD370FP5EA-41/-52 / VFD370FP5EA-52S	37	50	54	58	1.06	1.06	Yes	N/A	N/A
VFD450FP5EA-41/-52 / VFD450FP5EA-52S	45	60	67	72	0.88	0.88	Yes	N/A	N/A
VFD550FP5EA-41/-52 / VFD550FP5EA-52S	55	75	86	86	0.71	0.71	Yes	N/A	N/A
VFD750FP5EA-41/-52 $/$ VFD750FP5EA-52S	75	100	104	107	0.56	0.56	Yes	N/A	N/A
VFD900FP5EA-41/-52 / VFD900FP5EA-52S	90	125	128	138	0.46	0.46	Yes	N/A	N/A

Table 7-39
575V-600V / 50-60 Hz, Normal Duty

Model	kW	HP	Rated Current (Arms)	Saturation Current (Arms)	3% Reactor (mH)	5% Reactor (mH)	Built-in DC Reactor	Output AC Reactor Delta Part \#	Heat Dissipation (W)
VFD015FP5EA-41/-52 / VFD015FP5EA-52S	1.5	2	3	4	15.92	26.53	Yes	N/A	N/A
$\begin{aligned} & \text { VFD022FP5EA-41/-52 } \\ & \text { / VFD022FP5EA-52S } \end{aligned}$	2.2	3	4.3	5	11.10	18.51	Yes	N/A	N/A
VFD037FP5EA-41/-52 / VFD037FP5EA-52S	3.7	5	6.7	8	7.13	11.88	Yes	N/A	N/A
VFD055FP5EA-41/-52 / VFD055FP5EA-52S	5.5	5	9.9	12	4.82	8.04	Yes	N/A	N/A
VFD075FP5EA-41/-52 / VFD075FP5EA-52S	7.5	7.5	12.1	15	3.95	6.58	Yes	N/A	N/A
VFD110FP5EA-41/-52 / VFD110FP5EA-52S	11	10	18.7	22	2.55	4.26	Yes	N/A	N/A
VFD150FP5EA-41/-52 / VFD150FP5EA-52S	15	15	24.2	29	1.97	3.29	Yes	N/A	N/A
VFD185FP5EA-41/-52 / VFD185FP5EA-52S	18.5	25	24	36	1.59	2.65	Yes	N/A	N/A
$\begin{aligned} & \text { VFD220FP5EA-41/-52 } \\ & \text { / VFD220FP5EA-52S } \end{aligned}$	22	30	30	36	1.33	2.21	Yes	N/A	N/A
$\begin{aligned} & \text { VFD300FP5EA-41/-52 } \\ & \text { / VFD300FP5EA-52S } \end{aligned}$	30	40	36	43	1.06	1.77	Yes	N/A	N/A
VFD370FP5EA-41/-52 / VFD370FP5EA-52S	37	50	45	54	0.88	1.47	Yes	N/A	N/A
$\begin{aligned} & \text { VFD450FP5EA-41/-52 } \\ & \text { / VFD450FP5EA-52S } \end{aligned}$	45	60	54	65	0.71	1.19	Yes	N/A	N/A
VFD550FP5EA-41/-52 / VFD550FP5EA-52S	55	75	67	80	0.56	0.93	Yes	N/A	N/A
VFD750FP5EA-41/-52 / VFD750FP5EA-52S	75	100	86	103	0.46	0.77	Yes	N/A	N/A
VFD900FP5EA-41/-52 / VFD900FP5EA-52S	90	125	104	125	0.37	0.62	Yes	N/A	N/A

Table 7-40

Chapter 7 Optional Accessories CFP2000

AC output reactor dimensions and specification:

Tightening torque: $10.2-12.3 \mathrm{~kg}-\mathrm{cm} /$
[8.9-10.6 lb-in] / [1.0-1.2 Nm]

Figure 7-29
Unit: mm

Output AC Reactor Delta Part \#	A	B	C	D1*D2	E	G1	G2	PE D
DR005L0254	96	110	70	$6 * 9$	42	60	40	M4
DR008L0159	120	135	96	$6 * 12$	60	80.5	60	M4
DR011L0115	120	135	96	$6 * 12$	60	80.5	60	M4
DR017LP746	120	135	105	$6 * 12$	65	80.5	60	M4
DR025LP507	150	160	120	$6 * 12$	88	107	75	M4
DR033LP320	150	160	120	$6 * 12$	88	107	75	M4

Table 7-41

Terminals $16 \mathrm{~mm}^{2}$
Tightening torque 1.2-1.4

Figure 7-30
Unit: mm

Output AC Reactor Delta Part \#	A	B	C	D1*D2	H	G	G1	Q	M	PE D
DR049LP215	180	205	175	$6 * 12$	115	85	122	16	$1.2-1.4$	M4
DR065LP162	180	215	185	$6 * 12$	115	85	122	35	$2.5-3.0$	M4

Table 7-42

Figure 7-31
Unit: mm

Output AC Reactor Delta Part \#	A	A1	B	B1	B2	C	C1	D1*D2	E	G1	H	M*T
DR075LP170	240	228	215	44	170	151	100	$7 * 13$	152	176	85	$20^{*} 3$
DR090LP141	240	228	215	44	170	151	100	$7 * 13$	152	176	85	$20 * 3$
DR105LP106	240	228	215	44	170	165	110	$7 * 13$	152	176	97	$20 * 3$
DR146LP087	240	228	240	45	202	165	110	$7 * 13$	152	176	97	$30 * 3$
DR180LP070	250	240	250	46	205	175	110	$11^{*} 18$	160	190	124	$30 * 5$

Table 7-43

PE screw
Tightening torque: $10.2-12.3 \mathrm{~kg}-\mathrm{cm} /$
[8.9-10.6 lb-in] / [1.0-1.2 Nm]

Figure 7-32
Unit: mm

Output AC Reactor Delta Part \#	A	B	C	D1*D2	H	G 1	G 2	PE D
DR003L0810	96	115	65	$6 * 9$	42	60	40	M 4
DR004L0607	120	135	95	$6 * 12$	60	80.5	60	M 4
DR006L0405	120	135	95	$6 * 12$	60	80.5	60	M 4
DR009L0270	150	160	100	$6 * 12$	74	107	75	M 4
DR010L0231	150	160	115	$6 * 12$	88	107	75	M 4
DR012L0202	150	160	115	$6 * 12$	88	107	75	M 4
DR018L0117	150	160	115	$6 * 12$	88	107	75	M 4
DR024LP881	150	160	115	$6 * 12$	88	107	75	M 4
DR032LP660	180	190	145	$6 * 12$	114	122	85	M6

Table 7-44

Terminals: $16 \mathrm{~mm}^{2}$
Tightening torque: $1.2-1.4 \mathrm{Nm}$

Figure 7-33
Unit: mm

Output AC Reactor Delta Part \#	A	B	C	D1*D2	H	G1	G2	PE D
DR038LP639	180	205	170	$6 * 12$	115	85	122	M4
DR045LP541	235	245	155	$7 * 13$	85	$/$	176	M6

Table 7-45

Figure 7-34
Unit: mm

Output AC Reactor Delta Part \#	A	A1	B	B1	B2	C	C1	D1*D2	E	G1	H	M*T
DR060LP405	240	228	215	44	170	163	110	$7 * 13$	152	176	97	$20^{*} 3$
DR073LP334	250	235	235	44	186	174	115	$11 * 18$	160	190	124	$20 * 3$
DR091LP267	250	240	235	44	186	174	115	$11 * 18$	160	190	124	$20 * 3$
DR110LP221	270	260	245	50	192	175	115	$10 * 18$	176	200	106	$20 * 3$

Table 7-46

Figure 7-35
Unit: mm

Output AC Reactor Delta Part \#	A	A1	B	B1	B2	C	C1	D1*D2	E	G1	G2	H	M*T
DR150LP162	270	264	265	51	208	192	125	$10 * 18$	176	200	$/$	118	$30 * 3$
DR180LP135	300	295	310	55	246	195	125	$11 * 22$	200	230	190	142	$30 * 3$

Table 7-47

Motor Cable Length

1. Consequence of leakage current on the motor

If the cable length is too long, the stray capacitance between cables increases and may cause leakage current. In this case, it activates the over-current protection, increases leakage current, or may affect the current display. The worst case is that it may damage the AC motor drive. If more than one motor is connected to one AC motor drive, the total wiring length should be the sum of the wiring length from AC motor drive to each motor.

For the 460 V models AC motor drives, when you install an overload thermal relay between the drive and the motor to protect the motor from overheating, the connecting cable must be shorter than 50 m ; however, an overload thermal relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (see Pr.00-17 Carrier Frequency).
2. Consequence of the surge voltage on the motor

When a motor is driven by a PWM-type AC motor drive, the motor terminals experience surge voltages (dv/dt) due to power transistor conversion of AC motor drive. When the motor cable is very long (especially for the 460 V models), surge voltages (dv/dt) may damage the motor insulation and bearing. To prevent this, follow these rules:
a. Use a motor with enhanced insulation.
b. Reduce the cable length between the AC motor drive and motor to suggested values.
c. Connect an output reactor (optional) to the output terminals of the AC motor drive.

Refer to the following tables for the suggested motor shielded cable length. For drive models $<490 \mathrm{~V}$, use a motor with a rated voltage $\leq 500 \mathrm{~V}_{\mathrm{AC}}$ and an insulation level $\geq 1.35 \mathrm{kV}$ in accordance with IEC 60034-17.

230V Models	Rated Current (Arms)		Without AC Output Reactor		3\% With AC Output Reactor	
	Normal Duty	Light Duty	Shielded Cable (meter)	Non-shielded Cable (meter)	Shielded Cable (meter)	Non-shielded Cable (meter)
$\begin{aligned} & \hline \text { VFD007FP2EA-41/-52/ } \\ & \text { VFD007FP2EA-52S } \end{aligned}$	4.6	5	50	75	75	115
$\begin{aligned} & \text { VFD015FP2EA-41/-52/ } \\ & \text { VFD015FP2EA-52S } \end{aligned}$	5	7.5				
$\begin{aligned} & \text { VFD022FP2EA-41/-52/ } \\ & \text { VFD022FP2EA-52S } \end{aligned}$	8	10				
$\begin{aligned} & \text { VFD037FP2EA-41/-52/ } \\ & \text { VFD037FP2EA-52S } \end{aligned}$	11	15				
$\begin{aligned} & \text { VFD055FP2EA-41/-52/ } \\ & \text { VFD055FP2EA-52S } \end{aligned}$	17	21				
$\begin{aligned} & \text { VFD075FP2EA-41/-52/ } \\ & \text { VFD075FP2EA-52S } \end{aligned}$	25	31	100	150	150	225
$\begin{aligned} & \text { VFD110FP2EA-41/-52/ } \\ & \text { VFD110FP2EA-52S } \end{aligned}$	33	46				
$\begin{aligned} & \text { VFD150FP2EA-41/-52/ } \\ & \text { VFD150FP2EA-52S } \end{aligned}$	49	61				
VFD185FP2EA-41/-52/ VFD185FP2EA-52S	65	75				
$\begin{gathered} \hline \text { VFD220FP2EA-41/-52/ } \\ \text { VFD220FP2EA-52S } \\ \hline \end{gathered}$	75	90				
$\begin{gathered} \hline \text { VFD300FP2EA-41/-52/ } \\ \text { VFD300FP2EA-52S } \\ \hline \end{gathered}$	90	120				

	Rated Current (Arms)		Without AC Output Reactor		3% With AC Output Reactor	
	230V Models	Normal	Light	Shielded Cable Duty	Non-shielded (meter)	Shielded Cable (meter) (meter)
Non-shielded Cable (meter)						
VFD370FP2EA-41/-52/ VFD370FP2EA-52S	120	146				
VFD450FP2EA-41/-52/ VFD450FP2EA-52S	146	180	150	225	225	325

Table 7-48

460V Models	kW	HP	Rated Amps of AC Reactor (Arms)		Without AC Output Reactor		3\% With AC Output Reactor	
			Normal Duty	Light Duty	Shielded Cable (meter)	Non-shielded Cable (meter)	Shielded Cable (meter)	Non-shielded Cable (meter)
$\begin{gathered} \text { VFD007FP4EA-41/-52/ } \\ \text { VFD007FP4EA-52S } \end{gathered}$	0.75	1	1.7	3	50	75	75	115
VFD015FP4EA-41/-52/ VFD015FP4EA-52S	1.5	2	3	4.2				
$\begin{aligned} & \text { VFD022FP4EA-41/-52/ } \\ & \text { VFD022FP4EA-52S } \end{aligned}$	2.2	3	4	5.5				
$\begin{gathered} \hline \text { VFD037FP4EA-41/-52/ } \\ \text { VFD037FP4EA-52S } \end{gathered}$	3.7	5	6	8.5				
$\begin{gathered} \hline \text { VFD040FP4EA-41/-52/ } \\ \text { VFD040FP4EA-52S } \end{gathered}$	4	5	9	10.5				
$\begin{gathered} \text { VFD055FP4EA-41/-52/ } \\ \text { VFD055FP4EA-52S } \\ \hline \end{gathered}$	5.5	7.5	10.5	13				
$\begin{gathered} \hline \text { VFD075FP4EA-41/-52/ } \\ \text { VFD075FP4EA-52S } \end{gathered}$	7.5	10	12	18	100	150	150	225
VFD110FP4EA-41/-52/ VFD110FP4EA-52S	11	15	18	24				
$\begin{gathered} \text { VFD150FP4EA-41/-52/ } \\ \text { VFD150FP4EA-52S } \\ \hline \end{gathered}$	15	20	24	32				
$\begin{gathered} \text { VFD185FP4EA-41/-52/ } \\ \text { VFD185FP4EA-52S } \\ \hline \end{gathered}$	18.5	25	32	38				
$\begin{aligned} & \text { VFD220FP4EA-41/-52/ } \\ & \text { VFD220FP4EA-52S } \end{aligned}$	22	30	38	45				
$\begin{gathered} \hline \text { VFD300FP4EA-41/-52/ } \\ \text { VFD300FP4EA-52S } \end{gathered}$	30	40	45	60				
$\begin{gathered} \text { VFD370FP4EA-41/-52/ } \\ \text { VFD370FP4EA-52S } \end{gathered}$	37	50	60	73				
$\begin{aligned} & \text { VFD450FP4EA-41/-52/ } \\ & \text { VFD450FP4EA-52S } \end{aligned}$	45	60	73	91	150	225	225	325
$\begin{aligned} & \text { VFD550FP4EA-41/-52/ } \\ & \text { VFD550FP4EA-52S } \end{aligned}$	55	75	91	110				
$\begin{gathered} \hline \text { VFD750FP4EA-41/-52/ } \\ \text { VFD750FP4EA-52S } \end{gathered}$	75	100	110	150				
$\begin{gathered} \hline \text { VFD900FP4EA-41/-52/ } \\ \text { VFD900FP4EA-52S } \end{gathered}$	90	125	150	180				

Table 7-49

575V Model	Rated Current (Arms)		Without AC Output Reactor		3\% With AC Output Reactor	
	Normal Duty	Light Duty	Shielded Cable (meter)	Non-shielded Cable (meter)	Shielded Cable (meter)	Non-shielded Cable (meter)
$\begin{aligned} & \text { VFD015FP5EA-41/-52/ } \\ & \text { VFD015FP5EA-52S } \end{aligned}$	3	2.5	20	35	30	45
$\begin{aligned} & \text { VFD022FP5EA-41/-52/ } \\ & \text { VFD022FP5EA-52S } \end{aligned}$	4.3	3.6				
$\begin{aligned} & \text { VFD037FP5EA-41/-52/ } \\ & \text { VFD037FP5EA-52S } \end{aligned}$	6.7	5.5				
VFD055FP5EA-41/-52/ VFD055FP5EA-52S	9.9	8.2				
$\begin{aligned} & \text { VFD075FP5EA-41/-52/ } \\ & \text { VFD075FP5EA-52S } \end{aligned}$	12.1	10				
$\begin{aligned} & \hline \text { VFD110FP5EA-41/-52/ } \\ & \text { VFD110FP5EA-52S } \end{aligned}$	18.7	15.5				
$\begin{aligned} & \text { VFD150FP5EA-41/-52/ } \\ & \text { VFD150FP5EA-52S } \end{aligned}$	24.2	20				
$\begin{gathered} \text { VFD185FP5EA-41/-52/ } \\ \text { VFD185FP5EA-52S } \end{gathered}$	30	24				
$\begin{aligned} & \text { VFD220FP5EA-41/-52/ } \\ & \text { VFD220FP5EA-52S } \end{aligned}$	36	30				
$\begin{aligned} & \hline \text { VFD300FP5EA-41/-52/ } \\ & \text { VFD300FP5EA-52S } \end{aligned}$	45	36			45	60
$\begin{gathered} \hline \text { VFD370FP5EA-41/-52/ } \\ \text { VFD370FP5EA-52S } \\ \hline \end{gathered}$	54	45		45	60	75
$\begin{aligned} & \text { VFD450FP5EA-41/-52/ } \\ & \text { VFD450FP5EA-52S } \end{aligned}$	67	54				
$\begin{aligned} & \text { VFD550FP5EA-41/-52/ } \\ & \text { VFD550FP5EA-52S } \end{aligned}$	86	67				100
$\begin{aligned} & \text { VFD750FP5EA-41/-52/ } \\ & \text { VFD750FP5EA-52S } \end{aligned}$	104	86				
$\begin{aligned} & \text { VFD900FP5EA-41/-52/ } \\ & \text { VFD900FP5EA-52S } \end{aligned}$	128	104			75	

Table 7-50
Requirements on insulation level of Curve B motor

[^1]Figure 7-36

The t_{r} is defined as:

Figure 7-37

Sine-wave filter

When there is longer cable length connected between the motor drive and the motor, the damping leads to high frequency resonator, and makes impedance matching poor to enlarge the voltage reflection. This phenomenon generates twice-input voltage in the motor side, which easily makes motor voltage overshoot to damage insulation.

To prevent this, installing sine-wave filter can transform PWM output voltage to smooth and low-ripple sin wave, and motor cable length can be longer than 1000 meters.

Installation

Sine-wave filter is serially connected between motor drive UVW output side and motor, which is shown as below:

Figure 7-38 Wiring of non-shielded cable

Figure 7-39 Wiring of shielded cable

Following table shows the sine-wave filter specification of Delta CFP2000
$380 \mathrm{~V}-460 \mathrm{~V} / 50-60 \mathrm{~Hz}$

kW	HP	Rated current ND (Arms)	Sine wave filter model name for ND current	Rated current LD (Arms)	Sine wave filter model name for LD current	Output Motor Cable Length [m] (Shielding or Non-shielding)
0.75	1	2.8	B84143V0004R227	3	B84143V0004R227	1000
1.5	2	3		4.2		
2.2	3	4		5.5	B84143V0006R227	
3.7	5	6	B84143V0006R227	8.5	B84143V0011R227	
4	5	9	B84143V0011R227	10.5		
5.5	7.5	10.5		13	B84143V0016R227	
7.5	10	12	B84143V0016R227	18	B84143V0025R227	
11	15	18	B84143V0025R227	24		
15	20	24		32	B84143V0033R227	
18.5	25	32	B84143V0033R227	38	B84143V0050R227	
22	30	38	B84143V0050R227	45		
30	40	45		60	B84143V0066R227	
37	50	60	B84143V0066R227	73	B84143V0075R227	
45	60	73	B84143V0075R227	91	B84143V0095R227	
55	75	91	B84143V0095R227	110	B84143V0132R227	
75	100	110	B84143V0132R227	144	43V0180R2	
90	125	150	B84143V0180R227	180	B84143V0180R227	

Table 7-51

Sine wave filter Model	Reference website : http://en.tdk.eu/inf/30/db/emc 2014/B84143V R227.pdf
B84143V0004R227	$I_{R}: 4 A$, Sine-wave output filters for 3-phase systems
B84143V0006R227	$I_{R}: 6 A$, Sine-wave output filters for 3-phase systems
B84143V0011R227	$I_{R}: 11 A$, Sine-wave output filters for 3-phase systems
B84143V0016R227	$I_{R}: 16 A$, Sine-wave output filters for 3-phase systems
B84143V0025R227	$I_{R}: 25 A$, Sine-wave output filters for 3-phase systems
B84143V0033R227	$I_{R}: 33 A$, Sine-wave output filters for 3-phase systems
B84143V0050R227	$I_{R}: 50 A$, Sine-wave output filters for 3-phase systems
B84143V0066R227	$I_{R}: 66 A$, Sine-wave output filters for 3-phase systems
B84143V0075R227	$I_{R}: 75 A$, Sine-wave output filters for 3-phase systems
B84143V0095R227	$I_{R}: 95 A$, Sine-wave output filters for 3-phase systems
B84143V0132R227	$I_{R}: 132 A$, Sine-wave output filters for 3-phase systems
B84143V0180R227	$I_{R}: 180 A$, Sine-wave output filters for 3-phase systems

7-5 Zero Phase Reactors

You can also suppress interference by installing a zero phase reactor. When you encounter any interference after normal installation, buy and install a zero phase reactor. The following are information of zero phase reactors for signal cable.

Zero Phase Reactors for Signal Cable

To solve interference problems between signal cables and electric devices, install a zero phase reactor for the signal cable. This suppresses the noise for a better signal. The following table lists model names and dimensions.

Figure 7-40
Unit: mm

Model	A	B	C
RF026X00N	10.7	17.8	8.0
RF020X00N	17.5	27.3	12.3

Table 7-53
Zero Phase Reactor for Motor Cable
Unit: mm

Model	A	B	C
RF010FP00A	28.7	43.1	18.5
RF006FP00A	26.9	48.4	18.2
RF002FP001	59.3	83.5	27.8

Table 7-54

7-6 EMC Filter

Following table is the built-in EMC filter of CFP2000 series. User can choose corresponding zero phase reactor and suitable shielded cable length in accord to required noise emission and electromagnetic interference level to achieve the best configuration to suppress the electromagnetic interference.

230 V Models

CFP2000			Zero phase reactor*2	CE Cable Length				Radiation Emission
	Model	Rated Input Current (A)		EN61800-3				
Frame				Category C2	Carrier Frequency (Hz)	Category C1	Carrier Frequency (Hz)	C2
A	VFD007FP2EA-41/-52/-52S	5	RF010FP00A	75 m	$\leq 6 \mathrm{~K}$	25 m	$\leq 6 \mathrm{~K}$	Pass
	VFD015FP2EA-41/-52/-52S	7.5						
	VFD022FP2EA-41/-52/-52S	10						
	VFD037FP2EA-41/-52/-52S	15						
	VFD055FP2EA-41/-52/-52S	21						
B	VFD075FP2EA-41/-52/-52S	31	RF006FP00A					
	VFD110FP2EA-41/-52/-52S	46						
C	VFD150FP2EA-41/-52/-52S	61	RF002FP00A					
	VFD185FP2EA-41/-52/-52S	75						
D0	VFD220FP2EA-41/-52/-52S	90	-					
	VFD300FP2EA-41/-52/-52S	105	-					
D	VFD370FP2EA-41/-52/-52S	146	-					
	VFD450FP2EA-41/-52/-52S	180	-					

Table 7-55
460V Models

CFP2000			Zero phase reactor*2	CE Cable Length				Radiation Emission
	Model	Rated Input Current (A)				EN61800		
Frame				Category C2	$\begin{array}{\|c\|} \hline \text { Carrier } \\ \text { frequency } \\ (\mathrm{Hz}) \end{array}$	Category C1	Carrier frequency (Hz)	C2
A	VFD007FP4EA-41/-52/-52S	3.0	RF010FP00A	75 m	$\leq 8 \mathrm{~K}$	25 m	$\leq 4 \mathrm{~K}^{* 1}$	Pass
	VFD015FP4EA-41/-52/-52S	4.2						
	VFD022FP4EA-41/-52/-52S	5.5						
	VFD037FP4EA-41/-52/-52S	8.5						
	VFD040FP4EA-41/-52/-52S	10.5						
	VFD055FP4EA-41/-52/-52S	13						
	VFD075FP4EA-41/-52/-52S	18						
B	VFD110FP4EA-41/-52/-52S	24	RF006FP00A					
	VFD150FP4EA-41/-52/-52S	32						
	VFD185FP4EA-41/-52/-52S	38						
	VFD220FP4EA-41/-52/-52S	45						

CFP2000			Zero phase reacto**2	CE Cable Length				Radiation Emission
	Model	Rated Input Current (A)		EN61800-3				
Frame				Category C2	Carrier frequency (Hz)	Category C1	Carrier frequency (Hz)	C2
C	VFD300FP4EA-41/-52/-52S	60	RF002FP00A					
	VFD370FP4EA-41/-52/-52S	73						
D0	VFD450FP4EA-41/-52/-52S	91	-		$\leq 10 \mathrm{~K}$		$\leq 4 \mathrm{~K}$	
	VFD550FP4EA-41/-52/-52S	110	-					
D	VFD750FP4EA-41/-52/-52S	150	-		$\leq 9 \mathrm{~K}$			
	VFD900FP4EA-41/-52/-52S	180	-					

Table 7-56
*1: For Frame A-C to comply with EN 61800-3 C1 regulations (when the length of the cable is less than 25 m , it complies with the C1 regulations), install a zero phase reactor on the output side. Pass the three UVW cables through the zero phase reactor. Do not pass the grounding cable and the pigtail of the insulation through the zero phase reactor.
*2: When the length of the cable is longer than 25 m , do not install the zero phase reactors listed in the table above.

575V Models

CFP2000			Zero phase reactor*2	CE Cable Length				Radiation Emission
	Model	Rated Input Current (A)		EN61800-3				
Frame				Category C3	Carrier Frequency $(H z)$	Category C2	Carrier Frequency (Hz)	C2
A	VFD015FP5EA-41/-52/-52S	3	RF010FP00A	50m	$\leq 6 \mathrm{~K}$	20 m	$\leq 6 \mathrm{~K}^{* 1}$	Pass
	VFD022FP5EA-41/-52/-52S	4.3						
	VFD037FP5EA-41/-52/-52S	6.7						
	VFD055FP5EA-41/-52/-52S	9.9						
	VFD075FP5EA-41/-52/-52S	12.1						
B	VFD110FP5EA-41/-52/-52S	18.7	RF006FP00A					
	VFD150FP5EA-41/-52/-52S	24.2						
	VFD185FP5EA-41/-52/-52S	30						
C	VFD220FP5EA-41/-52/-52S	36	RF002FP00A					
	VFD300FP5EA-41/-52/-52S	45						
	VFD370FP5EA-41/-52/-52S	54						
D0	VFD450FP5EA-41/-52/-52S	67	-				$\leq 6 \mathrm{~K}$	
	VFD550FP5EA-41/-52/-52S	86	-					
D	VFD750FP5EA-41/-52/-52S	104	-					
	VFD900FP5EA-41/-52/-52S	125	-					

Table 7-57
*1: For Frame A-C to comply with EN 61800-3 C2 regulations (when the length of the cable is less than 20 m , it complies with the C2 regulations), install a zero phase reactor on the output side. Pass the three UVW cables through the zero phase reactor. Do not pass the grounding cable and the pigtail of the insulation through the zero phase reactor.
*2: When the length of the cable is longer than 20 m , do not install the zero phase reactors listed in the table above, or the zero phase reactor may be overheated.

EMC Filter Installation

All electrical equipment (including AC motor drives) generate high or low frequency noise that interferes with peripheral equipment by radiation or conduction during operation. Correctly install an EMC filter can eliminate much interference. It is recommended to use DELTA EMC filter to have the best interference elimination performance.

We assure that it can comply with the following rules when the AC motor drive and EMC filter are both installed and wired according to user manual:

- EN61000-6-4

- EN61800-3
- EN55011 Class A Group 1

General precaution

To ensure the EMC filter maximizes the effect of suppressing the interference of AC motor drive, the installation and wiring of AC motor drive should follow the user manual. In addition, be sure to observe the following precautions:
$\square \quad$ All the cables should be divided into several classifications, and kept away from each other. The metal layer inside the control cabinet can separate the cables as well. For susceptible cables (Class 1), there should always be an uninterrupted partition between the two terminals. Use the following classifications (Class 1-4):

- Class 1: Cables susceptible to interference (e.g. low-voltage / high-speed signal cable, control cable, data cable...)
- Class 2: Cables susceptible to interference (e.g. low-speed communication cable, low-voltage (24 V) power cable...)
- Class 3: Disturbance cable (e.g. R.S.T. power input cable)
- Class 4: Strong disturbance cable. (e.g. U.V.W. motor output cable)
- The following figure shows the recommended cables and their installation clearance:

Figure 7-41
\square If the installation distance does not meet the above separation requirement, connect a zero-phase reactor to the Class 4 cable in series, and use shielded cable or connect core in series to the Class 1 cable.
\square When the installation distances of different cables do not meet the separation requirement, place the cables at right angles. For example, the filtered cable should be separated from the non-filtered
cable; signal cable, data cable and filtered cable can only be placed at right angles with the non-filtered cable.

- All cables should be as short as possible.
\square For extra cables, remove them or ground them on each end to avoid floating connection.
\boxtimes Separate the motor cable from the data cables that connect to the motor (for example, encoder line or motor temperature sensors).
च Place the cable on the metal plate, do not hang it in the air.
\boxtimes Use an independent isolated transformer to segregate susceptible equipment from equipment with stronger interference.
\square The RC filter is required for the magnetic contactor coil, relay and solenoid valve to eliminate high-frequency radiation interference (for example, RC elements or varistors with AC coils and free-wheeling diodes or varistors for DC coils) that comes from turning the unit ON and OFF. All these protection circuit should be close to the coil.
\square Make sure the cover, equipment and accessories installed inside the control cabinet (for example, motor drive or filter) are installed with good-conductivity mounting plate, and are connected to the cabinet frame with good connection and large contact areas. Most of all, the wiring should be connected to the PE and EMC isolation bar.
\square To build up the grounding system, remove the cover with a protective layer or anodic treatment on its connection, or connect it to the non-conductive layer with a special metal sheet before connecting to the AC drive.
\square Keep wires as short as possible and ground metal plates. The cover of the AC motor drive or grounding should be fixed to the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

Isolate the motor wires, signal wires and data wires.
The recommended shielded wire can be selected from the three types of shielding wire in Figure 1. The figure on the left is a symmetric three-phase power cord with symmetric PE wires. The middle figure is a three-phase power cord with a separated PE wire. The figure on the right is the asymmetric three-phase power cord with a PE wire.)

The size of the power cord should be based on the rated current. Using high density braided shielding avoids electromagnetic noise that results from high frequency signals, as well as prevents external sources from interfering with signal transmissions. We recommend two types of shielded cables:

- Braided copper shielding of 85% density or more (as shown in figure $2 a$).
- 100% aluminum foil / copper foil wrapping inside, and in braided shielding of 80% or more outside (as shown in figure 2b).

Figure 1 Types shielded cables recommended

Figure 2a

Figure 2b

Precautions for motor cable installation

Improper installation and choice of motor cable affects the performance of EMC filter. Be sure to observe the following precautions when selecting motor cable. The shielded layers of motor cable must be grounded by using omega clips or pigtail. If using omega clips, the shielded layers must have a 360-degree contact with the motor and the PE on motor drive (as shown in Figure 3).
If using a pigtail for grounding, the length of the pigtail cannot be more than five times of the wire size (WVW wire sizing)

Figure 3

Zero Phase Reactors at Output Side

- For Frame A-C (230V / 460V models): to comply with EN 61800-3 C1 regulations (when the length of shielded cable is 25 m), install a zero phase reactor on the output side. Pass the three UVW cables through the zero phase reactor. Do not pass the grounding cable and the pigtail of the insulation through the zero phase reactor. When the length of the cable is longer than 25 m , do not install the zero phase reactors.
- For Frame A-C (575V models): to comply with EN 61800-3 C2 regulations (when the length of the cable is 20 m), install a zero phase reactor on the output side. Pass the three UVW cables through the zero phase reactor. Do not pass the grounding cable and the pigtail of the insulation through the zero phase reactor. When the length of the cable is longer than 20 m , do not install the zero phase reactors.

EMC C1 (230V / 460V Models) and C2 (575V Models) with zero phase reactor installation

7-7 Panel Mounting (MKC-KPPK)

For MKC-KPPK model, you can choose wall mounting or embedded mounting, the protection level is IP66.

Applicable to the digital keypad (KPC-CC01).

Wall Mounting	Embedded Mounting
Accessories $\times 1$	Accessories $\times 2$

Figure 7-45

Wall Mounting

7－8 Fan Kit

－Frames of heatsink fans：
NOTE：The fan does not support hot swap function．For replacement，turn the power off before replacing the fan．

Frame A

Applicable Model
VFD022FP2EA－41／－52／－52S，VFD022FP4EA－41／－52／－52S， VFD022FP5EA－41／－52／－52S，VFD037FP2EA－41／－52／－52S， VFD037FP4EA－41／－52／－52S，VFD037FP5EA－41／－52／－52S， VFD040FP4EA－41／－52／－52S，VFD055FP2EA－41／－52／－52S， VFD055FP4EA－41／－52／－52S，VFD055FP5EA－41／－52／－52S， VFD075FP4EA－41／－52／－52S，VFD075FP5EA－41／－52／－52S

Heat sink Fan Model『 MKFP－BFKM 』
 VFD185FP4EA－41／－52／－52S，VFD185FP5EA－41／－52／－52S，

Heat sink Fan Model 『 MKFP－AFKM 』

Frame B
Applicable Model
VFD075FP2EA－41／－52／－52S，VFD110FP2EA－41／－52／－52S， VFD110FP4EA－41／－52／－52S，VFD110FP5EA－41／－52／－52S， VFD150FP4EA－41／－52／－52S，VFD150FP5EA－41／－52／－52S， VFD220FP4EA－41／－52／－52S
Frame C
Applicable Model
VFD150FP2EA－41／－52／－52S，VFD185FP2EA－41／－52／－52S，
VFD220FP5EA－41／－52／－52S，VFD300FP4EA－41／－52／－52S，
VFD300FP5EA－41／－52／－52S，VFD370FP4EA－41／－52／－52S，
VFD370FP5EA－41／－52／－52S
Frame D0

Heat sink Fan Model 『MKFP－D0FKM 』

Frame D

Applicable Model
VFD370FP2EA－41／－52／－52S，VFD450FP2EA－41／－52／－52S， VFD750FP4EA－41／－52／－52S，VFD750FP5EA－41／－52／－52S， VFD900FP4EA－41／－52／－52S，VFD900FP5EA－41／－52／－52S

Heat sink Fan Model 『MKFP－DFKM 』

－Frames of capacitor fans：
NOTE：The fan does not support hot swap function．For replacement，turn the power off before replacing the fan．
Frame A
Capacitor Fan Model 『MKFP－AFKB 』

Applicable Model
VFD007FP2EA－41／－52／－52S，VFD007FP4EA－41／－52／－52S， VFD015FP2EA－41／－52／－52S，VFD015FP4EA－41／－52／－52S， VFD015FP5EA－41／－52／－52S，VFD022FP2EA－41／－52／－52S， VFD022FP4EA－41／－52／－52S，VFD022FP5EA－41／－52／－52S， VFD037FP2EA－41／－52／－52S，VFD037FP4EA－41／－52／－52S， VFD037FP5EA－41／－52／－52S，VFD040FP4EA－41／－52／－52S， VFD055FP2EA－41／－52／－52S，VFD055FP4EA－41／－52／－52S， VFD055FP5EA－41／－52／－52S，VFD075FP4EA－41／－52／－52S， VFD075FP5EA－41／－52／－52S

Applicable Model
VFD075FP2EA－41／－52／－52S，VFD110FP2EA－41／－52／－52S， VFD110FP4EA－41／－52／－52S，VFD110FP5EA－41／－52／－52S， VFD150FP4EA－41／－52／－52S，VFD150FP5EA－41／－52／－52S， VFD185FP4EA－41／－52／－52S，VFD185FP5EA－41／－52／－52S， VFD220FP4EA－41／－52／－52S

Frame C

Applicable Model
VFD150FP2EA－41／－52／－52S，VFD185FP2EA－41／－52／－52S， VFD220FP5EA－41／－52／－52S，VFD300FP4EA－41／－52／－52S， VFD300FP5EA－41／－52／－52S，VFD370FP4EA－41／－52／－52S， VFD370FP5EA－41／－52／－52S
Frame D0
Applicable Model
VFD220FP2EA－41／－52／－52S，VFD300FP2EA／41／－52／－52S， VFD450FP4EA－41／－52／－52S，VFD450FP5EA－41／－52／－52S， VFD550FP4EA－41／－52／－52S，VFD550FP5EA－41／－52／－52S
Frame D

Applicable Model
VFD370FP2EA－41／－52／－52S，VFD450FP2EA－41／－52／－52S， VFD750FP4EA－41／－52／－52S，VFD750FP5EA－41／－52／－52S， VFD900FP4EA－41／－52／－52S，VFD900FP5EA－41／－52／－52S

- Fan Removal

Frame A
Model『MKFP-AFKM : Heat Sink Fan
Applicable model
VFD022FP2EA-41/-52/-52S, VFD022FP4EA-41/-52/-52S, VFD022FP5EA-41/-52/-52S,
VFD037FP2EA-41/-52/-52S, VFD037FP4EA-41/-52/-52S, VFD037FP5EA-41/-52/-52S,
VFD040FP4EA-41/-52/-52S, VFD055FP2EA-41/-52/-52S, VFD055FP4EA-41/-52/-52S,
VFD055FP5EA-41/-52/-52S, VFD075FP4EA-41/-52/-52S, VFD075FP5EA-41/-52/-52S

1. Refer to Figure 1, loosen the 4 screws then remove the fan kit.
2. Screw torque: $10-12 \mathrm{~kg}-\mathrm{cm} /[8.7-10.4 \mathrm{lb}-\mathrm{in}$.$] / [1.0-1.2 Nm]$

Figure 1

Frame A
 Model 『MKFP-AFKB』: Capacitor Fan

Applicable model
VFD007FP2EA-41/-52/-52S, VFD007FP4EA-41/-52/-52S, VFD015FP2EA-41/-52/-52S, VFD015FP4EA-41/-52/-52S, VFD015FP5EA-41/-52/-52S, VFD022FP2EA-41/-52/-52S, VFD022FP4EA-41/-52/-52S, VFD022FP5EA-41/-52/-52S, VFD037FP2EA-41/-52/-52S, VFD037FP4EA-41/-52/-52S, VFD037FP5EA-41/-52/-52S, VFD040FP4EA-41/-52/-52S, VFD055FP2EA-41/-52/-52S, VFD055FP4EA-41/-52/-52S, VFD055FP5EA-41/-52/-52S, VFD075FP4EA-41/-52/-52S, VFD075FP5EA-41/-52/-52S

1. Press the hook in the top of digital keypad, and then rotate to remove the digital keypad. (Refer to Figure 2)
2. Screw $1-4$ torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$
3. Loosen the screws $7-13$ then remove the fan kit. (Refer to Figure 3)
4. Screw $7-12$ torque: $6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}] /.[0.6-0.8 \mathrm{Nm}]$;

Screw 13 torque: $12-14 \mathrm{~kg}-\mathrm{cm} /[10.4-12.2 \mathrm{lb}-\mathrm{in}$.$] / [1.2-1.4 Nm]$

Figure 2
Figure 3

Frame B

Model『MKFP-BFKM : Heat Sink Fan
Applicable model
VFD075FP2EA-41/-52/-52S, VFD110FP2EA-41/-52/-52S, VFD110FP4EA-41/-52/-52S, VFD150FP4EA-41/-52/-52S, VFD150FP5EA-41/-52/-52S, VFD185FP4EA-41/-52/-52S, VFD185FP5EA-41/-52/-52S, VFD220FP4EA-41/-52/-52S

1. Refer to Figure 1, loosen the 4 screws then remove the fan kit.
2. Screw torque: $10-12 \mathrm{~kg}-\mathrm{cm} /[8.7-10.4 \mathrm{lb}-\mathrm{in}$.$] / [1.0-1.2 Nm]$

Figure 1

Frame B

Model『MKFP-BFKB 』: Capacitor Fan
Applicable model
VFD075FP2EA-41/-52/-52S, VFD110FP2EA-41/-52/-52S, VFD110FP4EA-41/-52/-52S, VFD110FP5EA-41/-52/-52S, VFD150FP4EA-41/-52/-52S, VFD150FP5EA-41/-52/-52S, VFD185FP4EA-41/-52/-52S, VFD185FP5EA-41/-52/-52S, VFD220FP4EA-41/-52/-52S

1. Press the hook in the top of digital keypad, and then rotate to remove the digital keypad. (Refer to Figure 2)
2. Screw $1-6$ torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$
3. Loosen the screws $7-13$ then remove the fan kit. (Refer to Figure 3)
4. Screw $7-12$ torque: $6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}] /.[0.6-0.8 \mathrm{Nm}] ;$ Screw 13 torque: $10-12 \mathrm{~kg}-\mathrm{cm} /[8.7-10.4 \mathrm{lb}-\mathrm{in}] /.[1.0-1.2 \mathrm{Nm}]$

Figure 2

Figure 3

Frame C

Model『 MKFP-CFKM 』 : Heat Sink Fan
Applicable model
VFD150FP2EA-41/-52/-52S, VFD185FP2EA-41/-52/-52S, VFD220FP5EA-41/-52/-52S, VFD300FP4EA-41/-52/-52S, VFD300FP5EA-41/-52/-52S, VFD370FP4EA-41/-52/-52S, VFD370FP5EA-41/-52/-52S

1. Refer to Figure 1, loosen the 4 screws then remove the fan kit.
2. Screw torque: $24-26 \mathrm{~kg}-\mathrm{cm} /[20.8-22.6 \mathrm{lb}-\mathrm{in}] /.[2.4-2.6 \mathrm{Nm}]$

Figure 1

Frame C

Model『MKFP-CFKB ${ }_{』}$: Capacitor Fan
Applicable model
VFD150FP2EA-41/-52/-52S, VFD185FP2EA-41/-52/-52S, VFD220FP5EA-41/-52/-52S,
VFD300FP4EA-41/-52/-52S, VFD300FP5EA-41/-52/-52S, VFD370FP4EA-41/-52/-52S,
VFD370FP5EA-41/-52/-52S

1. Press the hook in the top of digital keypad, and then rotate to remove the digital keypad. (Refer to Figure 2)
2. Screw $1-6$ torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$
3. Loosen the screw 7 then remove the fan kit. (Refer to Figure 3)
4. Screw 7 torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$

Figure 2

Figure 3

Frame D0
Model 『MKFP-D0FKM : Heat Sink Fan
Applicable model
VFD220FP2EA-41/-52/-52S, VFD300FP2EA-41/-52/-52S, VFD450FP4EA-41/-52/-52S, VFD450FP5EA-41/-52/-52S, VFD550FP4EA-41/-52/-52S, VFD550FP5EA-41/-52/-52S

1. Loosen the screw and remove the fan kit. Screw torque: $24-26 \mathrm{~kg}-\mathrm{cm} /[20.8-22.6 \mathrm{lb}-\mathrm{in}] /[2.4-2.6 \mathrm{Nm}]$
2. Before pulling out the fan, make sure the fan power is disconnected. (Refer to Figure 1)

Figure 1

Frame D0

Model 『MKFP-CFKB』: Capacitor Fan
Applicable model
VFD220FP2EA-41/-52/-52S, VFD300FP2EA-41/-52/-52S, VFD450FP4EA-41/-52/-52S,
VFD450FP5EA-41/-52/-52S, VFD550FP4EA-41/-52/-52S, VFD550FP5EA-41/-52/-52S

1. Press the hook in the top of digital keypad, and then rotate to remove the digital keypad. (Refer to Figure 2)
2. Screw $1-6$ torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$
3. Loosen the screw 7 then remove the fan kit. (Refer to Figure 3)
4. Screw 7 torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}] /.[1.2-1.5 \mathrm{Nm}]$

Figure 2

Figure 3

Frame D
Model『MKFP-DFKM : Heat Sink Fan
Applicable model
VFD370FP2EA-41/-52/-52S, VFD450FP2EA-41/-52/-52S, VFD750FP4EA-41/-52/-52S,
VFD750FP5EA-41/-52/-52S, VFD900FP4EA-41/-52/-52S, VFD900FP5EA-41/-52/-52S

1. Loosen the screw and remove the fan kit. Screw torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$
2. Before pulling out the fan, make sure the fan power is disconnected. (Refer to Figure 1)

Figure 1

Frame D

Model 『MKFP-CFKB』: Capacitor Fan
Applicable model
VFD370FP2EA-41/-52/-52S, VFD450FP2EA-41/-52/-52S, VFD750FP4EA-41/-52/-52S,
VFD750FP5EA-41/-52/-52S, VFD900FP4EA-41/-52/-52S, VFD900FP5EA-41/-52/-52S

1. Press the hook in the top of digital keypad, and then rotate to remove the digital keypad. (Refer to Figure 2)
2. Screw $1-8$ torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$
3. Loosen the screw 9 then remove the fan kit. (Refer to Figure 3)
4. Screw 9 torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}] /.[1.2-1.5 \mathrm{Nm}]$

Figure 2

Figure 3

7-9 USB/RS-485 Communication Interface IFD6530

! Warning

\checkmark Thoroughly read this instruction sheet before installation and putting it into use.
\checkmark The content of this instruction sheet and the driver file may be revised without prior notice. Consult our distributors or download the most updated instruction/driver version.

Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2 Kbps and auto switching direction of data transmission. In addition, it adopts RJ45 in RS-485 connector for users to wire conveniently. Moreover, its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABG products to your PC.

Applicable Models: All DELTA IABG products.
(Application \& Dimension)

Figure 7-52

Unit: mm [inch]

Figure 7-53

Specifications

Power supply	No external power is needed
Power consumption	1.5 W
Isolated voltage	$2,500 \mathrm{~V}$ Dc
Baud rate	$75 \mathrm{Kbps}, 150 \mathrm{Kbps}, 300 \mathrm{Kbps}, 600 \mathrm{Kbps}, 1,200 \mathrm{Kbps}, 2,400 \mathrm{Kbps}, 4,800 \mathrm{Kbps}, 9,600$ Kbps, $19,200 \mathrm{Kbps}, 38,400 \mathrm{Kbps}, 57,600 \mathrm{Kbps}, 115,200 \mathrm{Kbps}$
RS-485 connector	RJ45
USB connector	A type (plug)
Compatibility	Full compliance with USB V2.0 specification
Max. cable length	RS-485 Communication Port: 100 m
Support RS-485 half-duplex transmission	

- RJ45

	$\begin{aligned} & 8 \leftarrow 1 \\ & \begin{array}{r} 8 \\ \text { Rececce } \\ \mathrm{RJ}-45 \end{array} \end{aligned}$	PIN	Description	PIN	Description
		1	Reserved	5	SG+
		2	Reserved	6	GND
		3	GND	7	Reserved
		4	SG-	8	+9V

Preparations before Driver Installation

Extract the driver file (IFD6530_Drivers.exe) by following steps. Download the driver file (IFD-6530_Drivers.exe) at www.deltaww.com/iadownload acmotordrive/IFD6530 Drivers.

NOTE: DO NOT connect IFD6530 to PC before extracting the driver file.

STEP 3

InstallShield Fizard				X
Choose Destination Location Select folder where Setup will install files.				
Setup will install Silicon Laboratories CP210x Evaluation Kit Tools Release 3.31 in the following folder. To install to this folder, click Next. To install to a different folder, click Browse and select another folder.				
Destination Folder C: \SiLabs 1 MCU\CP210x Browse...				

STEP 2

STEP 4

STEP 5

You should have a folder marked SiLabs under drive C. c:\SiLabs

1. Driver Installation

After connecting IFD6530 to PC, please install driver by following steps.
STEP 1

Found New Hardware Wizard	
	Welcome to the Found New Hardware Wizard Windows will search for current and updated software by looking on your computer, on the hardware installation CD, or on the Windows Update Web site (with your permission). Read our privacy policy Can Windows connect to Windows Update to search for software? Yes, this time only Yes, now and every time I connect a device No, not this time Click Next to continue.
	<Back Next> Cancel

STEP 2

STEP 4

STEP 5
Repeat Step 1 to Step 4 to complete COM PORT setting.

2. LED Display

1. Steady Green LED ON: power is ON.
2. Blinking orange LED: data is transmitting.

Chapter 8 Option Cards

8-1 Option Card Installation
8-2 EMC-D42A -- Extension card for 4-point digital input / 2-point digital input
8-3 EMC-D611A -- Extension card for 6 -point digital input ($110 V_{\text {AC }}$ inputvoltage)
8-4 EMC-R6AA -- Relay output extension card (6-point N.o. output contact)
8-5 EMC-BPS01 -- +24 V power card
8-6 EMC-A22A -- Extension card for 2-point analog input / 2-point analog output
8-7 CMC-PD01 -- Communication card, PROFIBUS DP
8-8 CMC-DN01 -- Communication card, DeviceNet
8-9 CMC-EIP01 -- Communication card, EtherNet/IP
8-10 CMC-PN01 -- Communication card, PROFINET
8-11 eZVFD-CC -- Communication card, BACnet Ethernet / BACnet IP
8-12 EMC-COP01 -- Communication card, CANopen
8-13 Delta Standard Fieldbus Cables

- Select applicable option cards for your drive or contact your local distributor for suggestion.
- To prevent damage to the drive during installation, remove the digital keypad and the cover before wiring. Refer to the following instruction.
- The option card does not support hot swap function. Power off the motor drive before you install or remove the option cards.

8-1 Option Card Installation

8-1-1 Remove the top cover
Frame A \& B
Screw Torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$

1. Remove the keypad (as shown in below figure 2).
2. Loosen the screws, then remove the top cover (as shown in below figure 3).

Figure 1

Figure 2

Figure 3

Frame C

Screw Torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.2-13.9 \mathrm{lb}-\mathrm{in}$.$] / [1.4-1.6 Nm]$

1. Remove the keypad (as shown in below figure 2).
2. Loosen the screws, then remove the top cover (as shown in below figure 3).

Figure 1

Figure 2

Figure 3

Frame D0-D
Screw Torque: $14-16 \mathrm{~kg}-\mathrm{cm} /[12.1-13.9 \mathrm{lb}-\mathrm{in}] /.[1.4-1.6 \mathrm{Nm}]$

1. Remove the keypad (as shown in below figure 2).
2. Loosen the screws, then remove the top cover (as shown in below figure 3).

Figure 1

Figure 2

Figure 3

8-1-2 Location to Install Extension Card
(3)
(4)

(2)

2	Communication extension card (Slot 1) CMC-PD01; CMC-DN01; CMC-EIP01; EMC-COP01; CMC-PN01
3	I/O \& Relay extension card (Slot 3) EMC-D42A; EMC-D611A; EMC-A22A; EMC-R6AA; EMC-BPS01
4	PG Card (Slot 2) ※CFP2000 does not support PG card.

Table 8-1

Screws Specification for option card terminals:

EMC-D42A; EMC-D611A; EMC-BPS01	Wire gauge	$0.2-0.5 \mathrm{~mm}^{2}$ [26-20 AWG]
	Torque	$5 \mathrm{~kg}-\mathrm{cm} /[4.4 \mathrm{lb}-\mathrm{in}] /.[0.5 \mathrm{Nm}]$
EMC-R6AA	Wire gauge	$0.2-0.5 \mathrm{~mm}^{2}[26-20 \mathrm{AWG}]$
	Torque	$8 \mathrm{~kg}-\mathrm{cm} /[7 \mathrm{lb}-\mathrm{in}] /.[0.8 \mathrm{Nm}]$
EMC-A22A	Wire gauge	$0.2-4 \mathrm{~mm}^{2}[24-12 \mathrm{AWG}]$
	Torque	$5 \mathrm{~kg}-\mathrm{cm} /[4.4 \mathrm{lb}-\mathrm{in}] /[0.5 \mathrm{Nm}]$

Table 8-2

Communication extension card (Slot 1)

Figure 8-2
CMC-EIP01

Figure 8-4
CMC-PN01

Figure 8-6

I/O / Relay extension card \& 24V Power extension card (Slot 3)

Figure 8-7
EMC-BPS01

Figure 8-9

EMC-A22A

Figure 8-11

8-1-3 Install and Uninstall of Extension Cards

8-1-3-1 Installation

Communication card: EMC-COP01, CMC-EIP01, CMC-DN01, CMC-PD01, CMC-PN01

As shown in the figure on the left. Put the isolation sheet into the positioning pin.
Aim the two holes at the positioning pin.
Press the pin to clip the holes with the PCB.

Figure 8-12

Figure 8-13

As shown in the figure on the left, installation is completed.

Figure 8-14

I/O \& Relay Card: EMC-D42A, EMC-D611A, EMC-R6AA, EMC-BPS01, EMC-A22A

Figure 8-15

Figure 8-16

As shown in the figure on the left, installation is completed.

Figure 8-17

8-1-3-2 Disconnect the extension card

Communication Card: EMC-COP01, CMC-EIP01, CMC-DN01, CMC-PD01, CMC-PN01

Remove the two screws as shown in the figure on the left.

Figure 8-18

As shown in the figure on the left. Twist to open the clip. Insert a slot type screwdriver into the hollow to prize the PCB off the clip.

Figure 8-19

Twist to open the other clip to remove the PCB.

Figure 8-20

Remove the two screws as shown in the figure on the left.

Figure 8-21

As shown in the figure on the left.
Twist to open the clip. Insert a slot type screwdriver into the hollow to prize the PCB off the clip.

Figure 8-22

Figure 8-23

8-2 EMC-D42A
-- Extension card for 4-point digital input / 2-point digital input

I/O Extension Card	Terminals	Descriptions
	COM	Common for Multi-function input terminals Select SINK (NPN) / SOURCE (PNP) in J1 jumper / external power supply
	MI10-MI13	Refer to Pr.02-26-Pr.02-29 to program the multi-function inputs MI10-MI13. Internal power is applied from terminal E24: +24 VDC士5\% 200 mA , 5 W External power $+24 \mathrm{~V}_{\mathrm{Dc}}$: max. voltage 30 VDC , min. voltage $19 \mathrm{~V}_{\mathrm{DC}}$ ON : the activation current is 6.0 mA OFF: leakage current tolerance is $10 \mu \mathrm{~A}$
	MO10-MO11	Multi-function output terminals (photocoupler) The AC motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector). MO10 MO11 MXM Figure 8-24
	MXM	Common for multi-function output terminals MO10, MO11 (photo coupler) Max $48 \mathrm{~V}_{\mathrm{DC}} 50 \mathrm{~mA}$

Table 8-3
8-3 EMC-D611A -- Extension card for 6-point digital input (110 $V_{A C}$ input voltage)

I/O Extension Card	Terminals	Descriptions
	AC	AC power Common for multi-function input terminal (Neutral)
	MI10-MI15	Refer to Pr.02-26-Pr.02-31 for multi-function input selection Input voltage: 100-130 V_{AC} Input frequency: $47-63 \mathrm{~Hz}$ Input impedance: $27 \mathrm{k} \Omega$ Terminal response time: ON: 10 ms OFF: 20 ms

Table 8-4
8-4 EMC-R6AA -- Relay output extension card (6-point N. O. output contact)

Relay Extension Card	Terminals	Descriptions
	$\begin{aligned} & \text { RA10-RA15 } \\ & \text { RC10-RC15 } \end{aligned}$	Refer to Pr.02-36-Pr.02-41 for multi-function relay selection
		Resistive load:
		3 A (N.O.) / $250 \mathrm{~V}_{\mathrm{AC}}$
		5 A (N.O.) / 30 VdC
		Inductive load (COS 0.4)
		1.2 A (N.O.) / $250 \mathrm{~V}_{\mathrm{AC}}$
		2.0 A (N.O.) / 30 VDC
		It is used to output each monitor signal, such as drive is in operation, frequency attained or overload indication.

8-5 EMC-BPS01 -- +24V power card

External Power Supply	Terminals	Descriptions
	$\begin{aligned} & 24 \mathrm{~V} \\ & \mathrm{GND} \end{aligned}$	Input power: $24 \mathrm{~V} \pm 5 \%$ Maximum input current: 0.5 A Note: Do not connect drive control terminal GND directly to the EMC-BPS01 input terminal GND.
		Function: When the drive is only powered by EMC-BPS01, the communications can be assured and support all communication cards and following functions: Parameters read and write. Keypad can be displayed. Keypad button can be operated (except RUN). Analog input is effective. Multi-function (FWD, REV, MI1-MI8) needs external power supply to operate. The following functions are NOT supported. Relay out (including extension card), PG card and PLC function.

8-6 EMC-A22A

 Extension card for 2-point analog input / 2-point analog output8-6-1 Product File

Figure 8-25

8-6-2 Terminal Specification

Analog I/O Extension Card	Terminals		Descriptions
	Al10, Al11	Refer to Pr.14-00-Pr.14-01 for function selection (input), and Pr.14-18-Pr.14-19 for mode selection. There are two sets of Al port, SSW3 (Al10) and SSW4 (Al11), which can be switched to Voltage or Current mode. Voltage mode: Input 0-10 V Current mode: Input 0-20 mA / 4-20 mA	
		Analog voltage frequency command Figure 8-26	Impedance: $20 \mathrm{k} \Omega$ Range: $0-10 \mathrm{~V}=0-\mathrm{Max}$. Output Frequency (Pr.01-00) Switch: Al10 / Al11 Switch, default 0-10 V
		Analog current frequency command Figure 8-27	Impedance: 250Ω Range: 0-20 mA / 4-20 mA = 0-Max. Output Frequency (Pr.01-00) Switch: Al10 / Al11 Switch, default 0-10 V

		Refer to Pr. 14-12-Pr. 14Pr. 14-36-Pr. 14-37 for mo There are two sets of AO be switched to Voltage or Voltage mode: Output 0-10 Current mode: Output 0	3 for function selection (output), and de selection. port, SSW1 (AO10) and SSW2 (AO11), which can Current mode. 10 V $20 \mathrm{~mA} / 4-20 \mathrm{~mA}$
	$\begin{aligned} & \text { AO10, } \\ & \text { AO11 } \end{aligned}$	Multi-function analog output Figure 8-28	AVO: $0-10 \mathrm{~V}$ Max. output current 2 mA, Max. load $5 \mathrm{k} \Omega$ Output current: 2 mA max Resolution: 0-10 V corresponds to Max. operation frequency Switch: AO10 / AO11 Switch, default 0-10 V ACO: 0-20 mA Max. Load 500Ω Output current: 20 mA max Resolution: 0-20 mA / 4-20 mA corresponds to Max. operation frequency Switch: AO10 / AO11 Switch, default 0-10 V
	ACM	Analog Signal Common	Common for analog terminals

Table 8-8

8-7 CMC-PD01

8-7-1 Features

1. Supports PZD control data exchange.
2. Supports PKW polling AC motor drive parameters.
3. Supports user diagnosis function.
4. Auto-detects baud rates; supports Max. 12 Mbps.

8-7-2 Product Profile

Figure 8-29

8-7-3 Specifications

PROFIBUS DP Connector

Interface	DB9 connector
Transmission	High-speed RS-485
Transmission cable	Shielded twisted pair cable
Electrical isolation	$500 \mathrm{~V}_{\mathrm{DC}}$

Table 8-10
Communication

Message type	Cyclic data exchange
Module name	CMC-PD01
GSD document	DELA08DB.GSD
Company ID	08DB (HEX)
Serial transmission speed supported (auto-detection)	$9.6 \mathrm{Kbps}, 19.2 \mathrm{Kbps}, 93.75 \mathrm{Kbps}, 187.5 \mathrm{Kbps}, 500 \mathrm{Kbps}, 1.5 \mathrm{Mbps}, 3 \mathrm{Mbps}$, $6 \mathrm{Mbps}, 12 \mathrm{Mbps} \mathrm{(bit} \mathrm{per} \mathrm{second)}$

Table 8-11
Electrical Specification

Power supply	$5 \mathrm{~V}_{\mathrm{DC}}$ (supplied by AC motor drive)
Insulation voltage	$500 \mathrm{~V}_{\mathrm{DC}}$
Power consumption	1 W
Weight	28 g

Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Surge Teat (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
	Operation: $-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity) Storage: $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity)
Shock / vibration resistance	International standards: IEC61131-2, IEC60068-2-6 (TEST Fc) / IEC61131-2 \& IEC60068-2-27 (TEST Ea)

Table 8-13

8-7-4 Installation

PROFIBUS DP Connector

PIN	PIN name	Definition
1	-	Not defined
2	-	Not defined
3	Rxd/Txd-P	Sending/receiving data P(B)
4	-	Not defined
5	DGND	Data reference ground
6	VP	Power voltage - positive
7	-	Not defined
8	Rxd/Txd-N	Sending/receiving data N(A)
9	-	Not defined

Figure 8-30

8-7-5 LED Indicator \& Troubleshooting

There are 2 LED indicators on CMC-PD01: POWER LED and NET LED. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

POWER LED

LED status	Indication	How to correct it?
Green light ON	Power supply in normal status.	--
OFF	No power	Check if the connection between CMC-PD01 and AC motor drive is normal.

Table 8-15

NET LED

LED status	Indication	How to correct it?
Green light ON	Normal status	--
Red light ON	CMC-PD01 is not connected to PROFIBUS DP bus.	Connect CMC-PD01 to PROFIBUS DP bus.
Red light flashes	Invalid PROFIBUS communication address	Set the PROFIBUS address of CMC-PD01 between 1- 125 (decimal)
Orange light flashes	CMC-PD01 fails to communicate with AC motor drive.	Switch off the power and check whether CMC-PD01 is correctly and normally connected to AC motor drive.

8-8 CMC-DN01

8-8-1 Functions

1. Based on the high-speed communication interface of Delta HSSP protocol, able to conduct immediate control to AC motor drive.
2. Supports Group 2 only connection and polling I/O data exchange.
3. For I/O mapping, supports Max. 32 words of input and 32 words of output.
4. Supports EDS file configuration in DeviceNet configuration software.
5. Supports all baud rates on DeviceNet bus: $125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ and extendable serial transmission speed mode.
6. Node address and serial transmission speed can be set up on AC motor drive.
7. Power supplied from AC motor drive.

8-8-2 Product Profile

1. NS indicator
2. MS indicator
3. POWER indicator
4. Positioning hole
5. DeviceNet connection port
6. Screw fixing hole 7. Fool-proof groove 8. AC motor drive connection port

8-8-3 Specifications

DeviceNet Connector

Interface	5-PIN open removable connector of 5.08 mm PIN interval
Transmission	CAN
Transmission cable	Shielded twisted pair cable (with 2 power cables)
Transmission speed	$125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ and extendable serial transmission speed
Network protocol	DeviceNet protocol

Table 8-18
AC Motor Drive Connection Port

Interface	50 PIN communication terminal
Transmission method	SPI communication
Terminal function	1. Communicating with AC motor drive 2. Transmitting power supply from AC motor drive
Communication	Delta HSSP protocol

Electrical Specification

Power supply voltage	$5 \mathrm{~V}_{\mathrm{DC}}$ (supplied by AC motor drive)
Insulation voltage	$500 \mathrm{~V}_{\mathrm{DC}}$
Communication wire power consumption	0.85 W
Power consumption	1 W
Weight	23 g

Table 8-20
Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Surge Teat (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
	Operation: $-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity) Storage: $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity)
Shock / vibration resistance	 IEC 60068-2-27

Table 8-21

8-8-4 Installation

DeviceNet Connector

PIN	Signal	Color	Definition
1	V+	Red	DC24V
2	H	White	Signal+
3	S	-	Earth
4	L	Blue	Signal-
5	V-	Black	OV

Table 8-22

Figure 8-32

8-8-5 LED Indicator \& Troubleshooting

There are 3 LED indicators on CMC-DN01: POWER LED, MS LED and NS LED. POWER LED displays the status of power supply. MS LED and NS LED are dual-color LED, displaying the connection status of the communication and error messages.

POWER LED

LED status	Indication	How to correct it?
OFF	Power supply in abnormal status.	Check the power supply of CMC-DN01.
Green light ON	Power supply in normal status	--

NS LED

LED status	Indication	How to correct it?
OFF	No power supply or CMC-DN01 has not completed MAC ID test yet.	1. Check the power of CMC-DN01 and see if the connection is normal. 2. Make sure at least one or more nodes are on the bus. 3. Check if the serial transmission speed of CMC-DN01 is the same as that of other nodes.
Green light flashes	CMC-DN01 is on-line but has not established connection to the master.	1. Configure CMC-DN01 to the scan list of the master. 2. Re-download the configured data to the master.
Green light ON	CMC-DN01 is on-line and is normally connected to the master	--
Red light flashes	CMC-DN01 is on-line, but I/O connection is timed-out.	1. Check if the network connection is normal. 2. Check if the master operates normally.
Red light ON	1. The communication is down. 2. MAC ID test failure. 3. No network power supply. 4. CMC-DN01 is off-line.	1. Make sure all the MAC IDs on the network are not repeated. 2. Check if the network installation is normal. 3. Check if the baud rate of CMC-DN01 is consistent with that of other nodes. 4. Check if the node address of CMC-DN01 is illegal. 5. Check if the network power supply is normal.

Table 8-24
MS LED

LED status	Indication	How to correct it?
OFF	No power supply or being off-line	Check the power supply of CMC-DN01 and see if the connection is normal.
Green light flashes	Waiting for I/O data	Switch the master PLC to RUN status
Green light ON	I/O data are normal	--
Red light flashes	Mapping error	1. Reconfigure CMC-DN01 2. Re-power AC motor drive
Red light ON	Hardware error	1. See the error code displayed on AC motor drive. 2. Send back to the factory for repair if necessary.
Orange light flashes	CMC-DNO1 is establishing connection with AC motor drive.	If the flashing lasts for a long time, turn off the power and check if CMC-DN01 and AC motor drive are correctly installed and normally connected to each other.

Table 8-25

8-9 CMC-EIP01

8-9-1 Features

1. Supports Ethernet/IP and Modbus TCP protocol
2. User-defined corresponding parameters (EIP V1.06 and above)
3. Simple firewall function for IP Filter
4. MDI/MDI-X auto-detect
5. Baud rate: $10 / 100 \mathrm{Mbps}$ auto-detect mail alarm

8-9-2 Product Profile

Figure 8-33

8-9-3 Specifications

Network Interface

Interface	RJ45 with Auto MDI/MDIX
Number of ports	1 Port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100M
Transmission speed	$10 / 100$ Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, BOOTP, SMTP, EtherNet/IP, Modbus TCP

Table 8-27
Electrical Specification

Weight	25 g
Insulation voltage	500 VDC
Power consumption	0.8 W
Power supply voltage	5 V DC

Table 8-28

Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Surge Test (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation/storage	Operation: -10 So-50 Storage: $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), (temperature), 95% (humidity)
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC 60068-2-27

Table 8-29

8-9-4 Installation

Connecting CMC-EIP01 to Network

1. Turn off the power of AC motor drive.

[Figure 2]

RJ45 PIN Definition

PIN	Signal	Definition
1	Tx+	Positive pole for data transmission
2	Tx-	Negative pole for data transmission
3	Rx+	Positive pole for data receiving
4	--	N/C

Table 8-30

PIN	Signal	Definition
5	--	N/C
6	Rx-	Negative pole for data receiving
7	--	N/C
8	--	N/C

Table 8-31

8-9-5 Communication Parameters for CFP2000 Connected to Ethernet

When the CFP2000 is connected to an Ethernet network, set up the communication parameters for it according to the table below. The Ethernet master is only able to read/write the frequency word and control word of CFP2000 after the communication parameters are set.

Parameter	Function	Set value (Dec)	Explanation
Pr.00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
Pr.00-21	Source of operation command setting	5	The operation command is controlled by communication card.
Pr.09-30	Decoding method for communication	0	The decoding method for Delta AC motor drive
Pr.09-75	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
Pr.09-76	IP address -1	192	IP address 192.168.1.5
Pr.09-77	IP address -2	168	IP address 192.168.1.5
Pr.09-78	IP address -3	1	IP address 192.168.1.5

Parameter	Function	Set value (Dec)	Explanation
Pr.09-79	IP address -4	5	IP address 192.168.1.5
Pr.09-80	Netmask -1	255	Netmask 255.255.255.0
Pr.09-81	Netmask -2	255	Netmask 255.255.255.0
Pr.09-82	Netmask -3	255	Netmask 255.255.255.0
Pr.09-83	Netmask -4	0	Netmask 255.255.255.0
Pr.09-84	Default gateway -1	192	Default gateway 192.168.1.1
Pr.09-85	Default gateway -2	168	Default gateway 192.168.1.1
Pr.09-86	Default gateway -3	1	Default gateway 192.168.1.1
Pr.09-87	Default gateway -4	1	Default gateway 192.168.1.1

Table 8-32

8-9-6 LED Indicator \& Troubleshooting

There are 2 LED indicators on CMC-EIP01: POWER LED and LINK LED. The POWER LED displays the status of power supply, and the LINK LED displays the connection status of the communication.

LED Indicators

LED	Status		Indication	How to correct it?
POWER	Green	ON	Power supply in normal status	--
		OFF	No power supply	Check the power supply.
	Green	ON	Network connection in normal status	--
		Flashes	Network in operation	--
		OFF	Network not connected	Check if the network cable is connected.

Table 8-33
Troubleshooting

Abnormality	Cause	How to correct it?
POWER LED OFF	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMC-EIP01 not connected to AC motor drive	Make sure CMC-EIP01 is connected to AC motor drive.
LINK LED OFF	CMC-EIP01 not connected to network	Make sure the network cable is correctly connected to network.
	Poor contact to RJ45 connector	Make sure RJ45 connector is connected to Ethernet port.
No communication card found	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to network.
	PC and CMC-EIP01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.
Fail to open CMC-EIP01 setup page	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to the network.
	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
	PC and CMC-EIP01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.

Abnormality	Cause	How to correct it?
Able to open CMC-EIP01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC-EIP01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC-EIP01 is correct.
	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.

Table 8-34

8-10 CMC-PN01

8-10-1 Features

CMC-PN01 connects CFP2000 to PROFINET, so the drive is able to exchange data with the upper unit. It is a simple NET solution, which can reduce the cost and time of connection/ installing factory automation, also provide compatibility of similar components from multiple suppliers.

Connect CMC-PN01 to CFP2000 via PROFINET device:

1. Control the AC motor drive via PROFINET
2. Change the drive parameters via PROFINET
3. Monitor the drive status via PROFINET

8-10-2 Product Profile

MAC Address label definition

Figure 8-36

Def.	Explanation
MAC1	Port 1 MAC Address
MAC2	Port 2 MAC Address
MAC3	Interface MAC Address

Table 8-36

8-10-3 Specifications

Network Interface

Interface	RJ45
Number of ports	2 ports
Transmission method	IEEE 802.3
Transmission cable	Category 5e shielding 100 M
Transmission speed	$10 / 100$ Mbps auto-negotiate
Network protocol	PROFINET

Table 8-37

Electrical Specification

Power supply voltage	5 VDC
Power consumption	0.8 W
Insulation voltage	500 VDC
Weight (g)	27

Table 8-38
Environment

	ESD (IEC 61800-5-1, IEC 61000-4-2)				
EFT (IEC 61800-5-1, IEC 61000-4-4)					
Surge Test (IEC 61800-5-1, IEC 61000-4-5)					
Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)		$	$	Operation	$-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity)
:---:	:---				
Storage	$-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity)				
Vibration / Shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, IEC 60068-2-27				

Table 8-39

8-10-4 RJ45 PIN Definition

RJ45	PIN No.	Signal	Definition
12345678	1	Tx+	Positive pole for data transmission
	2	Tx-	Negative pole for data transmission
Figure 8-37	3	Rx+	Positive pole for data receiving
	4	--	N/C
	5	--	N/C
	6	Rx-	Negative pole for data receiving
	7	--	N/C
	8	--	N/C

Table 8-40

8-10-5 Communication Parameters for CFP2000 Conneted to PROFINET

When operating CFP2000 via CMC-PN01, please set the control and operation command as controlled by communication card. When CFP2000 is connected to PROFINET network, please set up the communication parameters according to the table below.

Parameter	Set value (Dec)	Explanation
Pr.00-20	8	The frequency command is controlled by communication card.
Pr.00-21	5	The operation command is controlled by communication card.
Pr.09-30	1	Set Pr.09-30 to 60xx or 20xx as the decoding method.
Pr.09-60	12	Identification: when CMC-PN01 is connected, Pr.09-60 will show value 12.

Table 8-41

8-10-6 LED Indicator

LED	Status		Indication
Ready out	Yellow	ON	PN Stack operates in normal status
		Flashes	PN Stack operates in normal status, and waiting to sync with MCU
		OFF	PN Stack operates with error
MT out	Green	-	-
SD	Red	-	-
BF out	Red	ON	Connection with PROFINET Controller breaks off
		Flashes	Connection is normal, but an error occurs to the communication with PROFINET Controller
		OFF	Connection with PROFINET Controller is normal
ACT PHY1	Orange	ON	Online, exchanging data with the master
		Flashes	Off line, but handshaking data with the master
		OFF	Initial status
LINK PHY1	Green	ON	Network connection is normal
		OFF	Network is not connected
ACT PHY2	Orange	ON	On line, exchanging data with the master
		Flashes	Off line, but handshaking data with the master
		OFF	Initial status
LINK PHY2	Green	ON	Network connection is normal
		OFF	Network is not connected

Table 8-42

8-10-7 Network Connection

Wiring of CMC-PN01 is as following:

Figure 8-38
When the hardware is installed and power on, the current set value of Pr.09-60 will be 12, and shows "PROFINET" on the display.If the above information does not show on the display, check the version of CFP2000 and the connection of the card.

Figure 8-39

8-11 eZVFD-CC

8-11-1 Features

The eZVFD-CC Integration Module provides BACnet/IP and BACnet over Ethernet communication to BACnet compliant devices. When used with a Delta Controls system, you can use the module's GCL+ programs and Delta Controls internal control loops to directly control pumps and fan motors. Quickly configure and save drive parameters in enteliWEB and load the saved configuration onto other CFP2000 AC motor drives over the BACnet network. Features include:

- Native BACnet firmware
- BACnet/IP, BACnet over Ethernet communication protocols
- Fully programmable in GCL+ (Delta Controls General Control Language)
- Dual port ethernet to support daisy-chaining multiple CFP2000 devices
- Monitor and utilize CFP2000 AC motor drive I/O terminals as BACnet I/O
- Set up and configure using enteliWEB. Use enteliWEB to read, write, save and load CFP2000 AC motor drive parameters.

8-11-2 Product Profile

Figure 8-40
MAC address is displayed in the IPS object in entelliWEB.

8-11-3 Specifications

Network Interface

Interface	RJ45
Number of ports	2 ports
Daisy chaining	Up to 30 devices (daisy chain is discontinued if drive is not powered)
Transmission method	IEEE 802.3
Transmission cable	$10 / 100$ BaseT CAT5E/CAT6
Maximum length	100 m (port-to-port)
Transmission speed	$10 / 100$ Mbps auto-negotiate
Network protocol	BACnet/IP or BACnet/Ethernet

Electrical Specification

Power supply voltage	$5 \mathrm{~V}_{\mathrm{DC}}$ (supplied by AC Motor Drive)
Power consumption	$<2 \mathrm{~W}$
Insulation voltage	500 VDC
Weight (g)	2.6 g
Technology	32 -bit CPU, field upgradeable firmware, real-time clock with supercapacitor backup

Table 8-45
Environment

Compliance	CE IEC 61800-3, EMC Standard for Variable Speed Drives LVD IEC 61800-5-1 Safety Requirements for Electrical Power Drive Systems
Operation	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (temperature), 10% to $95 \% \mathrm{RH}$ (non-condensing)
Storage	$-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), $95 \% \mathrm{RH}$

Table 8-46

8-11-4 RJ45 PIN Definition

RJ45	PIN No.	Signal	Definition
12345678	1	Tx+	Positive pole for data transmission
	2	Tx-	Negative pole for data transmission
Figure 8-41	3	Rx+	Positive pole for data receiving
	4	--	N/C
	5	--	N/C
	6	Rx-	Negative pole for data receiving
	7	--	N/C
	8	--	N/C

Table 8-47

8-11-5 Communication Parameters for CFP2000 Connected to eZVFD-CC BACnet Controller

When operating the CFP2000 using the eZVFD-CC card you must set the parameters according to the table below:

Parameter	Function	Set value (Dec)	Explanation
Pr.00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
Pr.00-21	Source of operation command setting	5	The operation command is controlled by communication card.
Pr.09-30	Decoding method for communication	1	Decoding method 2 (Refer to address: $6000 \mathrm{~h}-60 \mathrm{FFh})$
Pr.09-60	Identification for Communication Card	Read-only	When eZVFD-CC is connected, Pr.09-60 will show value 8 (BACnet IP)

Table 8-48

The following parameters should be set according to your desired network configuration. The table below shows default values:

Parameter	Function	Default value (Dec)	Explanation
Pr.04-50	UDP port number	47808	UDP/IP communication port
Pr.04-51	BACnet network number	BACnet/Ethernet: 19999 BACnet/IP: 49999	Depends on setting of Pr.09-91
Pr.09-52	BACnet device address, low word (range 0-65535)	$4100000+$ (last 4 hex in MAC address in decimal)	This value is added to the value of Pr.09-53 $\times 65536$
Pr.09-53	BACnet device address, high word (range 0-63)	-	This value is multiplied by 65536 and added to the value of Pr.09-52
Pr.09-75	IP setting	0	0: Static IP 1: Dynamic Distribution IP (DHCP)
Pr.09-91	BACnet IP or Ethernet	1	0: BACnet/ Ethernet 1: BACnet/IP

Table 8-49

If static IP is chosen (Pr.09-75 = 0), then the following parameters must be set according to your local network configuration:

Parameter	Function	Set value (Dec)	Explanation
Pr.09-76	IP address -1	192	IP address 192.168.1.5
Pr.09-77	IP address -2	168	IP address 192.168.1.5
Pr.09-78	IP address -3	1	IP address 192.168.1.5
Pr.09-79	IP address -4	5	IP address 192.168.1.5
Pr.09-80	Netmask -1	255	Netmask 255.255.255.0
Pr.09-81	Netmask -2	255	Netmask 255.255.255.0
Pr.09-82	Netmask -3	255	Netmask 255.255.255.0
Pr.09-83	Netmask -4	0	Netmask 255.255.255.0
Pr.09-84	Default gateway -1	192	Default gateway 192.168.1.1
Pr.09-85	Default gateway -2	168	Default gateway 192.168.1.1
Pr.09-86	Default gateway -3	1	Default gateway 192.168.1.1
Pr.09-87	Default gateway -4	1	Default gateway 192.168.1.1

Table 8-50

8-11-6 LED Indicator

Color	LED Pattern	Indication
Red	On	Hardware startup before system is running
Red	Blinks in a regular repeating pattern 1 second on, 1 second off.	Hardware failure
Green	Blinks in a regular repeating pattern 1 second on, 1 second off.	OK
Amber	Blinks at approx. 100 Hz	Flash loading Main from Boot
Amber	On	Database saving or restoring from Flash

Table 8-51

8-12 EMC-COP01

8-12-1 Terminal Resistor Position

Figure 8-42
8-12-2 RJ45 Pin definition

RS-485 socket
Figure 8-43

Pin	Pin name	Definition
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground/OV/V-
7	CAN_GND	Ground/OV/V-

Table 8-52
8-12-3 Specifications

Interface	RJ45
Number of ports	1 Port
Transmission method	CAN
Transmission cable	CAN standard cable
Transmission speed	1 Mbps, $500 \mathrm{Kbps}, 250 \mathrm{Kbps}, 125 \mathrm{Kbps}, 100 \mathrm{Kbps}, 50 \mathrm{Kbps}$
Communication protocol	CANopen

Table 8-53

8-13 Delta Standard Fieldbus Cables

Delta Cables	Part Number	Description	Length
CANopen Cable	UC-CMC003-01A	CANopen Cable, RJ45 Connector	0.3 m
	UC-CMC005-01A	CANopen Cable, RJ45 Connector	0.5 m
	UC-CMC010-01A	CANopen Cable, RJ45 Connector	1 m
	UC-CMC015-01A	CANopen Cable, RJ45 Connector	1.5 m
	UC-CMC020-01A	CANopen Cable, RJ45 Connector	2 m
	UC-CMC030-01A	CANopen Cable, RJ45 Connector	3 m
	UC-CMC050-01A	CANopen Cable, RJ45 Connector	5 m
	UC-CMC100-01A	CANopen Cable, RJ45 Connector	10 m
	UC-CMC200-01A	CANopen Cable, RJ45 Connector	20 m
DeviceNet Cable	UC-DN01Z-01A	DeviceNet Cable	305 m
	UC-DN01Z-02A	DeviceNet Cable	305 m
Ethernet / EtherCAT Cable	UC-EMC003-02A	Ethernet/EtherCAT cable, Shielding	0.3 m
	UC-EMC005-02A	Ethernet/EtherCAT cable, Shielding	0.5 m
	UC-EMC010-02A	Ethernet/EtherCAT cable, Shielding	1 m
	UC-EMC020-02A	Ethernet/EtherCAT cable, Shielding	2 m
	UC-EMC050-02A	Ethernet/EtherCAT cable, Shielding	5 m
	UC-EMC100-02A	Ethernet/EtherCAT cable, Shielding	10 m
	UC-EMC200-02A	Ethernet/EtherCAT cable, Shielding	20 m
CANopen / DeviceNet TAP	TAP-CN01	1 in 2 out, built-in 121Ω terminal resistor	1 in 2 out
	TAP-CN02	1 in 4 out, built-in 121Ω terminal resistor	1 in 4 out
	TAP-CN03	1 in 4 out, RJ45 connector, built-in 121Ω terminal resistor	1 in 4 out
PROFIBUS Cable	UC-PF01Z-01A	PROFIBUS DP Cable	305 m

Table 8-54

Chapter 9 Specification

9-1 230V Models
9-2 460V Models
9-3 575V Models
9-4 General Specifications
9-5 Environment for Operation, Storage and Transportation
9-6 Specifications for Operation Temperature and Protection Level9-7 Derating Curve for Ambient Temperature, Altitude and CarrierFrequency
9-8 Efficiency Curve

9-1 230V Models

Frame Size			A					B	
Model VFD__ FP2EA- _ _			007	015	022	037	055	075	110
		Rated Output Capacity (kVA)	2	3	4	6	8.4	12	18
		Rated Output Current (A)	5	7.5	10	15	21	31	46
		Applicable Motor Output (kW)	0.75	1.5	2.2	3.7	5.5	7.5	11
		Applicable Motor Output (HP)	1	2	3	5	7.5	10	15
		Overload Tolerance	120\% of rated current can endure for 1 minute during every 5 minutes						
		Rated Output Capacity (kVA)	1.2	2	3.2	4.4	6.8	10	13
		Rated Output Current (A)	3	5	8	11	17	25	33
		Applicable Motor Output (kW)	0.4	0.75	1.5	2.2	3.7	5.5	7.5
		Applicable Motor Output (HP)	0.5	1	2	3	5	7.5	10
		Overload Tolerance	120% of rated current can endure for 1 minute during every 5 minutes 150% of rated current can endure for 3 seconds during every 25 seconds						
		Max. Output Frequency (Hz)	599.00						
		Carrier Frequency (kHz)	2-15 (Default: 6)						
		Input Current (A) Light Duty	5	7.5	10	15	21	31	46
		nput Current (A) Normal Duty	3	5	8	11	17	25	33
		Rated Voltage / Frequency	Three-phase, 200-240 V ${ }_{\text {AC }}(-15-10 \%), 50 / 60 \mathrm{~Hz}$						
		perating Voltage Range (VAC)	170-265						
		Frequency Tolerance (Hz)	47-63						
		Efficiency (\%)	97					97	
		Power Factor	> 0.98						
		Weight (kg)	6.8					14.5	
		Cooling Method	Convective cooling		Fan cooling				
		Braking Chopper	Optional						
		DC choke	Built-in DC choke meets EN61000-3-12						
		EMC Filter	Built-in EMC filter meets EN61800-3 C1*1 \& C2						

Table 9-1
*1. To comply with the C1 specifications, install a zero phase reactor. Refer to Section 7-6 EMC Filter for more information.

NOTE:

1. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Refer to Section 9-7 Derating Curve of Ambient Temperature.
2. Select the AC motor drive with capacity one grade larger for the impact load application.

230V Models

Frame Size			C		D0		D	
Model VFD__ FP2EA- _ _			150	185	220	300	370	450
		Rated Output Capacity (kVA)	24	30	36	42	58	72
		Rated Output Current (A)	61	75	90	105	146	180
		Applicable Motor Output (kW)	15	18.5	22	30	37	45
		Applicable Motor Output (HP)	20	25	30	40	50	60
		Overload Tolerance	120\% of rated current can endure for 1 min . during every 5 min .					
		Rated Output Capacity (kVA)	20	26	30	36	48	58
		Rated Output Current (A)	49	65	75	90	120	146
		Applicable Motor Output (kW)	11	15	18.5	22	30	37
		Applicable Motor Output (HP)	15	20	25	30	40	50
		Overload Tolerance	120% of rated current can endure for 1 minute during every 5 minutes 150% of rated current can endure for 3 seconds during every 25 seconds					
		Max. Output Frequency (Hz)	599.00					
		Carrier Frequency (kHz)	2-10 (Default: 6)				2-9 (Default: 6)	
		Input Current (A) Light Duty	61	75	90	105	146	180
		Input Current (A) Normal Duty	49	65	75	90	120	146
		Rated Voltage / Frequency	Three-phase, 200-240 V ${ }_{\text {AC }}(-15-10 \%), 50 / 60 \mathrm{~Hz}$					
		Operating Voltage Range (V_{AC})	170-265					
		Frequency Tolerance (Hz)	47-63					
		Efficiency (\%)	97		97		97	
		Power Factor	>0.98					
		Weight (kg)	26.5		42		59.5	
		Cooling Method	Fan Cooling					
		Braking Chopper	Optional					
		DC choke	Built-in DC choke meets EN61000-3-12					
		EMC Filter	Built-in EMC filter meets EN61800-3 C1*1 \& C2					

Table 9-2
*1. To comply with the C 1 specifications, install a zero phase reactor. Refer to Section 7-6 EMC Filter for more information.
NOTE:

1. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Refer to Section 9-7 Derating Curve of Ambient Temperature.
2. Select the AC motor drive with capacity one grade larger for the impact load application.

9-2 460V Models

Frame Size	A							B			
Model VFD _ FP4EA-	007	015	022	037	040	055	075	110	150	185	220
Rated output capacity (kVA)	2.4	3.3	4.4	6.8	8.4	10.4	14.3	19	25	30	36
Rated output current (A)	3.0	4.2	5.5	8.5	10.5	13	18	24	32	38	45
Applicable motor output (kW)	0.75	1.5	2.2	3.7	4	5.5	7.5	11	15	18.5	22
$\underset{\sim}{5}$ Applicable motor output (HP)	1	2	3	5	5	7.5	10	15	20	25	30
$\stackrel{ \pm}{\square}$ Overload tolerance	120% of rated current can endure for 1 min . during every 5 min .										
$\stackrel{-}{-}$ Max. output frequency (Hz)	599.00										
으 C Carrier frequency (kHz)	2-15 (Defualt: 6)										2-10 (Default: 6)
$\stackrel{\sim}{\square} \quad$ Rated output capacity (kVA)	1.4	2.4	3.2	4.8	7.2	8.4	9.6	14.3	19	25	30
? Rated output current (A)	1.7	3.0	4.0	6.0	9.0	10.5	12	18	24	32	38
O Applicable motor output (kW)	0.4	0.75	1.5	2.2	3.7	4	5.5	7.5	11	15	18.5
Applicable motor output (HP)	0.5	1	2	3	5	5	7.5	10	15	20	25
	120% of rated current can endure for 1 minute during every 5 minutes 160% of rated current can endure for 3 seconds during every 30 seconds										
Z Max. output frequency (Hz)	599.00										
Carrier frequency (kHz)	2-15 (Default: 6)										$\begin{gathered} 2-10 \\ \text { (Default: 6) } \end{gathered}$
Input current (A) Light duty	3.0	4.2	5.5	8.5	10.5	13	18	24	32	38	45
. Input current (A) Normal duty	1.7	3	4	6	9.0	10.5	12	18	24	32	38
$\stackrel{\sim}{\sim}$ Rated voltage / Frequency	Three-phase 380-480 $\mathrm{VAC}^{\text {(}}$ (-15\%- +10\%), $50 / 60 \mathrm{~Hz}$										
Operating voltage range (V_{AC})	323-528										
Frequency tolerance (Hz)	47-63										
Efficiency (\%)	97										
Power factor	>0.98										
Weight (kg)	6.8							14.5			
Cooling method	Convective cooling		Fan cooling								
Braking chopper	Frame A to C: built-in										
DC choke	Built-in DC reactor meets EN61000-3-12										
EMC Filter	Built-in EMC meets Filter EN61800-3 C1 ${ }^{* 1}$ \& C2										

Table 9-3
*1 To comply with the C1 specifications, install a zero phase reactor. Refer to Section 7-6 EMC Filter for more information.

NOTE:

1. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Refer to Section 9-7 Derating Curve of Ambient Temperature.
2. Select the AC motor drive with capacity one grade larger for the impact load application.

460V Models

Frame Size	C		D0		D	
Model VFD__ _ FP4EA-	300	370	450	550	750	900
Rated output capacity (kVA)	48	58	73	88	120	143
Rated output current (A)	60	73	91	110	150	180
Applicable motor output (kW)	30	37	45	55	75	90
\#it Applicable motor output (HP)	40	50	60	75	100	125
등 Overload tolerance	120% of rated current can endure for 1 min . during every 5 min ,					
Max. output frequency (Hz)	599.00					
은 Carrier frequency (kHz)	2-10 (Default: 6)					$\begin{gathered} 2-9 \\ \text { (Default: 4) } \end{gathered}$
$\stackrel{\Upsilon}{\Upsilon}$ ¢ \quad Rated output capacity (kVA)	36	48	58	73	88	120
휵 Rated output current (A)	45	60	73	91	110	150
O ${ }^{\text {O }}$ Applicable motor output (kW)	22	30	37	45	55	75
害 Applicable motor output (HP)	30	40	50	60	75	100
	120% of rated current can endure for 1 min . during every 5 min . 160% of rated current can endure for 3 sec . during every 30 sec .					
\mathbf{z} Max. output frequency (Hz)	599.00					
Carrier frequency (kHz)	2-10 (Default: 6)					$\begin{gathered} 2-9 \\ \text { (Default: 4) } \\ \hline \end{gathered}$
- Input current (A) Light duty	60	73	91	110	150	180
.	45	60	73	91	110	150
$\stackrel{\sim}{\sim}$	3 -phase $380-480 \mathrm{~V}_{\mathrm{AC}}(-15 \%-+10 \%), 50 / 60 \mathrm{~Hz}$					
Operating voltage range (V_{AC})	323-528					
Frequency tolerance (Hz)	47-63					
Efficiency (\%)	97					
Power factor	>0.98					
Weight (kg)	26.5		42		59.5	
Cooling method	Fan cooling					
Braking chopper	Frame A to C (built-in)					
DC choke	Built-in DC reactor mets EN61000-3-12					
EMC Filter	Built-in EMC Filter meets EN61800-3 C1 ${ }^{\text {*1 }}$ \& C2					

Table 9-4
*1 To comply with the C1 specifications, install a zero phase reactor. Refer to Section 7-6 EMC Filter for more information.

NOTE:

1. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Refer to Section 9-7 Derating Curve of Ambient Temperature.
2. Select the $A C$ motor drive with capacity one grade larger for the impact load application.

Chapter 9 Specifications | CFP2000

9-3 575V Models

Frame Size			A					B		
Model VFD__ FP5EA- _ _			15	22	37	55	75	110	150	185
		Rated Output Capacity (kVA)	3	4.3	6.7	9.9	12.1	18.6	24.1	30
		Rated Output Current (A)	3	4.3	6.7	9.9	12.1	18.7	24.2	30
		Applicable Motor Output (kW)	1.5	2.2	3.7	5.5	7.5	11	15	18.5
		Applicable Motor Output (HP)	2	3	5	7.5	10	15	20	25
		Overload Tolerance	120\% of rated current can endure for 1 minute during every 5 minutes							
		Rated Output Capacity (kVA)	2.5	3.6	5.5	8.2	10	15.4	19.9	24
		Rated Output Current (A)	2.5	3.6	5.5	8.2	10	15.5	20	24
		Applicable Motor Output (kW)	0.75	1.5	2.2	3.7	5.5	7.5	11	15
		Applicable Motor Output (HP)	1	2	3	5	7.5	10	15	20
		Overload Tolerance	120% of rated current can endure for 1 minute during every 5 minutes 150% of rated current can endure for 3 seconds during every 25 seconds							
		ax. Output Frequency (Hz)	599.00							
		Carrier Frequency (kHz)	2-15 (Default: 6)							
		nput Current (A) Light Duty	3	4.3	6.7	9.9	12.1	18.7	24.2	30
		put Current (A) Normal Duty	2.5	3.6	5.5	8.2	10	15.5	20	24
		Rated Voltage / Frequency	Three-phase, 525-600 V AC (-15-10\%), $50 / 60 \mathrm{~Hz}$							
		erating Voltage Range (V_{AC})	446-660							
		Frequency Tolerance (Hz)	47-63							
		Efficiency (\%)	97							
		Power Factor	> 0.98							
		Weight (kg)	6.8					14.5		
		Cooling Method	Convective cooling	Fan Cooling						
		Braking Chopper	Built-in in frame A, B, C							
		DC choke	Built-in DC choke meets EN61000-3-12							
		EMC Filter	Build-in EMC filter meets EN61800-3 C2*1 \& C3							

Table 9-5
*1. To comply with the C2 specifications, install a zero phase reactor. Refer to Section 7-6 EMC Filter for more information.

NOTE:

1. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Refer to Section 9-7 Derating Curve of Ambient Temperature.
2. Select the $A C$ motor drive with capacity one grade larger for the impact load application.

575V Models

Frame Size			C			D0		D	
Model VFD__ FP5EA- _ _			220	300	370	450	550	750	900
		Rated Output Capacity (kVA)	36	45	54	67	86	104	125
		Rated Output Current (A)	36	45	54	67	86	104	125
		Applicable Motor Output (kW)	22	30	37	45	55	75	90
		Applicable Motor Output (HP)	30	40	50	60	75	100	125
		Overload Tolerance	120\% of rated current can endure for 1 minute during every 5 minutes						
		Rated Output Capacity (kVA)	30	36	45	54	67	86	104
		Rated Output Current (A)	30	36	45	54	67	86	104
		Applicable Motor Output (kW)	18.5	22	30	37	45	55	75
		Applicable Motor Output (HP)	25	30	40	50	60	75	100
		Overload Tolerance	120% of rated current can endure for 1 minute during every 5 minutes 150% of rated current can endure for 3 seconds during every 25 seconds						
		Max. Output Frequency (Hz)	599.00						
		Carrier Frequency (kHz)	2-10 (Default: 6)					2-9 (Default: 6)	
		Input Current (A) Light Duty	36	45	54	67	86	104	125
		Input Current (A) Normal Duty	30	36	45	54	67	86	104
		Rated Voltage / Frequency	Three-phase, $525-600 \mathrm{~V}_{\text {AC }}(-15-10 \%), 50 / 60 \mathrm{~Hz}$						
		Operating Voltage Range (V_{AC})	446-660						
		Frequency Tolerance (Hz)	47-63						
		Efficiency (\%)	97						
		Power Factor	>0.98						
		Weight (kg)	26.5			42		59.5	
		Cooling Method	Fan Cooling						
		Braking Chopper	Built-in in frame A, B, C						
		DC choke	Built-in DC choke meets EN61000-3-12						
		EMC Filter	Build-in EMC filter meets EN61800-3 C2*1 \& 3						

Table 9-6
*1. To comply with the C2 specifications, install a zero phase reactor. Refer to Section 7-6 EMC Filter for more information.
NOTE:

1. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Refer to Section 9-7 Derating Curve of Ambient Temperature.
2. Select the AC motor drive with capacity one grade larger for the impact load application.

9-4 General Specifications

	Control Method	Pulse-Width Modulation (PWM)
	Control Mode	1: V/F, 2: SVC, 3: PM Sensorless, 4: SynRM Sensorless (applied to 230V / 460V models)
	Starting Torque	Reach up to 150% above at 0.5 Hz .
	V/F Curve	4 point adjustable V/F curve and square curve
	Speed Response Ability	5 Hz (vector control can reach up to 40 Hz)
	Torque Limit	Light duty: max. 130% torque current Normal duty: max. 175\% torque current
	Torque Accuracy	$\pm 5 \%$
	Max. Output Frequency (Hz)	599.00 Hz
	Frequency Output Accuracy	Digital command: $\pm 0.01 \%,-10-40^{\circ} \mathrm{C}$; Analog command: $\pm 0.1 \%, 25 \pm 10^{\circ} \mathrm{C}$
	Output Frequency Resolution	Digital command: 0.01 Hz Analog command: $0.03 \times$ max. output frequency $\div 60 \mathrm{~Hz}$ (± 11 bit)
	Overload Tolerance	Light duty: 120% of rated current can endure for 1 minute Normal duty: 120% of rated current can endure for1 minute; 150% of rated current can endure for 3 seconds
	Frequency Setting Signal	0-10 V, 4-20 mA, 0-20 mA, PU
	Accel./decel. Time	0.00-600.00 / 0.0-6000.0 seconds
	Main control function	Momentary power loss ride thru, Speed search, Over-torque detection, Torque limit, 16-step speed (max), Accel/Decel time switch, S-curve accel./decel., Three-wire sequence, Auto-tuning, Dwell, Slip compensation, Torque compensation, JOG frequency, Frequency upper / lower limit settings, DC injection braking at start / stop, High slip braking, ,Energy saving control, Modbus communication (RS-485 RJ45, max. 5.2 Kbps)
	Fan Control	Frame A-B are ON / OFF switch control. Frame C-D are PWM control
	Motor Protection	Electronic thermal relay protection
	Over-current Protection	Light Duty: Over-current protection for 200\% rated current Normal Duty: Over-current protection for 240% rated current Current clamp: "Light duty: 130-135\%"; "Normal duty: 170-175\%"
	Over-voltage Protection	230 V models: Drive stops when DC bus voltage exceeds 410 V . 460 V models: Drive stops when DC bus voltage exceeds 820 V . 575 V models: Drive stops when DC bus voltage exceeds 1016 V .
	Over-temperature Protection	Built-in temperature sensor
	Stall Prevention	Stall prevention during acceleration, deceleration and running independently
	Restart After Instantaneous Power Failure	Parameter setting up to 20 seconds
	Grounding Leakage Current Protection	Leakage current is higher than 50\% of rated current of the AC motor drive
	Short-circuit Current Rating (SCCR)	Per UL508C, the drive is suitable for use on a circuit capable of delivering not more than 100 kA symmetrical amperes (rms) when protected by fuses given in the fuse table.
	Certifications	

Table 9-7

9-5 Environment for Operation, Storage and Transportation

Do NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive/inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.

Table 9-8

9-6 Specifications for Operation Temperature and Protection Level

Model	Frame A-D	Protection Level	Operation Temperature
VFDxxxFP2EA-52x			
VFDxxxFP4EA-52x			
VFDxxxFP5EA-52x	$230 \mathrm{~V}: 0.75-45 \mathrm{~kW}$	IP55 / NEMA12	$-10-50^{\circ} \mathrm{C}$
VFDxxxFP2EA-41	460V: $0.75-90 \mathrm{~kW}$		
VFDxxxFP4EA-41	$575 \mathrm{~V}: 1.5-90 \mathrm{~kW}$		
VFDxxxFP5EA-41		IP41 / NEMA1	

9-7 Derating Curve for Ambient Temperature, Altitude and Carrier Frequency

$\boxtimes \quad$ For more information on calculation for derating curve, see Pr.06-55.
■ When choosing the correct model, consider factors such as ambient temperature, altitude, carrier frequency, control mode, and so on. That is,
Actual rated current for application (A) = Rated output current (A) x Ambient temp. rated derating (\%) x Altitude rated derating (\%) \times [Normal / Advanced control] carrier frequency rated derating (\%)

Protection Level	Operating Environment
NEMA1	If the AC motor drive operates at the rated current, the ambient temperature needs to be between $-10-50^{\circ} \mathrm{C}$. If the temperature is above $50^{\circ} \mathrm{C}$, decrease 2% of the rated current for every $1^{\circ} \mathrm{C}$ increase in temperature. The maximum allowable temperature is $60^{\circ} \mathrm{C}$.

Table 9-10
Ambient Temperature Derating Curve

Figure 9-1
NEMA12:
The rated output current derating (\%) in normal duty / light duty when carrier frequency is the default value:

	$30^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
Default Value	100	100	80

Table 9-11

Altitude Derating Curve

Condition	Operating Environment
High Altitude	If the AC motor drive is installed at an altitude of $0-1000 \mathrm{~m}$, follow normal operation restrictions. For altitudes of $1000-2000 \mathrm{~m}$, decrease the drive's rated current by 1% or lower the temperature by $0.5^{\circ} \mathrm{C}$ for every 100 m increase in altitude. The maximum altitude for corner grounding is 2000 m. If installing at an altitude higher than 2000 m is required, contact Delta for more information.

Figure 9-2
The rated output current derating (\%) for different altitudes above sea level:

Altitude above Sea Level (Meter)	0	1000	1500	2000
Output Current / Rated Current (\%)	100	100	95	90

Table 9-13

Carrier Frequency Derating Curve

- 230V Normal Control (VF / SVC)

$$
\begin{aligned}
\text { Pr.00-11 } & =0(\text { IMVF }) \\
& =2(\text { IM SVC, Pr. } 05-33=0)
\end{aligned}
$$

Figure 9-3
The rated output current derating (\%) of 230 V models in normal control mode for different carrier frequencies:

Model No. Fc (kHz)	4	5	6	7	8	9	10	11	12	13	14	15
VFD007-110FP2EA	100	100	100	95	91	88	85	82	79	76	73	71
VFD150-300FP2EA	100	100	100	93	87	72	76	-	-	-	-	-
VFD370-450FP2EA	100	100	100	94	89	84	-	-	-	-	-	-

Table 9-14

- 230V Advanced Control (FOB / SynRM)

$$
\begin{aligned}
\text { Pr.00-11 } & =6(\text { FOB }) \\
& =8(\text { SynRM })
\end{aligned}
$$

Figure 9-4
The rated output current derating (\%) of 230 V models in advanced control mode for different carrier frequencies:

Model No. Fc (kHz)	4	5	6	7	8	9	10
VFD007-110FP2EA	100	93	88	83	79	75	71
VFD150-300FP2EA	100	90	82	74	66	58	50
VFD370-450FP2EA	100	91	84	78	73	68	-

Table 9-15

Chapter 9 Specifications | CFP2000

- 460V Normal Control (VF / SVC)

$$
\begin{aligned}
\text { Pr.00-11 } & =0(\text { IMVF }) \\
& =2(\text { IM SVC, Pr. } 05-33=0)
\end{aligned}
$$

Figure 9-5
The rated output current derating (\%) of 460 V models in normal control mode for different carrier frequencies:

Model No. Fc (kHz)	4	5	6	7	8	9	10	11	12	13	14	15
VFD007-185FP4EA	100	100	100	94	88	83	79	74	71	67	63	61
VFD220-750FP4EA	100	100	100	92	85	80	74	-	-	-	-	-
VFD900FP4EA	100	100	100	92	85	80	-	-	-	-	-	-

Table 9-16

- 460 V Advanced Control (FOB / SynRM)

$$
\begin{aligned}
\text { Pr.00-11 } & =6(\text { FOB }) \\
& =8(\text { SynRM })
\end{aligned}
$$

460V (FOB, SynRM)

Figure 9-6
The rated output current derating (\%) of 460V models in advanced control mode for different carrier frequencies:

Model No. Fc (kHz)	2.67	3.33	4	4.67	5.33	6	6.67	7.33	8	8.67	9.33	10
VFD007-1185FP4EA	100	100	100	94	88	83	79	74	71	67	63	61
VFD220-1750FP4EA	100	100	100	92	85	80	74	-	-	-	-	-
VFD900FP4EA	100	100	100	92	85	80	-	-	-	-	-	-

Table 9-17

- 575V Normal Control (VF / SVC)

$$
\begin{aligned}
\text { Pr.00-11 } & =0(\text { IMVF }) \\
& =2(\text { IM SVC, Pr. } 05-33=0)
\end{aligned}
$$

Figure 9-7
The rated output current derating (\%) of 575 V models in normal control mode for different carrier frequencies:

Model No. Fc (kHz)	4	5	6	7	8	9	10	11	12	13	14	15
VFD015-185FP5EA	100	100	100	91	84	78	72	67	63	59	55	52
VFD220-550FP5EA	100	100	100	90	81	73	65	-	-	-	-	-
VFD750-900FP5EA	100	100	100	91	84	77	-	-	-	-	-	-

Table 9-18

9-8 Efficiency Curve

- 230V Models: VFD007-450FP2EA

Figure 9-8
Efficiency (\%) under different loads:

Load (\%)	16.7	50	66.7	100
100% Load	83.9	91.8	93.1	95.1
75% Load	82.1	87.6	89.8	92.5
50% Load	81.0	85.0	88.0	92.0
25% Load	80.0	83.0	86.4	91.5

Table 9-19

- 460V Models: VFD007-900FP4EA

Figure 9-9
Efficiency (\%) under different loads:

Load (\%) Speed (\%)	16.7	50	66.7	100
100% Load	91.9	95.8	96.4	97.0
75% Load	91.4	95.6	96.3	97.0
50% Load	89.6	95.0	95.8	96.6
25% Load	83.1	91.1	92.4	94.0

- 575V Models: VFD015-900FP5EA

Figure 9-10
Efficiency (\%) under different loads:

Load (\%) Speed (\%)	16.7	50	66.7	100
100% Load	90.6	95.6	96.3	97.7
75% Load	90.1	95.1	96.1	97.8
50% Load	87.4	93.0	93.9	97.0
25% Load	63.0	75.0	84.6	95.5

Table 9-21
[This page intentionally left blank]

Chapter 10 Digital Keypad

10-1 Descriptions of Digital Keypad
10-2 Function of Digital Keypad KPC-CC01
10-3 TPEditor Installation Instruction
10-4 Fault Code Description of Digital Keypad KPC-CC01
10-5 Unsupported Functions when using TPEditor on KPC-CC01 Keypad

10-1 Descriptions of Digital Keypad

KPC-CC01

Communication Interface
RJ45 (socket), RS-485 interface

Communication protocol:
RTU19200, 8, N, 2

Installation Method

1. Embedded type and can be put flat on the surface of the control box. The front cover is water proof.
2. Buy a MKC-KPPK model to do wall mounting or embedded mounting. Its protection level is IP66.
3. The maximum RJ45 extension lead is 5 m (16ft)
4. This keypad can only be used on Delta's motor drive CFP2000.

Descriptions of Keypad Functions

Key	Descriptions
RUN	Start Operation Key 1. Only valid when the source of operation command is the keypad. 2. Operates the AC motor drive by the function setting. The RUN LED will be ON. 3. Can be pressed repeatedly at the stop process.
STOP RESET	Stop Command Key. 1. This key has the highest priority when the command is from the keypad. 2. When it receives the STOP command, regardless of whether the AC motor drive is in operation or stop status, the AC motor drive needs to execute the "STOP" command. 3. Use the RESET key to reset the drive after a fault occurs. 4. If you cannot reset after the error: a. The condition which triggers the fault is not cleared. After you clear the condition, you can then reset the fault. b. The drive is in the fault status when powered on. After you clear the condition, restart and then you can reset the fault.
FWD REV	Operation Direction Key 1. Only controls the operation direction, NOT the drive activation. FWD: forward, REV: reverse. 2. Refer to the LED descriptions for more details.
EN	ENTER Key Goes to the next menu level. If at the last level, press ENTER to execute the command.
ESC	ESC Key Leaves the current menu and returns to the previous menu; also functions as a return key or cancel key in a sub-menu.
MENU	Returns to the main menu. Menu commands: 1. Parameter Setup 7. Language Setup 13. Startup Menu 2. Quick Start 8. Time Setup 14. Main Page 3. Application Selection List 9. Keypad Locked 15. PC Link 4. Changed List 10. PLC Function 16. Start Wizard 5. Copy Parameter 11. Copy PLC 6. Fault Record 12. Display Setup

Key	Descriptions
$<>$ \sim	Direction: Left / Right / Up / Down 1. In the numeric value setting mode, moves the cursor and changes the numeric value. 2. In the menu / text selection mode, selects an item.
$\begin{array}{ll}\text { F1 } & \text { F2 } \\ \text { F3 } & \text { F4 }\end{array}$	Function Key 1. The functions keys have defaults and can also be use-defined. The defaults for F1 and F4 work with the function list below. For example, F1 is the JOG function, and F4 is a speed setting key for adding / deleting user-defined parameters. 2. Other functions must be defined using TPEditor. (Download TPEditor software at Delta website, select TPEditor version 1.60 or above. Refer to the installation instruction for TPEditor in Section 10-3.)
HAND	HAND Key 1. Use this key to select HAND mode. In this mode, the drive's parameter settings for frequency command source is Pr.00-30, and that for operation command source is Pr.00-31. 2. Press HAND key at STOP, then the setting switches to HAND frequency source and HAND operation source. 3. Press HAND key at RUN, and it stops the AC motor drive first (displays AHSP warning), and switches to HAND frequency source and HAND operation source. 4. Successful mode switching for the KPC-CC01 displays HAND mode on the screen.
AUTO	AUTO Key 1. The default for the drive is AUTO mode. 2. Use this key to select AUTO mode. In this mode, the drive's parameter settings for frequency command source is Pr.00-20, and that for operation command is Pr.00-21. 3. Press AUTO key at STOP, then the setting switches to AUTO frequency source and AUTO operation source. 4. Press AUTO key at RUN, and it stops the AC motor drive first (displays AHSP warning), and switches to AUTO frequency source and AUTO operation source. 5. Successful mode switching for the KPC-CC01 displays AUTO on the screen.

NOTE:

The defaults for the frequency command and operation command source of HAND / AUTO mode are both from the keypad.

Descriptions of LED Functions

LED	Descriptions
$\begin{gathered} \text { STOP } \\ \text { RESET } \end{gathered}$	Steady ON: STOP indicator for the AC motor drive. Blinking: the drive is in standby. Steady OFF: the drive does not execute the "STOP" command.
	Operation Direction LED 1. Green light: the drive is running forward. 2. Red light: the drive is running backward. 3. Flashing light: the drive is changing direction. Operation Direction LED under Torque Mode 1. Green light: when the torque command ≥ 0, and the motor is running forward. 2. Red light: when the torque command <0, and the motor is running backward. 3. Flashing light: when the torque command <0, and the motor is running forward.

Chapter 10 Digital Keypad | CFP2000

LED		Descriptions
CANopen- "RUN"	RUN LED:	
	LED status	Condition / State
	OFF	CANopen at initial No LED
	Blinking	CANopen at pre-operation
	Single flash	CANopen at stop
	ON	CANopen at operation status $\text { ERRR CAN }- \text { RUN }$
CANopen- "ERR"	ERR LED:	
		Condition / State
	OFF	No Error
	Single flash	One message fail
	Double flash	Node guarding failure or heartbeat message failure
	Triple flash	Synchronization failure
	ON	Bus off $\text { ERRR CAN } \longrightarrow \text { RUN }$

10-2 Function of Digital Keypad KPC-CC01 POWER ON

Start-up

Skip to main page after 3 sec .

1) The default Start-up page is Delta Logo. (Default 1 and 2)
2) User can customize their start-up page through the edited function. (Need to purchase the optional accessories.)

\longrightarrow The top line of LCD displays the status of drive.
After you select the main menu, the start-up screen displays in the user-defined format. The page on the left shows the Delta default setting.
\longrightarrow The bottom line of LCD displays time and JOG.

MENU

MENU

$\forall 1$: Pr Setup
2:Quick Start
3:App Sel List

1: Parameter Setup
2: Quick Start
3: Application Selection List
4: Changed List
5: Copy Parameter

6: Fault Record
7: Language Setup
8: Time Setup
9: Keypad Locked
10: PLC Function

11: Copy PLC
12: Display Setup
13: Start-up Menu
14: Main Page
15: PC Link
16: Start Wizard

NOTE:

1. Start-up screen can only display pictures, not animation.
2. When powered ON, it displays the start-up screen then the main screen. The main screen displays Delta's default setting F/H/A/U. You can set the display order with Pr.00-03 (Start-up display). When you selected the U screen, use the left / right keys to switch between the items, and set the display order for the U screen with Pr.00-04 (User display).

Display Icon

- : present setting

V : Scroll down the page for more options
Press for more options

- : show complete sentence

Press <<> for complete information

Display item

MENU
1:Pr Setup
2:Quick Start
3:App Sel List

MENU

1: Parameter Setup	6: Fault Record
2: Quick Start	7: Language Setup
3: Application Selection List	8: Time Setup
4: Changed List	9: Keypad Locked
5: Copy Parameter	10: PLC Function

11: Copy PLC
12: Display Setup
13: Start-up Menu
14: Main Page
15: PC Link
16: Start Wizard

Chapter 10 Digital Keypad | CFP2000

1. Parameter Setup

Pr setup	For example: Setup source for the master frequency command.	
	TEM PARAME	
- 00:SYSTEM PARAM 01:BASIC PARAME 02:DIGITALIN/	\checkmark 00: Identity Co	In the Group 00 Motor Drive Parameter, use Up/Down
	01: Rated Curren 02: Parameter Re	keys to select parameter 20: Auto Frequency Command.
Press ENTER to select. Press $\wedge \vee$ to select the parameter group.	00- SYSTEM PARAME20: Source of F 21: Source of OP 22: Stop Methods年	Press ENTER to go to this parameter's setting menu.
	00-20	Us
	$\begin{aligned} & 2 \\ & \text { Analog } \operatorname{lnput} \\ & \text { 0-8 } \end{aligned}$	For example: choose " 2 Analog Input", and then press ENTER.
Once you select a parameter group, press ENTER to go into that group.	00-20	
	END Analog Input	After you press ENTER, END is displayed which means the parameter setting is done.
	$\frac{00-20 \quad \text { Pr. lock }}{2}$Analog Input o-8	NOTE: When parameter lock / password protection function is enabled, it displays "Pr. lock" on the upper right corner of the keypad. The parameter cannot be written or is protected by the password under this circumstances.

2. Quick Start

Quick Start	Description:	
- 1: V/F Mode	1. VF Mode	
2: VFPG Mode		Items
3: SVC Mode	V/F Mode :P00-07	1. Parameter protection password input (Pr.00-07)
Press ENTER to select.	02:Password Inp 03:Control Meth	2. Parameter protection password setting (Pr.00-08) 3. Speed control mode (Pr.00-11)
Quick Start: 1. V/F Mode	01:Password Decoder	4. Load selection (Pr.00-16) 5. Carrier frequency (Pr.00-17)
2. SVC Mode 3. My Mode	$\frac{00-07}{0}$	6. Master frequency command (AUTO) source / Source selection of the PID
	0 Password Decoder 0~65535	target (Pr.00-20) 7. Operation command (AUTO) source (Pr.00-21) 8. Stop method (Pr.00-22) 9. Digital keypad STOP function (Pr.00-32) 10. Max. operation frequency (Pr.01-00) 11. Output frequency of motor 1 (Pr.01-01) 12. Output voltage of motor 1 (Pr.01-02) 13. Mid-point frequency 1 of motor 1 (Pr.01-03) 14. Mid-point voltage 1 of motor 1 (Pr.01-04) 15. Mid-point frequency 2 of motor 1 (Pr.01-05) 16. Mid-point voltage 2 of motor 1 (Pr.01-06) 17. Min. output frequency of motor 1 (Pr.01-07) 18. Min. output voltage of motor 1 (Pr.01-08) 19. Output frequency upper limit (Pr.01-10)

3. Application Selection List

This function enables you to select application and its parameters sets.
Example:
In the menu content, select 3: Application Selection List

MENU
 1:Pr Setup
 2:Quick Start
 - 3:App Sel List

Press ENTER to go into the Application Selection List

Press ENTER to enter the application selection screen, and the selected application industry is "Fan".

```
App Sel List
Fan
List PrNum =033
```

ENTER or ESC
Press ENTER to enter the Fan application screen.

Map to : P00-11

- 01: Velocity Mo

02: Load Selecti
03: Carrier FREQ
Press Up/ Down keys to select the parameter to set.

00-16

```
            0
```

Light duty

0~1
Choose 0: Light duty or 1 : Normal duty according to your needs, then press ENTER.
4. Changed List

5. Copy Parameter

Copy Pr	Four groups of parameters are available to copy. The steps are shown in the example below.	
001:Manual_001 002.FileName 01		
003:FileName02	Copy pr	1. Go to "Copy Parameter"
Press ENTER to go to 001-004: content storage	$\begin{aligned} & \text { V001:Manual_001- } \\ & \text { 002: } \\ & \text { o03: } \end{aligned}$	2. Select the parameter group to copy and press ENTER key.
	001>	
	$\begin{aligned} & \text { 1: keypad->VFD } \\ & \text { 2: VFD->Keypad } \end{aligned}$	1. Select 1: keypad \rightarrow VFD 2. Press ENTER key to go to "keypad \rightarrow VFD" screen.
	001> P08-09	
	keypad->VFD	Begin copying parameters until it is done.
	68\%	
	Copy pr	
	-001:Manual_001 002: 003:	After copying parameters is done, the keypad automatically returns to this screen.
	Example: parameter saved in the keypad.	
	Copy pr	
	- 001:	1. Go to Copy parameter 2. Select the parameter group to copy and press ENTER.
	003:	

001＞	
1：keypad－＞VFD 4 2：VFD－＞Keypad	Press ENTER to go to＂VFD \rightarrow keypad＂screen．
001＞	Press Up／Down keys to select a symbol． Press Left／Right keys to move the cursor to select a file name．
FileName00	
String \＆Symbol Table：	
！＂\＃\＄\％\＆（ ）＊，－•／0123456789：；＜＝？＠A B CDEF	
GHI J KLMNOPQRSTUVWXYZ〔\〕へ＿＇abcdf ghijklm	
001＞	
Manual＿001	After you confirm the file name，press ENTER key．
001＞P01－50	To begin copying parameters until it is done．
VFD－＞Keypad	
12\％	
Copy pr	After copying parameters is done，the keypad automatically returns to this screen．
001：Manual＿001 002： 003：	
Copy pr	Press Right key to see the date of the parameters copied．
001：12／21／2014 002： 003：	
Copy pr	Press Right key to see the time of the parameters copied．
001：18：38：58 002： 003：	

6．Fault Record

Fault record
1：oL
2：ovd
3：GFF
Press ENTER to see an error
record＇s details．

7. Language Setup

8. Time Setup

Time setup	Time Setup	
$2009 \text { g'/01/01 }$	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Press Up / Down keys to set the Year
Use Left / Right keys to select Year, Month, Day, Hour, Minute or Second to change.	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Press Up / Down keys to set the Month
	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Press Up / Down keys to set the Day
	Time Setup	
	$\begin{aligned} & \text { 2014/01/01 } \\ & 21: 00: 00 \end{aligned}$	Press Up / Down keys to set the Hour
	Time Setup	
	$\begin{aligned} & \text { 2014/01/01 } \\ & \text { 21: 12: } 2: 00 \end{aligned}$	Press Up / Down keys to set the Minute
	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 21: 12: 1 / 4 \end{aligned}$	Press Up / Down keys to set the Second
	Time Setup	
	END	Press ENTER to confirm the Time Setup.

NOTE:

Limitation: The charging process for the keypad super capacitor finishes in about 6 minutes. When the digital keypad is removed, the time setting is saved for 7 days. After 7 days, you must reset the time.
9. Keypad Locked

Keypad Lock	Lock the keypad
Press ENTER to Lock Key	Use this function to lock the keypad. The main screen does not display "keypad locked" when the keypad is locked; however, it displays the message "Press ESC 3 sec to UnLock Key" when you press any key.
Press ENTER to lock	 ثF 60.00 Hz H 0.00 Hz u 540.0 Vdc JOG $14: 35 \cdot 58$ When the keypad is locked, the main screen does not indicate the lock status.
	Keypad Lock
	Press ESC 3 sec to UnLock Key Press any key on the keypad; a message displays as shown on the left.
	 ثF 60.00 Hz AUTO you do not press ESC, the keypad automatically H 0.00 Hz returns to this screen. u 540.0 Vdc JOG $14: 35: 58$
	Keypad Lock
	Press ESC 3 sec to UnLock Key Press any key on the keypad, a message displays as shown on the left.
	 * 60.00 Hz Press ESC for 3 seconds to unlock the keypad; the H 0.00 Hz keypad returns to this screen. All keys on the keypad u 540.0 Vdc is functional.
	All keys on the keypad is functional. Turning the power off and on does not lock the keypad.

10. PLC Function

Press Up/Down keys to select a PLC's function, and then press ENTER.

When activating and stopping the PLC function (choosing 2: PLC Run or 3: PLC Stop), the PLC status displays on main screen (Delta default setting).

Choose option 2: PLC Run to enable the PLC function

The default on the main screen displays the PLC / RUN status message.

Choose option 3: PLC Stop to disable the PLC function.

The default on the main screen displays the PLC / STOP status message.

If the PLC program is not available in the control board, the PLFF warning displays when you choose option 2 or 3.
In this case, choose option 1: Disable to clear PLFF warning.

11．Copy PLC

Four groups of parameters are available to copy．
The steps are shown in the example below．
Example：Saved in the motor drive．

Copy PLC		
－001：Manual＿001	1．Go to Copy PLC 2．Select the PLC program to copy and press ENTER．	
002：		
003：		
001＞	1．Select 1：Keypad \rightarrow VFD	
－1：keypad－＞VFD		
2：VFD－＞Keypad	2．Press ENTER to go to the＂Keypad \rightarrow VFD＂screen．	
001＞ 4170	Begin copying the PLC program until it is done．	
keypad－＞VFD		
34\％		
Copy PLC	After copying is done，the keypad automatically returns to this screen．	
001：Manual＿001 002： 003：		
NOTE：		
001＞ 0	If you select＂Option 1：Keypad \rightarrow VFD＂，check if the PLC program is built－in to the KPC－CC01 keypad．If the PLC program is not available in the keypad when you select＂Option 1：Keypad \rightarrow VFD＂，an＂ERR8 Warning：Type Mismatch＂displays on the screen．	
ERR8		
Type Mismatch		
Warning CPLt	If you unplug the keypad and plug it back while copying the PLC program，the screen displays a CPLt warning．	
Copy PLC Timeout		
Example：PLC program saved in the keypad．		
Copy PLC	1．Go to Copy PLC． 2．Select the PLC program to copy and press ENTER．	
－001：Manual＿001		
$\begin{aligned} & \text { 002: } \\ & 003: \end{aligned}$		
001＞	Press ENTER to go to the＂VFD \rightarrow Keypad＂screen．	
1：keypad－＞VFD 2：VFD－＞Keypad		
001＞	If the WPLSoft editor is installed uses password，enter the password to save the file to the keypad．	
Password 0000		
Input Times 255		
001＞	Press the Up／Down keys to select a symbol． Press the Left／Right keys to move the cursor to select a file name．	
FileName00		
String \＆Symbol Table：		
！＂\＃\＄\％\＆	＊＋－－$/ 0123456789: ;<=>$ ？＠A	
001＞	After you confirm the file name，press ENTER．	
Manual＿001		

	001> 2010	Begin copying the PLC program until it is done.
	VFD->Keypad	
	12\%	
	Copy PLC	
	$\begin{aligned} & \text { - 001:Manual_001- } \\ & \text { 002: } \\ & \text { 003: } \end{aligned}$	After copying is done, the keypad automatically returns to this screen.
	Copy PLC	
	-001:12/21/2014 002: 003:	Press Right key to see the date of the program copied.
	Copy PLC	
	- 001:18:38:58 002: 003:	Press Right key to see the time of program copied.

12. Display setup

13. Start-up

14. Main page

Default screen and editable screen are available upon selection.

Press ENTER to select.

1. Default page

F 60.00 Hz >>> H >>> A >>> U (options rotate)
2. User Define: an optional accessory is required (TPEditor \& USB / RS-485 Communication Interface-IFD6530) to design your own main screen. If the editor accessory is not installed, the User Define option displays a blank screen.
Freq. 60.00 Hz
Current 123.45 A
DC BUS 5543.21 Vdc
201402000 14: 25:56

PID target 50.00% PID feedback 47.45% Output freq. 53.21 Hz

USB/RS-485 Communication Interface-IFD6530
Refer to Chapter 07 Optional Accessories for more detail.
TPEditor
Download TPEditor software at Delta website, select TPEditor version 1.60 or above. Refer to the installation instruction for TPEditor in Section 10-3.
15. PC Link

1. TPEditor: This function enables you to connect the keypad to a computer then to download and edit user-defined screens.

Click ENTER to go to <Waiting to connect to PC>

In TPEditor, from the Communication menu, then choose "Write to HMI"

In the Confirm message box, click YES.

Open VFDSoft and click Parameter on the toolbar.

Choose the correct communication port and click OK

Before using the user-defined start-up screen and user-defined main screen, you must preset the start-up screen and the main screen as userdefined. If you do not download the user-defined screen to the KPC-CC01, the start-up screen and the main screen are blank.
16. Start Wizard (applicable for CFP2000 firmware V1.06 and above)
16.1 New drive start-up setting process

When a new drive is powered on, it directly enters the Start Wizard. There are three modes in the start-up setting process: Start Wizard, Exit Wizard and Test Mode.

1. Start Wizard:
(1) In Start Wizard, you can set drive's parameters such as Calendar, Maximum operation frequency and Maximum voltage...; refer to Table 1 for setting items and orders.
(2) The drive exits Start Wizard when you finish the complete setting process, and will not enter this process when rebooting the power.
2. Exit Wizard:
(1) Exit the Start Wizard mode. The drive does not go to Start Wizard when rebooting the power.
3. Test Mode:
(1) This function is hidden to avoid misuse. Refer to the following flow chart to enter Test Mode.
(2) When the drive is in Test mode, it temporarily disables the Start Wizard and Exit Wizard mode.
(3) The Test Mode is designed for distributors / suppliers / clients to manage and operate the drive before shipping it out.
(4) If you enter Test Mode without exiting the Start Wizard process, the drive will begin with the new drive start-up process upon next power on.

Setting Order	Description	Parameter
1	Calendar	N / A
2	Output frequency of motor 1	$01-01$
3	Output voltage of motor 1	$01-02$
4	Full-load current for induction motor 1 (A)	$05-01$
5	Number of poles for induction motor 1	$05-04$
6	Rated speed for induction motor 1 (rpm)	$05-03$
7	Minimum output frequency of motor 1	$01-07$
8	Maximum operation frequency	$01-00$
9	Master frequency command source (AUTO) / Source selection of the PID target	$00-20$
10	Operation command source (AUTO)	$00-21$
11	V/F curve selection	$01-43$
12	Acceleration time 1	$01-12$
13	Deceleration time 1	$01-13$

Table 1: Start Wizard setting items

Flow chart for the above setting process:

Chapter 10 Digital Keypad | CFP2000

16.2 Re-start Start Wizard

NOTE: The "16: Start Wizard" on the menu is to set whether the screen shows start wizard when powering on the drive.

Other displays

When a fault occurs, the screen displays shows the fault or warning:

1. Press STOP / RESET key to reset the fault code. If there is no response, contact your local distributor or return to the unit to the factory. To view the fault DC bus voltage, output current and output voltage, press MENU and then choose 6: Fault Record.
2. After resetting, if the screen returns to the main screen and shows no fault after you press ESC, the fault is cleared.
3. When the fault or warning message appears, the LED backlight blinks until you clear the fault or the warning.

Optional accessory: RJ45 Extension Lead for Digital Keypad

Part No.	Description
CBC-K3FT	RJ45 extension lead, 3 feet (approximately 0.9 m)
CBC-K5FT	RJ45 extension lead, 5 feet (approximately 1.5 m)
CBC-K7FT	RJ45 extension lead, 7 feet (approximately 2.1 m)
CBC-K10FT	RJ45 extension lead, 10 feet (approximately 3 m)
CBC-K16FT	RJ45 extension lead, 16 feet (approximately 4.9 m)

NOTE: When you need to buy communication cables, buy non-shielded, 24 AWG, four-wire twisted pair, 100 ohms communication cables.

10-3 TPEditor Installation Instruction

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256 KB. Each page can include 50 normal objects and 10 communication objects.

1. TPEditor: Setup \& Basic Functions
(1) Run TPEditor version 1.60 or above by double-clicking the program icon.
```
    \square=
TPEditor 1.60
```

(2) On the File menu, click New. In the New project dialog box, for Set Device Type, select DELTA VFD-C Inverter. For TP Type, select VFD-C KeyPad. For File Name, enter TPE0 and then click OK.

Yew Project	
$\begin{aligned} & \mathrm{HMI} \Longrightarrow \mathrm{PLC} \\ & \text { Set Device Type } \end{aligned}$	
DELTA VFD-C Inverter	\checkmark
TP Type	
VFD-C KeyPad	\checkmark
File Name	
TPED	
OK	Canol

(3) The editor displays the Design window. On the Edit menu, click Add a New Page. You can also right-click on the TP page in the upper right corner of the Design window and click Add to add one more page(s) to edit.

(4) Edit the start-up screen
(5) Add static text. Open a blank page (step 3), then on the toolbar click A Double-click the blank page to display the Static Text Setting dialog box, and then enter the static text.

(6) Add a static bitmap. Open a blank page (step 3), then on the toolbar, clickDouble-click the blank page to display the Static Bitmap Setting dialog box where you can choose the bitmap.

You can only use images in the BMP format. Click the image and then click Open to show the image in the page.
(7) Add a geometric bitmap. There are 11 kinds of geometric bitmaps to choose. Open a new blank page (step 3), then on the toolbar click the geometric bitmap icon that you need
 size that you need.
(8) When you finish editing the start-up screen, on the Communication menu, click Input User Defined Keypad Starting Screen.

(9) Download the new setting: On the Tool menu, click Communication. Set up the communication port and speed for the IFD6530. There are three speeds available: $9600 \mathrm{bps}, 19200 \mathrm{bps}$, and 38400 bps.
(10) On the Communication menu, click Input User Defined Keypad Starting Screen.

Communication Setting	
TP Station Address	1
PCCOM Port	COM3
Baud Rate	8
OK	Cancel

(11) The Editor displays a message asking you to confirm the new setting. Before you click OK, on the keypad, go to MENU, select PC LINK, press ENTER and then wait for few seconds. Then click YES in the confirmation dialog box to start downloading.

2. Edit the Main Page and Download to the Keypad
(1) In the Editor, add a page to edit. On the Edit menu, click Add a New Page. You can also right-click on the TP page in the upper right corner of the Design window and click Add to add one more pages to edit. This keypad currently supports up to 256 pages.

(2) In the bottom right-hand corner of the Editor, click the page number to edit, or on the View menu, click HMI Page to start editing the main page. As shown in the picture above, the following objects are available. From left to right they are: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input, the 11 geometric bitmaps, and lines of different widths. Use the same steps to add Static Text, Static Bitmap, and geometric bitmaps as for the start-up page.
(3) Add a numeric/ASCII display. On the toolbar, click the Numeric/ASCII button. In the page, double-click the object to specify the Refer Device, Frame Setting, Font Setting and Alignment.

Click [...]. In the Refer Device dialog box, choose the VFD communication port that you need. If you want to read the output frequency (H), set the Absolute Addr. to 2202. For other values, refer to the ACMD Modbus Comm Address List (see Pr.09-04 in Chapter 12 Group 09 Communication Parameters).

(4) Scale Setting. On the toolbar, click $\overline{\overline{T-1}}$ to add a scale. You can also edit the Scale Setting in the Property Window on the right-hand side of your computer screen.

Scale Setting					
Scale Position	Top \quad -			FontSetting	
Scale Side	Normal D		\checkmark		
Value Length	16 Bit	\square	Main Scale		
Mar Value	100		SubScale		
Min Value	0		OK		Cancel

A. Scale Position: specifies where to place the scale.
B. Scale Side: specifies whether the scale is numbered from smaller numbers to larger numbers or from larger to smaller.
C. Font Setting: specifies the font.
D. Value Length: specifies 16 bits or 32 bits.
E. Main Scale \& Sub-Scale: divides the whole scale into equal parts; enter the numbers for the main scale and sub-scale.
F. Max Value \& Min Value: specifies the numbers on the two ends of the scale. They can be negative numbers, but the maximum and minimum values are limited by the Value Length setting. For example, when Value Length is hexadecimal (16 bits), the maximum and the minimum value cannot be entered as -40000 .

Clicking OK creates a scale as in the picture below.

(5) Bar Graph setting. On the toolbar, click to add a bar graph.

Bar Graph Setting			
Refer Device			
		Direction Setting	
\$2100		From Bottom to Top	-
Value Type	Unsigne	\square	
Value Length	16 Bits	\square	
Mar Value	65535		OK
Min Value	0		Canoel

A. Refer Device: specifies the VFD communication port.
B. Direction Setting: specifies the direction: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
C. Max Value and Min Value: specifies the maximum value and minimum value. A value smaller than or equal to the minimum value causes the bar graph to be blank (0). A value is bigger or equal to the maximum value causes the bar graph is full (100\%). A value between the minimum and maximum values causes the bar graph to be filled proportionally.
(6) Button B : on the toolbar, click B. Currently this function only allows the keypad to switch pages; other functions are not yet available (including text input and insert image). In the blank page, double-click 8 to open the Button Setting dialog box.

Button Type: specifies the button's functions.
Page Jump and Constant Setting are the only functions currently supported.

A. Page Jump Setting

a. Page Jump Setting: in the Button Type list, choose Page Jump to show the Page Jump Setting.
b. Function Key: specifies the functions for the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Note that the Up and Down keys are locked by TPEditor. You cannot program these two keys. If you want to program Up and Down keys, on the Tool menu, click Function Key Setting, and then click Re-Define Up/Down Key.

c. Button Text: specifies the text that appears on a button. For example, when you enter Next Page for the button text, that text appears on the button.

B. Constant setting

This function specifies the memory address' values for the VFD or PLC. When you press the Function Key, it writes a value to the memory address specified by the value for Constant Setting. You can use this function to initialize a variable.

Button Setting							
			$\begin{aligned} & \text { Constant Setting } \\ & 10 \end{aligned}$		Frame Setting Font Setting Text Alignment		
Button Type	ConstantSeting				Single Frame \quad -		
Write-in	\$211A					\square	
					Bitmap Alignment		
Γ Read	\square	...			Middle \quad -	Middle \quad -	
V Function Key	F3				Middle -	Middle $\quad-$	
Value Length	16 Bits	\square	Γ call $\quad \square$			Graph Input	Bitmap Read
Value Type	Unsigned	\checkmark	Before Writing C After Writing	$\begin{aligned} & \text { C Reset } \\ & \text { C Set } \end{aligned}$		[None]	
Cument State	0	\checkmark					
Total States	1	$-\frac{1}{j}$	User Level	$0 \quad-$	Bitmap Cleax		
Button Tert					OK	Canoel	

(7) Clock Display Setting: on the toolbar, click 1 . You can display the time, day, or date on the keypad.
Open a new page and click once in that window to add a clock display.
Choose to display Time, Day, or Date on the keypad. To adjust time, go to \#8 on the keypad's menu. You can also specify the Frame Setting, Font Setting, and Alignment.

(8) Multi-state bitmap: on the toolbar, click . Open a new page and click once in that window to add a Multi-state bitmap. This object reads a bit's property value from the PLC. It defines the image or text that appears when this bit is 0 or 1 . Set the initial status (Current State) to be 0 or 1 to define the displayed image or text.

(9) Unit Measurement: on the toolbar, click

Open a new blank page, and double-click on that window to display the Units Setting dialog box.

Choose the Metrology Type and the Unit Name. For Metrology, the choices are Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time, and Temperature. The unit name changes automatically when you change metrology type.

(10) Numeric Input Setting: on the toolbar, click

This object enables you to provide parameters or communication ports ($0 \times 22 \mathrm{xx}$) and to input numbers.

Open a new file and double click on that window to display the Numeric Input Setting dialog box.

A. Refer Device: specifies the Write and the Read values. Enter the numbers to display and the corresponding parameter and communication port numbers. For example, enter 012C to Read and Write Parameter Pr.01-44.
B. OutLine Setting: specifies the Frame Setting, Font Setting, Hori. Alignment, and Vert. Alignment for the outline.
C. Function Key: specifies the function key to program on the keypad in the Function Key box. The corresponding key on the keypad starts to blink. Press ENTER to confirm the setting.
D. Value Type and Value Length: specify the range of the Min Value and Max Value for the Limit Setting. Note that the corresponding supporting values for MS300 must be 16 bits. 32-bit values are not supported.
E. Value Setting: automatically set by the keypad itself.
F. Limit Setting: specifies the range for the numeric input here.

For example, if you set Function Key to F1, Min Value to 0 and Max Value to 4, when you press F1 on the keypad, then you can press Up/Down on the keypad to increase or decrease the value. Press ENTER on the keypad to confirm your setting. You can also view the parameter table 01-44 to verify if you correctly entered the value.
(11) Download TP Page: Press Up / Down on the keypad to select \#13 PC Link.

Then press ENTER on the keypad. The screen displays "Waiting". In TPEditor, choose a page that you have created, and then on the Communication menu click Write to TP to start downloading the page to the keypad.
When you see "Completed" on the keypad screen, the download is finished. You can then press ESC on the keypad to go back to the menu screen.

PC Link 1: 3640 Completed 100\%

10-4 Fault Code Description of Digital Keypad KPC-CC01

Fault Codes

LCD Display	Fault Name	Description	Corrective Actions
Fault FrEr kpd Flash Read Er	Flash memory read error (FrEr)	Keypad flash memory read error	Error in the keypad's flash memory. 1. Press RESET to clear the errors. 2. Check for any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
Fault FsEr kpd Flash Save Er	Flash memory save error (FsEr)	Keypad flash memory save error	Error in the keypad's flash memory. 1. Press RESET to clear the errors. 2. Check for any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
	Flash memory parameter error (FPEr)	Keypad flash memory parameter error	Error in the default parameters. It might be caused by a firmware update. 1. Press RESET to clear the errors. 2. Check for any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
Fault ${ }^{\text {VFDr }}$ Read VFD Info Er	Reading AC motor drive data error (VFDr)	Keypad error when reading AC motor drive data	Keypad cannot read any data sent from the VFD. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
\qquad	CPU error (CPUEr)	Keypad CPU error	A serious error in the keypad's CPU. 1. Check for any problem on CPU clock. 2. Check for any problem on Flash IC. 3. Check for any problem on RTC IC. 4. Verify that the communication quality of the RS-485 cable is good. 5. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.

Warning Codes

LCD Display	Warning Name	Description	Corrective Actions
Warning CE1 Comm. Error 1	Communication error 1 (CE1)	RS-485 Modbus illegal function code	Motor drive does not accept the communication command sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET on the keypad to clear errors. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning \quad AuTo CK1 Comm Command Er	Communication command error 1 (CK1)	Keypad communication data, illegal function code (Keypad auto-detect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format $=$ RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning CE2 Comm. Error 2	$\begin{aligned} & \text { Communication error } 2 \\ & \text { (CE2) } \end{aligned}$	RS-485 Modbus illegal data address	Motor drive does not accept the keypad's communication address. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning ${ }^{\text {CK2 } 2}$ Comm Address Er	Communication address error (CK2)	Keypad communication data, illegal data address (Keypad auto-detect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning CE3 Comm. Crror 3	Communication error 3 (CE3)	RS-485 Modbus illegal data value	Motor drive does not accept the communication data sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. If none of the above solutions works, contact your local authorized dealer for assistance.

LCD Display	Warning Name	Description	Corrective Actions
	Communication data error (CK3)	Keypad communication data, illegal data value (Keypad auto-detect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning CE4 Comm. Error 4	Communication error 4 (CE4)	RS-485 Modbus data is written to read-only address	Motor drive cannot process the communication command sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning Auto CK4 Comm Slave Error	Communication slave error (CK4)	Keypad communication data is written to read-only address (Keypad auto-detect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning CE10 Comm. Error 10	Communication error 10 (CE10)	Modbus transmission time-Out	Motor drive does not respond to the communication command sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.

LCD Display	Warning Name	Description	Corrective Actions
Warning AutoCK10KpdComm Time Out	Keypad communication time out (CK10)	Digital keypad transmission time-out (The keypad automatically detects and shown this warning)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning AUTOTPNOTP No Object	Keypad communication time out (CK10)	Object not supported by TP Editor	Keypad's TPEditor uses an unsupported object. 1. Verify that the TPEditor is not using an unsupported object or setting. Delete unsupported objects and unsupported settings. 2. Re-edit the object in the TPEditor, and then download it to the keypad. 3. Verify that the motor drive supports the TP functions. If the drive does not support TP function, the main page displays Default. If none of the above solutions works, contact your local authorized dealer for assistance.

NOTE:

The warning code CExx only occurs when the communication problem is between the drive and the keypad. It has nothing to do with the drive and other devices. Note the warning code description to find the cause of the error if CExx appears.

File Copy Setting Fault Description:

These faults occur when KPC-CC01 cannot perform the command after clicking the ENTER key in the copy function.

LCD Display	Fault Name	Description	Corrective Actions
001> P00-00	Read only (ERR1)	Parameter and file are read-only	The parameter / file is read-only and cannot be written to. 1. Verify the specification in the user
ERR1 Read Only			1. Verify the specification in the user manual. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00	Write in error (ERR2)	Fail to write parameter and file	An error occurred while writing to a parameter / file. 1. Check for any problem on the Flash IC.
ERR2 Write Fail			2. Shut down the system, wait for ten minutes, and then restart the system. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00	Drive operating (ERR3)	AC motor drive is in operating status	A setting cannot be changed while the motor drive is in operation.
ERR3 VFD Running			1. Verify that the drive is not in operation. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00	Parameter locked (ERR4)	AC motor drive parameter is locked	A setting cannot be changed because a parameter is locked. 1. Check if the parameter is locked. If it is
ERR4 Pr Lock			locked, unlock it and try to set the parameter again. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00	Parameter changing (ERR5)	AC motor drive parameter is changing	A setting cannot be changed because a parameter is being modified. 1. Check if the parameter is being modified. If it is not being modified, try to change that parameter again. If this solution does not work, contact your local authorized dealer for assistance.
ERR5 Pr Changing			
001> P00-00	Fault code (ERR6)	Fault code is not cleared	A setting cannot be changed because an error has occurred in the motor drive. 1. Check if any error occurred in the motor drive. If there is no error, try to change the setting again. If this solution does not work, contact your local authorized dealer for assistance.
ERR6 Fault Code			
001> P00-00	Warning code (ERR7)	Warning code is not cleared	A setting cannot be changed because of a warning message given to the motor drive. 1. Check if there is a warning message given to the motor drive. If this solution does not work, contact your local authorized dealer for assistance.
ERR7 Warning Code			

LCD Display	Fault Name	Description	Corrective Actions
001> P00-00	File type mismatch (ERR8)	File type mismatch	Data to be copied are not the correct type, so the setting cannot be changed. 1. Check if the products' serial numbers to be copied are in the same category. If they are in the same category, try to copy the setting again. If this solution does not work, contact your local authorized dealer for assistance.
ERR8 Type Mismatch			
001> P00-00	Password locked (ERR9)	File is locked with password	A setting cannot be changed because some data are locked. 1. Check if the data are unlocked or able to be unlocked. If the data are unlocked, try to change the setting again. 2. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
ERR9 Password Lock			
001> P00-00	Password fail (ERR10)	File password mismatch	A setting cannot be changed because the password is incorrect. 1. Check if the password is correct. If the password is correct, try to change the setting again. 2. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
ERR10 Password Fail			
001> P00-00	Version fail (ERR11)	File version mismatch	A setting cannot be changed because the version of the data is incorrect. 1. Check if the version of the data matches the motor drive. If it matches, try to change the setting again. If none of the above solutions works, contact your local authorized dealer for assistance.
ERR11 Version Fail			
001> P00-00	VFD Time out (ERR12)	AC motor drive copy function time-out	A setting cannot be changed because the data copying time-out expired. 1. Try copying the data again. 2. Check if copying data is authorized. If it is authorized, try to copy the data again. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
ERR12 VFD Time Out			

NOTE: The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

10-5 Unsupported Functions when using TPEditor with the KPC-CC01

1. Local Page Setting and Global Setting functions are not supported.

2. In the Communication menu, Read from TP function is not supported.

3. In the RTC Display Setting, you cannot change the Refer Device.

[This page intentionally left blank]

Chapter 11 Summary of Parameter Settings

00 Drive Parameters
01 Basic Parameters
02 Digital Input / Output Parameters
03 Analog Input / Output Parameters
04 Multi-step Speed Parameters
05 Motor Parameters
06 Protection Parameters
07 Special Parameters
08 High-function PID Parameters
09 Communication Parameters
10 Sensorless Motor Control Parameters
11 Advanced Parameters
12 PUMP Parameters
13 Application Parameters by Industry
14 Extension Card Parameters

This chapter provides a summary of parameter (Pr.) setting ranges and defaults. You can set, changed and reset parameters through the digital keypad.

NOTE:

1. N : You can set this parameter during operation
2. For more details on parameters, refer to Chapter 12 Description of Parameter Settings.
3. The following are abbreviations for different types of motors:

- IM: Induction motor
- PM: Permanent magnet synchronous AC motor
- IPM: Interior permanent magnet synchronous AC motor
- SPM: Surface permanent magnet synchronous AC motor
- SynRM: Synchronous reluctance motor

00 Drive Parameters

Pr.	Parameter Name	Settings Range	Default
00-00	AC motor drive identity code	4: 230V, 0.75 kW 5: 460V, 0.75 kW 6: 230V, 1.50 kW 7: 460V, 1.50 kW 8: 230V, 2.20 kW 9: 460V, 2.20 kW 10: 230V, 3.70 kW 11: 460V, 3.70 kW 12: 230V, 5.50 kW 13: 460V, 5.50 kW 14: 230V, 7.50 kW 15: 460V, 7.50 kW 16: 230V, 11.0 kW 17: 460V, 11.0 kW 18: 230V, 15.0 kW 19: 460V, 15.0 kW 20: 230V, 18.5 kW 21: 460V, 18.5 kW 22: 230V, 22.0 kW 23: 460V, 22.0 kW 24: 230V, 30.0 kW 25: 460V, 30.0 kW 26: 230V, 37.0 kW 27: 460V, 37.0 kW 28: 230V, 45.0 kW 29: 460V, 45.0 kW 31: 460V, 55.0 kW 33: 460V, 75.0 kW 35: 460V, 90.0 kW 93: 460V, 4.00 kW 505: 575V, 1.5 kW 506: 575V, 2.2 kW 507: 575V, 3.7 kW	Read only

P	Parameter Name	Settings Range	Default
		508: 575V, 5.5 kW 509: 575V, 7.5 kW 510: 575V, 11 kW 511: 575V, 15 kW 512: 575V, 18.5 kW 513: 575V, 22 kW 514: 575V, 30 kW 515: 575V, 37 kW 516: 575V, 45 kW 517: 575V, 55 kW 518: 575V, 75 kW 519: 575V, 90 kW	
00-01	AC motor drive rated current display	Display by models	Read only
00-02	Parameter reset	0: No function 1: Write protection for parameters 5: Reset kWh display to 0 6: Reset PLC (including CANopen Master Index) 7: Reset CANopen Slave Index 9: Reset all parameters to defaults (base frequency is 50 Hz) 10: Reset all parameters to defaults (base frequency is 60 Hz)	0
00-03	Start-up display	0 : F (frequency command) 1: H (output frequency) 2: U (user-defined, see Pr.00-04) 3: A (output current)	0
00-04	Content of multi-function display (user-defined)	0: Display output current (A) (Unit: Amp) 1: Display counter value (c) (Unit: CNT) 2: Display the motor's actual output frequency (H.) (Unit: Hz) 3: Display the drive's DC bus voltage (v) (Unit: $V_{D C}$) 4: Display the drive's output voltage (E) (Unit: V_{AC}) 5: Display the drive's output power angle (n) (Unit: deg) 6: Display the drive's output power (P) (Unit: kW) 7: Display the motor speed rpm (r) (Unit: rpm) 10: Display PID feedback (b) (Unit: \%) 11: Display AVI1 analog input terminal signal (1.) (Unit: \%) 12: Display ACI analog input terminal signal (2.) (Unit: \%) 13: Display AVI2 analog input terminal signal (3.) (Unit: \%) 14: Display the drive's IGBT temperature (i.) (Unit: ${ }^{\circ} \mathrm{C}$) 15: Display the drive's capacitance temperature (c.) (Unit: ${ }^{\circ} \mathrm{C}$) 16: The digital input status (ON / OFF) (i)	3

		Parameter Name	Settings Range	Default
			17: The digital output status (ON / OFF) (o) 18: Display multi-step speed (S) 19: The corresponding CPU digital input pin status (d) 20: The corresponding CPU digital output pin status (0.) 26: Ground fault GFF (G.) (Unit: \%) 27: DC bus voltage ripple (r.) (Unit: $V_{D C}$) 28: Display PLC register D1043 data (C) 30: Display the output of user-defined (U) 31: Display Pr.00-05 user gain (K) 34: Operation speed of fan (F.) (Unit: \%) 36: Present operating carrier frequency of the drive (J.) (Unit: Hz) 38: Display the drive status (6.) 41: kWh display (J) (Unit: kWh) 42: PID target value (h.) (Unit: \%) 43: PID compensation (o.) (Unit: \%) 44: PID output frequency (b.) (Unit: Hz) 45: Hardware ID 51: PMSVC torque offset 52: Al10\% 53: Al11\% 68: STO version 69: STO checksum-high word (d) 70: STO checksum-low word (d)	
	00-05	Coefficient gain in actual output frequency	0.00-160.00	1.00
	00-06	Firmware version	Read only	Read only
	00-07	Parameter protection password input	0-65535 $0-4$: the number of password attempts allowed	0
	00-08	Parameter protection password setting	0-65535 0: No password protection or password entered correctly (Pr.00-07) 1: Parameter has been set	0
	00-11	Speed control mode	0: IMVF (IM V/F control) 2: IM / PM SVC (IM / PM Space vector control) 6: PM Sensorless (PM field-oriented sensorless vector control) (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models) 8: SynRM Sensorless control (applied to 230V / 460 V models)	0
	00-16	Load selection	0 : Light duty 1: Normal duty	0

	Pr	Parameter Name	Settings Range				Default
	00-17	Carrier Frequency (kHz)	230V / 460V models				6
			Model Control mode	VF, SVC	PMFOC	SRMFOC*	
			VFD007-110FP2EA VFD007-185FP4EA	2-15	4-10	4-8	
			VFD150-300FP2EA VFD220-750FP4EA	2-10	4-10	4-8	
			$\begin{gathered} \text { VFD370-450FP2EA } \\ \text { VFD900FP4EA } \end{gathered}$	2-9	4-9	4-8	
			*The default is 4 kHz in SRMFOC mode.				
			575 V models				6
			Control mode	VF, SVC			
			VFD015-185FP5EA	2-15			
			VFD220-550FP5EA	2-10			
			VFD750-900FP5EA	2-9			
	00-19	PLC command mask	bit0: Control command is force by PLC control bit1: Frequency command is forced by PLC control				Read only
	00-20	Master frequency command source (AUTO) / Source selection of the PID target	0: Digital keypad 1: RS-485 communication input 2: External analog input (Refer to Pr.03-00-Pr.03-02) 3: External UP / DOWN terminal (multi-function input terminals) 6: CANopen communication card 8: Communication card (does not include CANopen card)				0
	00-21	Operation command source (AUTO)	0: Digital keypad 1: External terminals 2: RS-485 communication input 3: CANopen communication card 5: Communication card (does not include CANopen card)				0
	00-22	Stop method	0: Ramp to stop 1: Coast to stop				0
	00-23	Motor direction control	0: Enable forward / reverse 1: Disable reverse 2: Disable forward				0
	00-24	Digital operator (keypad) frequency command memory	Read only				Read only
	00-25	User-defined characteristics	bit0-3: user-defined decimal place 0000b: no decimal place 0001b: one decimal place 0010b: two decimal places 0011b: three decimal places bit4-15: user-defined unit 000xh: Hz 001xh: rpm 002xh: \% 003xh: kg				0

Pr.	Parameter Name	Settings Range	Default
		004xh: m/s 005xh: kW 006xh: HP 007xh: ppm 008xh: 1/m 009xh: kg/s 00Axh: kg/m 00Bxh: kg/h 00Cxh: lb/s 00Dxh: lb/m 00Exh: lb/h 00Fxh: ft/s 010xh: ft/m 011xh: m 012xh: ft 013xh: degC 014xh: degF 015xh: mbar 016xh: bar 017xh: Pa 018xh: kPa 019xh: mWG 01Axh: inWG 01Bxh: ftWG 01Cxh: psi 01Dxh: atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz	
00-26	Maximum user-defined value	0 : No function 0-65535 (when Pr.00-25 set to no decimal place) $0.0-6553.5$ (when Pr. $00-25$ set to 1 decimal place) 0.00-655.35 (when Pr. $00-25$ set to 2 decimal places) 0.000-65.535 (when Pr. 00-25 set to 3 decimal places)	0
00-27	User-defined value	Read only	Read only
00-28	Switching from AUTO mode to HAND mode	bit0: Sleep function control bit 0 : Cancel sleep function 1: Sleep function and AUTO mode are the same bit1: Control bit unit 0 : Displaying unit in Hz 1: Same unit as the AUTO mode	

01 Basic Parameters

	Pr.	Parameter Name	Settings Range	Default
,	01-00	Maximum operation frequency of motor 1	$50.00-599.00 \mathrm{~Hz}$ Setting range for 45 kW (60 HP): $0.00-400 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
	01-01	Rated / base frequency of motor 1	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
	01-02	Rated / base voltage of motor 1	230 V models: $0.0-255.0 \mathrm{~V}$ 460 V models: $0.0-510.0 \mathrm{~V}$ 575 V models: $0.0-637.0 \mathrm{~V}$	$\begin{aligned} & 200.0 \\ & 400.0 \\ & 575.0 \end{aligned}$
	01-03	Mid-point frequency 1 of motor 1	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 3.00 / \\ 0.00 \\ \hline \end{gathered}$
,	01-04	Mid-point voltage 1 of motor 1	230 V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$ 575 V models: $0.0-637.0 \mathrm{~V}$	$\begin{gathered} 11.0 \\ 22.0 \\ 0.0 \end{gathered}$
	01-05	Mid-point frequency 2 of motor 1	$0.00-599.00 \mathrm{~Hz}$	1.50
	01-06	Mid-point voltage 2 of motor 1	230 V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$ 575 V models: $0.0-637.0 \mathrm{~V}$	$\begin{gathered} 5.0 \\ 10.0 \\ 0.0 \\ \hline \end{gathered}$
	01-07	Minimum output frequency of motor 1	$0.00-599.00 \mathrm{~Hz}$	0.50
	01-08	Minimum output voltage of motor 1	$\begin{aligned} & \hline 230 \mathrm{~V} \text { models: } 0.0-240.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { models: } 0.0-480.0 \mathrm{~V} \\ & 575 \mathrm{~V} \text { models: } 0.0-637.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 0.0 \\ & \hline \end{aligned}$
	01-09	Start-up frequency	$0.00-599.00 \mathrm{~Hz}$	0.50
	01-10	Output frequency upper limit	$0.00-599.00 \mathrm{~Hz}$	599.00
,	01-11	Output frequency lower limit	$0.00-599.00 \mathrm{~Hz}$	0.00
	01-12	Acceleration time 1	$\begin{aligned} \text { Pr. } 01-45 & =0: 0.00-600.00 \mathrm{sec} . \\ \text { Pr. } 01-45 & =1: 0.0-6000.0 \mathrm{sec} . \\ & \text { Motor drive with } 22 \mathrm{~kW} \text { and above: } 60.00 / 60.0 \end{aligned}$	10.00
	01-13	Deceleration time 1	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \\ & \text { Motor drive with } 22 \mathrm{~kW} \text { and above: } 60.00 / 60.0 \\ & \hline \end{aligned}$	10.00
	01-14	Acceleration time 2	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$ Motor drive with 22 kW and above: 60.00 / 60.0	10.00
,	01-15	Deceleration time 2	$\begin{aligned} \text { Pr. } 01-45 & =0: 0.00-600.00 \mathrm{sec} . \\ \text { Pr. } 01-45 & =1: 0.0-6000.0 \mathrm{sec} . \\ & \text { Motor drive with } 22 \mathrm{~kW} \text { and above: } 60.00 / 60.0 \end{aligned}$	10.00
	01-16	Acceleration time 3	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$ Motor drive with 22 kW and above: 60.00 / 60.0	10.00
v	01-17	Deceleration time 3	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$ Motor drive with 22 kW and above: 60.00 / 60.0	10.00
	01-18	Acceleration time 4	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$ Motor drive with 22 kW and above: 60.00 / 60.0	10.00

	Pr.	Parameter Name	Settings Range	Default
N	01-19	Deceleration time 4	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$ Motor drive with 22 kW and above: 60.00 / 60.0	10.00
N	01-20	JOG acceleration time	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$ Motor drive with 22 kW and above: 60.00 / 60.0	10.00
N	01-21	JOG deceleration time	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$ Motor drive with 22 kW and above: 60.00 / 60.0	10.00
N	01-22	JOG frequency	0.00-599.00 Hz	6.00
N	01-23	Switch frequency between first and fourth Accel. / Decel.	0.00-599.00 Hz	0.00
N	01-24	S-curve for acceleration begin time 1	$\begin{aligned} & \text { Pr. 01-45 = 0: 0.00-25.00 sec. } \\ & \text { Pr. } 01-45=1: 0.0-250.0 \mathrm{sec} . \end{aligned}$	0.20
N	01-25	S-curve for acceleration arrival time 2	$\begin{aligned} & \text { Pr.01-45 }=0: 0.00-25.00 \mathrm{sec} . \\ & \operatorname{Pr} .01-45=1: 0.0-250.0 \mathrm{sec} . \end{aligned}$	0.20
N	01-26	S-curve for deceleration begin time 1	$\begin{aligned} & \text { Pr.01-45 = 0: } 0.00-25.00 \mathrm{sec} . \\ & \text { Pr.01-45 }=1: 0.0-250.0 \mathrm{sec} . \end{aligned}$	0.20
N	01-27	S-curve for deceleration arrival time 2	$\begin{aligned} & \text { Pr.01-45 }=0: 0.00-25.00 \mathrm{sec} . \\ & \operatorname{Pr} .01-45=1: 0.0-250.0 \mathrm{sec} . \end{aligned}$	0.20
	01-28	Skip frequency 1 (upper limit)	$0.00-599.00 \mathrm{~Hz}$	0.00
	01-29	Skip frequency 1 (lower limit)	$0.00-599.00 \mathrm{~Hz}$	0.00
	01-30	Skip frequency 2 (upper limit)	$0.00-599.00 \mathrm{~Hz}$	0.00
	01-31	Skip frequency 2 (lower limit)	0.00-599.00 Hz	0.00
	01-32	Skip frequency 3 (upper limit)	0.00-599.00 Hz	0.00
	01-33	Skip frequency 3 (lower limit)	0.00-599.00 Hz	0.00
	01-34	Zero-speed mode	0 : Output waiting 1: Zero-speed operation 2: Minimum frequency (Refer to Pr.01-07 and Pr.01-41)	0
	01-35	Rated / base frequency of motor 2	0.00-599.00 Hz	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
	01-36	Rated / base voltage of motor 2	230V models: $0.0-255.0 \mathrm{~V}$ 460 V models: $0.0-510.0 \mathrm{~V}$ 575 V models: $0.0-637.0 \mathrm{~V}$	$\begin{aligned} & 200.0 \\ & 400.0 \\ & 575.0 \end{aligned}$
	01-37	Mid-point frequency 1 of motor 2	0.00-599.00 Hz	3.00
N	01-38	Mid-point voltage 1 of motor 2	230V models: $0.0-240.0 \mathrm{~V}$ 460V models: $0.0-480.0 \mathrm{~V}$ 575V models: $0.0-637.0 \mathrm{~V}$	$\begin{gathered} 11.0 \\ 22.0 \\ 0.0 \end{gathered}$
	01-39	Mid-point frequency 2 of motor 2	0.00-599.00 Hz	1.50
N	01-40	Mid-point voltage 2 of motor 2	230V models: 0.0-240.0 V 460V models: $0.0-480.0 \mathrm{~V}$ 575V models: 0.0-637.0 V	$\begin{gathered} 5.0 \\ 10.0 \\ 0.0 \\ \hline \end{gathered}$
	01-41	Minimum output frequency of motor 2	0.00-599.00 Hz	0.50

	Pr.	Parameter Name	Settings Range	Default
	01-42	Minimum output voltage of motor 2	230 V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$ 575 V models: $0.0-637.0 \mathrm{~V}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 0.0 \\ & \hline \end{aligned}$
	01-43	V/F curve selection	0: V/F curve determined by Pr.01-00-01-08 1: V/F curve to the power of 1.5 2: V/F curve to the power of 2 3: 60 Hz , voltage saturation in 50 Hz 4: 72 Hz , voltage saturation in 60 Hz $5: 50 \mathrm{~Hz}$, decrease gradually with cube 6: 50 Hz , decrease gradually with square 7: 60 Hz , decrease gradually with cube $8: 60 \mathrm{~Hz}$, decrease gradually with square 9: 50 Hz , medium starting torque 10: 50 Hz , high starting torque 11: 60 Hz , medium starting torque 12: 60 Hz , high starting torque 13: 90 Hz , voltage saturation in 60 Hz 14: 120 Hz , voltage saturation in 60 Hz 15: 180 Hz , voltage saturation in 60 Hz	0
	01-44	Auto-acceleration and auto-deceleration setting	0 : Linear acceleration and deceleration 1: Auto-acceleration and linear deceleration 2: Linear acceleration and auto-deceleration 3: Auto-acceleration and auto-deceleration 4: Stall prevention by auto-acceleration and auto-deceleration (limited by Pr.01-12-01-21)	0
	01-45	Time unit for acceleration / deceleration and S-curve	0 : Unit: 0.01 sec . 1: Unit: 0.1 sec .	0
v	01-46	CANopen quick stop time	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} . \end{aligned}$	$\begin{gathered} 1.00 \\ 1.0 \end{gathered}$
	01-49	Deceleration method selection	0 : Normal deceleration 1: Over-voltage energy restriction 2: Traction energy control (TEC) 3: Electromagnetic energy traction control	0
	01-50	Electromagnetic traction energy consumption coefficient	$0.00-5.00 \mathrm{~Hz}$	0.50
	01-51	Flux-weakening overload stall prevention time (applied to 230 V / 460 V models)	0.00-600.00 sec.	1.00

02 Digital Input / Output Parameters

Pr.	Parameter Name	Rang	Default
02-00	Two-wire / Three-wire operation control	0 : Two-wire mode 1, power on for operation control 1: Two-wire mode 2, power on for operation control 2: Three-wire, power on for operation control	0
02-01	Multi-function input command 1 (MI1)	0 : No function 1: Multi-step speed command 1 2: Multi-step speed command 2 3: Multi-step speed command 3 4: Multi-step speed command 4 5: Reset 6: JOG command (By external control or KPC-CC01) 7: Acceleration / deceleration speed inhibit 8: $1^{\text {st }}$ and $2^{\text {nd }}$ acceleration / deceleration time selection 9: $3^{\text {rd }}$ and $4^{\text {th }}$ acceleration / deceleration time selection 10: External Fault (EF) input (Pr.07-20) 11: Base Block (B.B) input from external 12: Output voltage stops 13: Cancel the setting of auto-acceleration / auto-deceleration time 14: Switch between motor 1 and motor 2 15: Rotating speed command from AVI1 16: Rotating speed command from ACI 17: Rotating speed command from AVI2 18: Forced to stop (Pr.07-20) 19: Frequency up command 20: Frequency down command 21: PID function disabled 22: Clear the counter 23: Input the counter value (MI6) 24: FWD JOG command 25: REV JOG command 28: Emergency stop (EF1) 29: Signal confirmation for Y-connection 30: Signal confirmation for \triangle-connection 38: Disable write EEPROM function 40: Force coasting to stop 41: HAND switch 42: AUTO switch 49: Enable drive 50: Slave dEb action to execute 51: Selection for PLC mode bit0 52: Selection for PLC mode bit1 53: Trigger CANopen quick stop 54: UVW output electromagnetic valve switch 55: Brake release	1
02-02	Multi-function input command 2 (MI2)		2
02-03	Multi-function input command 3 (M13)		3
02-04	Multi-function input command 4 (MI4)		4
02-05	Multi-function input command 5 (M15)		0
02-06	Multi-function input command 6 (MI6)		0
02-07	Multi-function input command 7 (M17)		0
02-08	Multi-function input command 8 (MI8)		0
02-26	Input terminal of I/O extension card (MI10)		0
02-27	Input terminal of I/O extension card (MI11)		0
02-28	Input terminal of I/O extension card (MI12)		0
02-29	Input terminal of I/O extension card (MI13)		0
02-30	Input terminal of I/O extension card (MI14)		0
02-31	Input terminal of I/O extension card (MI15)		0

	Pr.	Parameter Name	Setting Range	Default
			56: Local / Remote selection 58: Enable fire mode (with RUN command) 59: Enable fire mode (without RUN command) 60: Disable all the motors 61: Disable Motor 1 62: Disable Motor 2 63: Disable Motor 3 64: Disable Motor 4 65: Disable Motor 5 66: Disable Motor 6 67: Disable Motor 7 68: Disable Motor 8 69: Preheating command	
N	02-09	External terminal UP / DOWN key mode	0: By the acceleration / deceleration time 1: Constant speed (Pr.02-10)	0
N	02-10	External terminal speed of the UP / DOWN key	$0.001-1.000 \mathrm{~Hz} / \mathrm{ms}$	0.001
N	02-11	Multi-function input response time	0.000-30.000 sec.	0.005
N	02-12	Multi-function input mode selection	0000h-FFFFh (0: N.O.; 1: N.C.)	0000h
N	02-13	Multi-function output 1 RLY1	0 : No function 1: Indication during RUN 2: Operation speed reached 3: Desired frequency reached 1 (Pr.02-22) 4: Desired frequency reached 2 (Pr.02-24) 5: Zero speed (Frequency command) 6: Zero speed including STOP (Frequency command) 7: Over-torque 1 (Pr.06-06-06-08) 8: Over-torque 2 (Pr.06-09-06-11) 9: Drive is ready 10: Low voltage warning (Lv) (Pr.06-00) 11: Malfunction indication 12: Mechanical brake release (Pr.02-32) 13: Overheat warning (Pr.06-15) 14: Software brake signal indication (Pr.07-00) 15: PID feedback error (Pr.08-13, Pr.08-14) 16: Slip error (oSL) 17: Count value reached, does not return to 0 (Pr.02-20) 18: Count value reached, returns to 0 (Pr.02-19) 19: External interrupt B.B. input (Base Block) 20: Warning output 21: Over-voltage 22: Over-current stall prevention 23: Over-voltage stall prevention 24: Operation mode 25: Forward command	11
N	02-14	Multi-function output 2 RLY2		1
N	02-15	Multi-function output 3 RLY3		66
N	02-36	Output terminal of the I/O extension card (MO10) or (RA10)		0
N	02-37	Output terminal of I/O extension card (MO11) or (RA11)		0
N	02-38	Output terminal of I/O extension card (RA12)		0
N	02-39	Output terminal of I/O extension card (RA13)		0
N	02-40	Output terminal of I/O extension card (RA14)		0
N	02-41	Output terminal of I/O extension card (RA15)		0
N	02-42	Output terminal of I/O extension card (MO16 virtual terminal)		0
N	02-43	Output terminal of I/O extension card (MO17 virtual terminal)		0
N	02-44	Output terminal of I/O extension card (MO18 virtual terminal)		0
N	02-45	Output terminal of I/O extension card (MO19 virtual terminal)		0
N	02-46	Output terminal of I/O extension card (MO20 virtual terminal)		0

P	Parameter Name	Setting Range	Default
		26: Reverse command 27: Output when current \geq Pr.02-33 28: Output when current < Pr.02-33 29: Output when frequency $\geq \operatorname{Pr} .02-34$ 30: Output when frequency < Pr.02-34 31: Y-connection for the motor coil 32: \triangle-connection for the motor coil 33: Zero speed (actual output frequency) 34: Zero speed including stop (actual output frequency) 35: Error output selection 1 (Pr.06-23) 36: Error output selection 2 (Pr.06-24) 37: Error output selection 3 (Pr.06-25) 38: Error output selection 4 (Pr.06-26) 40: Speed reached (including stop) 44: Low current output (use with Pr.06-71-06-73) 45: UVW output electromagnetic valve switch 46: Master dEb output 50: Output control for CANopen 51: Analog output control for RS-485 interface (InnerCOM / Modbus) 52: Output control for communication cards 53: Fire mode indication 54: Bypass fire mode indication 55: Motor 1 output 56: Motor 2 output 57: Motor 3 output 58: Motor 4 output 59: Motor 5 output 60: Motor 6 output 61: Motor 7 output 62: Motor 8 output 66: SO output logic A 67: Analog input level reached 68: SO output logic B 69: Preheating output indication	
02-18	Multi-function output direction	0000h-FFFFh (0: N.O.; 1: N.C.)	0000h
02-19	Terminal counting value reached (returns to 0)	0-65500	0
02-20	Preliminary counting value reached (does not return to 0)	0-65500	0
02-22	Desired frequency reached 1	0.00-599.00 Hz	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
02-23	The width of the desired frequency reached 1	0.00-599.00 Hz	2.00
02-24	Desired frequency reached 2	0.00-599.00 Hz	$\begin{gathered} 60.00 / \\ 50.00 \\ \hline \end{gathered}$
02-25	The width of the desired frequency reached 2	0.00-599.00 Hz	2.00

Chapter 11 Summary of Parameter Settings | CFP2000

Pr.	Parameter Name	Setting Range	Default
02-32	Brake delay time	0.000-65.000 sec.	0.000
02-33	Output current level setting for multi-function output terminals	0-150\%	0
02-34	Output frequency setting for multi-function output terminals	$0.00-599.00 \mathrm{~Hz}$	3.00
02-35	External operation control selection after reset and reboot	0 : Disable 1: Drive runs if the RUN command remains after reset or reboot	0
02-50	Display the status of multi-function input terminal	Monitor the status of multi-function input terminals	Read only
02-51	Display the status of multi-function output terminal	Monitor the status of multi-function output terminals	Read only
02-52	Display the external multi-function input terminals used by PLC	Monitor the status of PLC input terminals	Read only
02-53	Display the external multi-function output terminals used by PLC	Monitor the status of PLC output terminals	Read only
02-54	Display the frequency command executed by external terminal	$0.00-599.00 \mathrm{~Hz}$ (Read only)	Read only
02-70	IO card types	1: EMC-BPS01 4: EMC-D611A 5: EMC-D42A 6: EMC-R6AA 11: EMC-A22A	Read only
02-72	Preheating output current level	0-100\%	0
02-73	Preheating output cycle	0-100\%	0

03 Analog Input / Output Parameters

	Parameter Name	Setting Range	Default
	AVI1 analog input selection	0 : No function 1: Frequency command (speed limit under torque control mode) 4: PID target value 5: PID feedback signal 6: Thermistor (PTC) input value 11: PT100 thermistor input value 13: PID compensation value	1
	ACl analog input selection		0
N	AVI2 analog input selection		0
	AVI1 analog input bias	-100.0-100.0\%	0.0
	ACl analog input bias		
	AVI2 analog positive voltage input bias		
	AVI1 positive / negative bias mode	0 : No bias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Bias serves as the center	0
	ACI positive / negative bias mode		
	AVI2 positive / negative bias mode		
	Reverse setting when analog signal input is negative frequency	0 : Negative frequency is not allowed. The digital keypad or external terminal controls the forward and reverse direction. 1: Negative frequency is allowed. Positive frequency = run in a forward direction; negative frequency $=$ run in a reverse direction. The digital keypad or external terminal control cannot change the running direction.	0
	AVI1 analog input gain	-500.0-500.0\%	100.0
	ACl analog input gain		
	AVI2 analog positive input gain		
	AVI2 analog negative input gain		
	AVI1 analog input filter time	0.00-20.00 sec.	0.01
	ACI analog input filter time		
	AVI2 analog input filter time		
	Analog input addition function	0: Disable (AVI1, ACI, AVI2) 1: Enable	0
	Signal loss selection for the analog input 4-20 mA	0 : Disable 1: Continue operation at the last frequency 2: Decelerate to 0 Hz 3: Stop immediately and display ACE	0
	AFM1 analog output selection	0 : Output frequency (Hz) 1: Frequency command (Hz) 2: Motor speed (Hz) 3: Output current (rms) 4: Output voltage 5: DC bus voltage 6: Power factor	0
	AFM2 analog output selection		0

Pr.	Parameter Name	Setting Range	Default
		7: Power 9: AVI1\% 10: ACI\% 11: AVI2\% 20: CANopen analog output 21: RS-485 analog output 22: Communication card analog output 23: Constant voltage output	
03-21	AFM1 analog output gain	0.0-500.0\%	100.0
03-22	AFM1 analog output REV direction	0 : Absolute value in output voltage 1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$ 2: Reverse output $5-0 \mathrm{~V}$; forward output $5-10 \mathrm{~V}$	0
03-24	AFM2 analog output gain	0.0-500.0\%	100.0
03-25	AFM2 analog output REV direction	0 : Absolute value in output voltage 1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$ 2: Reverse output $5-0 \mathrm{~V}$; forward output $5-10 \mathrm{~V}$	0
03-27	AFM2 output bias	-100.00-100.00\%	0.00
03-28	AVI1 terminal input selection	$\begin{aligned} & 0: 0-10 \mathrm{~V} \\ & 1: 0-20 \mathrm{~mA} \\ & \text { 2: } 4-20 \mathrm{~mA} \end{aligned}$	0
03-29	ACI terminal input selection	$\begin{aligned} & \text { 0: } 4-20 \mathrm{~mA} \\ & 1: 0-10 \mathrm{~V} \\ & \text { 2: } 0-20 \mathrm{~mA} \end{aligned}$	0
03-30	PLC analog output terminal status	Monitor the status of PLC analog output terminals	Read only
03-31	AFM2 output selection	0: 0-20 mA output 1: 4-20 mA output	0
03-32	AFM1 DC output setting level	0.00-100.00\%	0.00
03-33	AFM2 DC output setting level	0.00-100.00\%	
03-34	AFM1 output selection	0: 0-20 mA output 1: 4-20 mA output	0
03-35	AFM1 filter output time	0.00-20.00	0
03-36	AFM2 filter output time	0.00-20.00 sec.	.
03-44	Multi-function output (MO) by AI level source	$\begin{aligned} & \hline \text { 0: AVI1 } \\ & \text { 1: ACI } \\ & \text { 2: AVI2 } \end{aligned}$	0
03-45	Al upper level	-100.00-100.00\%	50.00
03-46	Al lower level	-100.00-100.00\%	10.00
03-50	Analog input curve selection	0 : Normal curve 1: Three-point curve of AVI1 2: Three-point curve of ACl 3: Three-point curve of AVI1 \& ACI 4: Three-point curve of AVI2 5: Three-point curve of AVI1 \& AVI2 6: Three-point curve of ACI \& AVI2 7: Three-point curve of AVI1 \& ACI \& AVI2	7

	Pr.	Parameter Name	Setting Range	Default
N	03-51	AVI1 lowest point	$\begin{aligned} & \text { Pr. } 03-28=0,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-28=1,0.00-20.00 \mathrm{~mA} \\ & \text { Pr. } 03-28=2,4.00-20.00 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 4.00 \\ & \hline \end{aligned}$
N	03-52	AVI1 proportional lowest point	-100.00-100.00\%	0.00
N	03-53	AVI1 mid-point	$\begin{aligned} & \text { Pr. } 03-28=0,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-28=1,0.00-20.00 \mathrm{~mA} \\ & \text { Pr. } 03-28=2,0.00-20.00 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 5.00 \\ 10.00 \\ 12.00 \end{gathered}$
N	03-54	AVI1 proportional mid-point	-100.00-100.00\%	50.00
N	03-55	AVI1 highest point	$\begin{aligned} & \text { Pr. } 03-28=0,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-28=1,0.00-20.00 \mathrm{~mA} \\ & \text { Pr. } 03-28=2,0.00-20.00 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 10.00 \\ & 20.00 \\ & 20.00 \\ & \hline \end{aligned}$
N	03-56	AVI1 proportional highest point	-100.00-100.00\%	100.00
N	03-57	ACl lowest point	$\begin{aligned} & \text { Pr. } 03-29=0,4.00-20.00 \mathrm{~mA} \\ & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-29=2,0.00-20.00 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \\ & \hline \end{aligned}$
N	03-58	ACI proportional lowest point	-100.00-100.00\%	0.00
N	03-59	ACI mid-point	$\begin{aligned} & \text { Pr. } 03-29=0,0.00-20.00 \mathrm{~mA} \\ & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-29=2,0.00-20.00 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 12.00 \\ 5.00 \\ 10.00 \end{gathered}$
N	03-60	ACI proportional mid-point	-100.00-100.00\%	50.00
N	03-61	ACl highest point	$\begin{aligned} & \text { Pr. } 03-29=0,0.00-20.00 \mathrm{~mA} \\ & \operatorname{Pr} .03-29=1,0.00-10.00 \mathrm{~V} \\ & \operatorname{Pr} .03-29=2,0.00-20.00 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 20.00 \\ & 10.00 \\ & 20.00 \end{aligned}$
N	03-62	ACI proportional highest point	-100.00-100.00\%	100.00
N	03-63	Positive AVI2 voltage lowest point	0.00-10.00 V	0.00
N	03-64	Positive AVI2 proportional lowest point	-100.00-100.00\%	0.00
N	03-65	Positive AVI2 voltage mid-point	0.00-10.00 V	5.00
N	03-66	Positive AVI2 proportional mid-point	-100.00-100.00\%	50.00
N	03-67	Positive AVI2 voltage highest point	0.00-10.00 V	10.00
N	03-68	Positive AVI2 proportional highest point	-100.00-100.00\%	100.00

04 Multi-step Speed Parameters

	Pr.	Parameter Name	Setting Range	Default
N	04-00	$1{ }^{\text {st }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-01	$2^{\text {nd }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-02	$3{ }^{\text {rd }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-03	$4^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-04	$5{ }^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-05	$66^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-06	$7{ }^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-07	$8^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-08	$9^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-09	$10^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-10	$11^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-11	$12^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-12	$13^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-13	$14^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-14	$15^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-50	PLC buffer 0	0-65535	0
N	04-51	PLC buffer 1	0-65535	0
N	04-52	PLC buffer 2	0-65535	0
N	04-53	PLC buffer 3	0-65535	0
N	04-54	PLC buffer 4	0-65535	0
N	04-55	PLC buffer 5	0-65535	0
N	04-56	PLC buffer 6	0-65535	0
N	04-57	PLC buffer 7	0-65535	0
N	04-58	PLC buffer 8	0-65535	0
N	04-59	PLC buffer 9	0-65535	0
N	04-60	PLC buffer 10	0-65535	0
N	04-61	PLC buffer 11	0-65535	0
N	04-62	PLC buffer 12	0-65535	0
N	04-63	PLC buffer 13	0-65535	0
N	04-64	PLC buffer 14	0-65535	0
N	04-65	PLC buffer 15	0-65535	0
N	04-66	PLC buffer 16	0-65535	0
N	04-67	PLC buffer 17	0-65535	0
N	04-68	PLC buffer 18	0-65535	0
N	04-69	PLC buffer 19	0-65535	0
N	04-70	PLC Application parameter 0	0-65535	0
N	04-71	PLC Application parameter 1	0-65535	0
N	04-72	PLC Application parameter 2	0-65535	0
N	04-73	PLC Application parameter 3	0-65535	0
N	04-74	PLC Application parameter 4	0-65535	0
N	04-75	PLC Application parameter 5	0-65535	0
N	04-76	PLC Application parameter 6	0-65535	0
N	04-77	PLC Application parameter 7	0-65535	0
N	04-78	PLC Application parameter 8	0-65535	0
N	04-79	PLC Application parameter 9	0-65535	0
N	04-80	PLC Application parameter 10	0-65535	0

	Pr.	Parameter Name	Setting Range	Default
N	04-81	PLC Application parameter 11	0-65535	0
N	04-82	PLC Application parameter 12	0-65535	0
N	04-83	PLC Application parameter 13	0-65535	0
N	04-84	PLC Application parameter 14	0-65535	0
N	04-85	PLC Application parameter 15	0-65535	0
N	04-86	PLC Application parameter 16	0-65535	0
N	04-87	PLC Application parameter 17	0-65535	0
N	04-88	PLC Application parameter 18	0-65535	0
N	04-89	PLC Application parameter 19	0-65535	0
N	04-90	PLC Application parameter 20	0-65535	0
N	04-91	PLC Application parameter 21	0-65535	0
N	04-92	PLC Application parameter 22	0-65535	0
N	04-93	PLC Application parameter 23	0-65535	0
N	04-94	PLC Application parameter 24	0-65535	0
N	04-95	PLC Application parameter 25	0-65535	0
N	04-96	PLC Application parameter 26	0-65535	0
N	04-97	PLC Application parameter 27	0-65535	0
N	04-98	PLC Application parameter 28	0-65535	0
N	04-99	PLC Application parameter 29	0-65535	0

05 Motor Parameters

Pr.	Parameter Name	Setting Range	Default
05-00	Motor parameter auto-tuning	0 : No function 1: Simple rolling auto-tuning for induction motor (IM) 2: Static auto-tuning for induction motor (IM) 5: Rolling auto-tuning for PM (IPM / SPM) 11: SynRM parameter auto-tuning (applied to 230V / 460V models) 13: Static auto-tuning for PM (IPM / SPM)	0
05-01	Full-load current for induction motor 1 (A)	Depending on the model power	$\begin{aligned} & \hline \text { Depending } \\ & \text { on the } \\ & \text { model } \\ & \text { power } \\ & \hline \end{aligned}$
05-02	Rated power for induction motor $1 \text { (kW) }$	0.00-655.35 kW	Depending on the model power
05-03	Rated speed for induction motor $1 \text { (rpm) }$	$0-x x x x$ rpm (Depending on the number of motor poles) 1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)	Depending on the number of motor poles
05-04	Number of poles for induction motor 1	2-64	4
05-05	No-load current for induction motor 1 (A)	0.00-Pr.05-01 default	$\begin{array}{\|c} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{array}$
05-06	Stator resistance (Rs) for induction motor 1	0.000-65.535 Ω	$\begin{array}{\|c\|} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{array}$
05-07	Rotor resistance (Rr) for induction motor 1	0.000-65.535 Ω	0.000
05-08	Magnetizing inductance (Lm) for induction motor 1	$0.0-6553.5 \mathrm{mH}$	0.0
05-09	Stator inductance (Lx) for induction motor 1	$0.0-6553.5 \mathrm{mH}$	0.0
05-13	Full-load current for induction motor 2 (A)	Depending on the model power	$\begin{array}{\|c\|} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{array}$
05-14	Rated power for induction motor $2 \text { (kW) }$	0.00-655.35 kW	
05-15	Rated speed for induction motor $2 \text { (rpm) }$	$0-x x x x$ rpm (Depending on the number of motor poles) 1710 (60 Hz 4 poles) ; 1410 (50 Hz 4 poles)	
05-16	Number of poles for induction motor 2	2-64	4
05-17	No-load current for induction motor 2 (A)	0.00-Pr.05-13 default	$\begin{aligned} & \hline \text { Depending } \\ & \text { on the } \\ & \text { model } \\ & \text { power } \end{aligned}$
05-18	Stator resistance (Rs) for induction motor 2	0.000-65.535 Ω	$\begin{array}{\|l\|} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{array}$
05-19	Rotor resistance (Rr) for induction motor 2	0.000-65.535 Ω	0.000

Pr.	Parameter Name	Setting Range	Default
05-20	Magnetizing inductance (Lm) for induction motor 2	$0.0-6553.5 \mathrm{mH}$	0.0
05-21	Stator inductance (Lx) for induction motor 2	$0.0-6553.5 \mathrm{mH}$	0.0
05-22	Induction motor 1 / 2 selection	1: Motor 1 2: Motor 2	1
05-23	Frequency for Y -connection / \triangle-connection switch for an induction motor	0.00-599.00 Hz	60.00
05-24	Y-connection / \triangle-connection switch for induction motor	0: Disable 1: Enable	0
05-25	Delay time for Y -connection / \triangle-connection switch for an induction motor	0.000-60.000 sec.	0.200
05-28	Accumulated Watt-hour for a motor (W-hour)	0.0-6553.5	Read only
05-29	Accumulated Watt-hour for a motor in low word (kW-hour)	0.0-6553.5	Read only
05-30	Accumulated Watt-hour for a motor in high word (MW-hour)	0-65535	Read only
05-31	Accumulated motor operation time (minutes)	0-1439	0
05-32	Accumulated motor operation time (days)	0-65535	0
05-33	Induction motor (IM) or permanent magnet synchronous AC motor (PM) selection	0: IM 1: SPM 2: IPM 3: SynRM (applied to 230V / 460V models)	0
05-34	Full-load current for a permanent magnet synchronous AC motor / reluctance motor	Depending on the model power	$\begin{array}{\|l\|} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \end{array}$
05-35	Rated power for a permanent magnet synchronous AC motor / reluctance motor	0.00-655.35 kW	$\begin{array}{\|l\|} \hline \text { Depending } \\ \text { on the } \\ \text { motor } \\ \text { power } \end{array}$
05-36	Rated speed for a permanent magnet synchronous AC motor / reluctance motor	0-65535 rpm	2000
05-37	Pole number for a permanent magnet synchronous AC motor / reluctance motor	0-65535	10
05-38	System inertia for a permanent magnet synchronous AC motor / reluctance motor	$0.0-6553.5 \mathrm{~kg}-\mathrm{cm}^{2}$	$\begin{gathered} \text { Depending } \\ \text { on the } \\ \text { motor } \\ \text { power } \end{gathered}$
05-39	Stator resistance for a permanent magnet synchronous AC motor / reluctance motor	0.000-65.535 Ω	0.000
05-40	Permanent magnet synchronous AC motor / reluctance motor Ld	$0.00-655.35 \mathrm{mH}$	0.00

Chapter 11 Summary of Parameter Settings | CFP2000

Pr.	Parameter Name	Setting Range	Default
$05-41$	Permanent magnet synchronous AC motor / reluctance motor Lq	$0.00-655.35 \mathrm{mH}$	0.00
$05-43$	Ke parameter for a permanent magnet synchronous AC motor	$0-65535($ Unit: V/krpm)	0

06 Protection Parameters

	Pr.	Parameter Name	Setting Range	Default
N	06-00	Low voltage level	230 V models: $150.0-220.0 \mathrm{~V}$ DC 460 V models: $300.0-440.0 \mathrm{VDC}$ 575 V models: $420.0-520.0 \mathrm{VDC}$	$\begin{aligned} & 180.0 \\ & 360.0 \\ & 470.0 \end{aligned}$
N	06-01	Over-voltage stall prevention	0: Disable 230 V models: $0.0-450.0 \mathrm{VDC}$ 460 V models: $0.0-900.0 \mathrm{VDC}$ 575 V models: $0.0-1116.0 \mathrm{VDC}$	$\begin{aligned} & 380.0 \\ & 760.0 \\ & 920.0 \end{aligned}$
N	06-02	Selection for stall prevention	0 : Traditional over-voltage and traditional over-current stall prevention 1: Smart over-voltage and traditional over-current stall prevention 2: Traditional over-voltage and smart over-current stall prevention 3: Smart over-voltage and smart over-current stall prevention	0
N	06-03	Over-current stall prevention during acceleration	230V / 460V models: Light load: 0-130\% (100\% corresponds to the rated current of the drive) Normal load: 0-160\% (100\% corresponds to the rated current of the drive) 575 V models: Light load: 0-125\% (100\% corresponds to the rated current of the drive) Normal load: 0-150\% (100\% corresponds to the rated current of the drive)	$\begin{aligned} & 120 \\ & 120 \\ & 120 \\ & 120 \end{aligned}$
N	06-04	Over-current stall prevention during operation	230V / 460V models: Light load: 0-130\% (100\% corresponds to the rated current of the drive) Normal load: 0-160\% (100\% corresponds to the rated current of the drive) 575 V models: Light load: 0-125\% (100\% corresponds to the rated current of the drive) Normal load: 0-150\% (100\% corresponds to the rated current of the drive)	$\begin{aligned} & 120 \\ & 120 \\ & 120 \\ & 120 \end{aligned}$
N	06-05	Acceleration / deceleration time selection for stall prevention at constant speed	0: By current acceleration / deceleration time 1: By the first acceleration / deceleration time 2: By the second acceleration / deceleration time 3: By the third acceleration / deceleration time 4: By the fourth acceleration / deceleration time 5: By auto-acceleration / auto-deceleration	0
N	06-06	Over-torque detection selection (OT1)	0: No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation	0

Pr.	Parameter Name	Setting Range	Default
		19: Capacitor hardware error (tH2o) 21: Over load (oL) 22: Electronic thermal relay 1 protection (EoL1) 23: Electronic thermal relay 2 protection (EoL2) 24: Motor overheating (oH3) (PTC / PT100) 26: Over torque 1 (ot1) 27: Over torque 2 (ot2) 28: Under current (uC) 30: EEPROM write error (cF1) 31: EEPROM read error (cF2) 33: U-phase error (cd1) 34: V-phase error (cd2) 35: W-phase error (cd3) 36: cc (current clamp) hardware error (Hd0) 37: oc (over-current) hardware error (Hd1) 38: ov (over-voltage) hardware error (Hd2) 39: occ hardware error (Hd3) 40: Auto-tuning error (AUE) 41: PID loss ACI (AFE) 48: ACI loss (ACE) 49: External fault (EF) 50: Emergency stop (EF1) 51: External base block (bb) 52: Enter wrong password three times and locked (Pcod) 53: Firmware version error (ccod) 54: Illegal command (CE1) 55: Illegal data address (CE2) 56: Illegal data value (CE3) 57: Data is written to read-only address (CE4) 58: Modbus transmission time-out (CE10) 60: Brake transistor error (bF) 61: Y-connection / \triangle-connection switch error (ydc) 62: Deceleration energy backup error (dEb) 63: Over slip error (oSL) 64: Electric valve switch error (ryF) 68: Reverse direction of the speed feedback (SdRv) 69: Over speed rotation feedback (SdOr) 70: Large deviation of speed feedback (SdDe) 71: Watchdog (WDTT) 72: STO loss 1 (STL1) 73: Emergency stop for external safety (S1) 74: FIRE mode output (Fire) 76: Safe torque off (STO) 77: STO loss 2 (STL2) 78: STO loss 3 (STL3) 82: Output phase loss U phase (OPHL) 83: Output phase loss V phase (OPHL) 84: Output phase loss W phase (OPHL)	

	Pr.	Parameter Name	Setting Range	Default
	06-40	Status of the multi-function input terminal at malfunction	0000h-FFFFh	Read only
	06-4	Status of the multi-function output terminal at malfunction	0000h-FFFFh	Read only
	06-4	Drive status at malfunction	0000h-FFFFh	Read only
	06-4	STO latch selection	0: STO latch 1: STO no latch	0
	06-4	Output phase loss detection action (OPHL)	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	3
	06-46	Detection time for output phase loss	0.000-65.535 sec.	0.500
	06-47	Current detection level for output phase loss	0.00-100.00\%	1.00
	06-48	DC brake time for output phase loss	0.000-65.535 sec.	0.000
	06-49	LvX auto-reset	0 : Disable 1: Enable	0
	06-50	Time for input phase loss detection	0.00-600.00 sec.	0.20
	06-52	Ripple of input phase loss	230 V models: $0.0-160.0 \mathrm{~V}$ DC 460 V models: $0.0-320.0 \mathrm{VDC}$ 575 V models: $0.0-400.0 \mathrm{VDC}$	$\begin{aligned} & 30.0 \\ & 60.0 \\ & 75.0 \\ & \hline \end{aligned}$
	06-53	Input phase loss detection action (OrP)	0 : Fault and ramp to stop 1: Fault and coast to stop	0
	06-55	Derating protection	0 : Auto-decrease carrier frequency and limit output current 1: Constant carrier frequency and limit output current 2: Auto-decrease carrier frequency	0
	06-56	PT100 voltage level 1	$0.000-10.000 \mathrm{~V}$	5.000
	06-57	PT100 voltage level 2	$0.000-10.000 \mathrm{~V}$	7.000
	06-58	PT100 level 1 frequency protection	$0.00-599.00 \mathrm{~Hz}$	0.00
	06-59	PT100 activation level 1 protection frequency delay time	0-6000 sec.	60
	06-60	Software detection GFF current level	0.0-6553.5\% (100% corresponds to the drive's light-load rated current)	60.0
	06-61	Software detection GFF filter time	0.00-655.35 sec.	0.10
	06-63	Operation time of fault record 1 (Day)	0-65535 days	Read only
	06-64	Operation time of fault record 1 (Minutes)	0-1439 min.	$\begin{gathered} \text { Read } \\ \text { only } \end{gathered}$
	06-65	Operation time of fault record 2 (Day)	0-65535 days	Read only
	06-66	Operation time of fault record 2 (Minutes)	0-1439 min.	Read only

Chapter 11 Summary of Parameter Settings | CFP2000

Pr.	Parameter Name	Setting Range	Default
06-67	Operation time of fault record 3 (Day)	0-65535 days	Read only
06-68	Operation time of fault record 3 (Minutes)	0-1439 min.	Read only
06-69	Operation time of fault record 4 (Day)	0-65535 days	Read only
06-70	Operation time of fault record 4 (Minutes)	0-1439 min.	Read only
06-71	Low current setting level	$0.0-100.0 \%$ (100% corresponds to the drive's light-load rated current)	0.0
06-72	Low current detection time	0.00-360.00 sec.	0.00
06-73	Low current action	0 : No function 1: Fault and coast to stop 2: Fault and ramp to stop by the second deceleration time 3: Warn and continue operation	0
06-76	dEb motion offset	230 V models: $0.0-200.0 \mathrm{~V}$ DC 460 V models: $0.0-200.0 \mathrm{VDC}$ 575 V models: $0.0-200.0 \mathrm{VDC}$	$\begin{aligned} & 20.0 \\ & 40.0 \\ & 50.0 \\ & \hline \end{aligned}$
06-80	Fire mode	0: Disable 1: Forward (counterclockwise) operation 2: Reverse (clockwise) operation	0
06-81	Operating frequency when running fire mode	$0.00-599.00 \mathrm{~Hz}$	60.00
06-82	Enable bypass in fire mode	0: Disable bypass 1: Enable bypass	0
06-83	Bypass delay time in fire mode	$0.0-6550.0 \mathrm{sec}$.	0.0
06-84	Number of times of reset in fire mode	0-10	0
06-85	Length of time of reset in fire mode	0.0-6000.0 sec.	60.0
06-86	Fire mode motion	bit0: $0=$ Open Loop; $1=$ Close Loop (PID control) bit1: $0=$ Manual reset fire mode; $1=$ Auto reset fire mode 0 : Open loop control and manual reset fire mode 1: Close loop control and manual reset fire mode 2: Open loop control and auto reset fire mode 3: Close loop control and auto reset fire mode	0
06-87	Fire mode PID set point	0.00-100.00\%	0.00

07 Special Parameters

	Pr.	Parameter Name	Setting Range	Default
N	07-00	Software brake chopper action level	230V models: 350.0-450.0 VDC 460 V models: $700.0-900.0 \mathrm{VDC}$ 575 V models: 850.0-1116.0 VD	$\begin{aligned} & 370.0 \\ & 740.0 \\ & 895.0 \end{aligned}$
N	07-01	DC brake current level	0-100\%	0
N	07-02	DC brake time at start-up	0.0-60.0 sec.	0.0
N	07-03	DC brake time at STOP	$0.0-60.0 \mathrm{sec}$.	0.0
N	07-04	DC brake frequency at STOP	$0.00-599.00 \mathrm{~Hz}$	0.00
N	07-05	Voltage increasing gain	1-200\%	100
N	07-06	Restart after momentary power loss	0: Stop operation 1: Speed tracking by the speed before the power loss 2: Speed tracking by the minimum output frequency	0
N	07-07	Allowed power loss duration	0.0-20.0 sec.	2.0
N	07-08	Base block time	$0.0-5.0 \mathrm{sec}$. (Depending on the model power)	Depending on the model power
N	07-09	Current limit of speed tracking	20-200\% (100\% corresponds to the drive's light-load rated current)	100
N	07-10	Restart after fault action	0: Stop operation 1: Speed tracking by current speed 2: Speed tracking by the minimum output frequency	0
N	07-11	Number of times of restart after fault	0-10	0
N	07-12	Speed tracking during start-up	0: Disable 1: Speed tracking by the maximum output frequency 2: Speed tracking by the motor frequency at start-up 3: Speed tracking by the minimum output frequency	0
N	07-13	dEb function selection	0: Disable 1: dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored. 2: dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored.	0
N	07-15	Dwell time at acceleration	0.00-600.00 sec.	0.00
N	07-16	Dwell frequency at acceleration	$0.00-599.00 \mathrm{~Hz}$	0.00
N	07-17	Dwell time at deceleration	0.00-600.00 sec.	0.00
N	07-18	Dwell frequency at deceleration	$0.00-599.00 \mathrm{~Hz}$	0.00
N	07-19	Fan cooling control	0 : Fan is always ON 1: Fan is OFF after the AC motor drive stops for one minute 2: Fan is ON when the AC motor drive runs; fan is OFF when the AC motor drive stops 3: Fan turns ON when temperature (IGBT) reaches around $60^{\circ} \mathrm{C}$.	0

	Pr.	Parameter Name	Setting Range	Default
			4: Fan always OFF	
N	07-20	Emergency stop (EF) \& force to stop selection	0: Coast to stop 1: Stop by the first deceleration time 2: Stop by the second deceleration time 3: Stop by the third deceleration time 4: Stop by the fourth deceleration time 5: System deceleration 6: Automatic deceleration	0
N	07-21	Automatic energy-saving selection	0: Disable 1: Power factor energy-saving improvement 2: Automatic energy-saving optimization	0
N	07-22	Energy-saving gain	10-1000\%	100
N	07-23	Automatic voltage regulation (AVR) function	0: Enable AVR 1: Disable AVR 2: Disable AVR during deceleration	0
N	07-24	Torque command filter time (V/F and SVC control mode)	0.001-10.000 sec.	0.500
N	07-25	Slip compensation filter time (V/F and SVC control mode)	0.001-10.000 sec.	0.100
N	07-26	Torque compensation gain	IM: 0-10 (when Pr.05-33 = 0) PM: 0-5000 (when Pr.05-33 = 1 or 2)	0
N	07-27	Slip compensation gain	0.00-10.00	$\begin{gathered} 0.00 \\ \text { (Default } \\ \text { value is } \\ 1.00 \text { in SVC } \\ \text { mode) } \\ \hline \end{gathered}$
N	07-29	Slip deviation level	0.0-100.0\% 0 : No detection	0.0
N	07-30	Over-slip deviation detection time	0.0-10.0 sec.	1.0
N	07-31	Over-slip deviation treatment	0: Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	0
N	07-32	Motor oscillation compensation factor	$\begin{aligned} & 0-10000 \\ & 0: \text { Disable } \end{aligned}$	1000
N	07-33	Auto-restart interval of fault	0.0-6000.0 sec.	60.0
N	07-38	PMSVC voltage feed forward gain	0.00-2.00	1.00
N	07-41	Minimum frequency for AES	0.00-40.00 Hz	10.00
N	07-42	Delay time for AES	0-600 sec.	5
N	07-43	Targeted power factor angle for AES	0.00-65.00 ${ }^{\circ}$	40.00
N	07-44	Maximum voltage drop for AES	0.00-70.00\%	60.00
N	07-45	AES coefficient	0-10000\%	100
N	07-50	PWM fan speed	60-100\%	60

08 High-function PID Parameters

09 Communication Parameters

	Pr.	Parameter Name	Setting Range	Default
N	09-00	COM1 communication address	1-254	1
N	09-01	COM1 transmission speed	4.8-115.2 Kbps	9.6
N	09-02	COM1 transmission fault treatment	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning, no fault and continue operation	3
N	09-03	COM1 time-out detection	0.0-100.0 sec.	0.0
N	09-04	COM1 communication protocol	1: 7, N, 2 (ASCII) 2: 7, E, 1 (ASCII) 3: 7, O, 1 (ASCII) 4: 7, E, 2 (ASCII) 5: 7, O, 2 (ASCII) 6: 8, N, 1 (ASCII) 7: 8, N, 2 (ASCII) 8: 8, E, 1 (ASCII) 9: 8, O, 1 (ASCII) 10: 8, E, 2 (ASCII) 11: 8, O, 2 (ASCII) 12: 8, N, 1 (RTU) 13: 8, N, 2 (RTU) 14: 8, E, 1 (RTU) 15: 8, O, 1 (RTU) 16: 8, E, 2 (RTU) 17: 8, O, 2 (RTU)	1
N	09-09	Communication response delay time	$0.0-200.0 \mathrm{~ms}$	2.0
	09-10	Communication main frequency	$0.00-599.00 \mathrm{~Hz}$	60.00
N	09-11	Block transfer 1	0000-FFFFh	0000h
N	09-12	Block transfer 2	0000-FFFFh	0000h
N	09-13	Block transfer 3	0000-FFFFh	0000h
N	09-14	Block transfer 4	0000-FFFFh	0000h
N	09-15	Block transfer 5	0000-FFFFh	0000h
N	09-16	Block transfer 6	0000-FFFFh	0000h
N	09-17	Block transfer 7	0000-FFFFh	0000h
N	09-18	Block transfer 8	0000-FFFFh	0000h
N	09-19	Block transfer 9	0000-FFFFh	0000h
N	09-20	Block transfer 10	0000-FFFFh	0000h
N	09-21	Block transfer 11	0000-FFFFh	0000h
N	09-22	Block transfer 12	0000-FFFFh	0000h
N	09-23	Block transfer 13	0000-FFFFh	0000h
N	09-24	Block transfer 14	0000-FFFFh	0000h
N	09-25	Block transfer 15	0000-FFFFh	0000h
N	09-26	Block transfer 16	0000-FFFFh	0000h
	09-30	Communication decoding method	0 : Decoding method 1 (20xx) 1: Decoding method 2 (60xx)	1

Pr.	Parameter Name	Setting Range	Default
09-31	Internal communication protocol	1: BACnet 0: Modbus 485 -1: Internal communication Slave 1 -2: Internal communication Slave 2 -3: Internal communication Slave 3 -4: Internal communication Slave 4 -5: Internal communication Slave 5 -6: Internal communication Slave 6 -7: Internal communication Slave 7 -8: Internal communication Slave 8 -10: Internal communication Master -12: Internal PLC control	0
09-33	PLC command force to 0	bit0: Before PLC scans, set up PLC target frequency $=0$	0000h
09-35	PLC address	1-254	2
09-36	CANopen slave address	$\begin{array}{\|l\|} \hline 0 \text { : Disable } \\ 1-127 \\ \hline \end{array}$	0
09-37	CANopen speed	0: 1 Mbps 1: 500 Kbps 2: 250 Kbps 3: 125 Kbps 4: 100 Kbps (Delta only) 5: 50 Kbps	0
09-39	CANopen warning record	bit0: CANopen Guarding Time out bit1: CANopen heartbeat Time out bit2: CANopen SYNC Time out bit3: CANopen SDO Time out bit4: CANopen SDO buffer overflow bit5: Can Bus off bit6: Error protocol of CANopen bit8: The setting values of CANopen indexes are fail bit9: The setting value of CANopen address is fail bit10: The checksum value of CANopen indexes is fail	Read only
09-40	CANopen decoding method	0: Disable (Delta-defined decoding method) 1: Enable (CANopen DS402 standard protocol)	1
09-41	CANopen communication status	0: Node reset state 1: Com reset state 2: Boot up state 3: Pre-operation state 4: Operation state 5: Stop state	Read only
09-42	CANopen control status	0: Not ready for use state 1: Inhibit start state 2: Ready to switch on state 3: Switched on state	Read only

	Pr.	Parameter Name	Setting Range	Default
			4: Enable operation state 7: Quick stop active state 13: Error reaction activation state 14: Error state	
	09-45	CANopen master function	0 : Disable 1: Enable	0
	09-46	CANopen master address	0-127	100
	09-4	CANopen extension setting	0: Update Index 604F and 6050 to Acceleration / Deceleration time 1 bit0 $=0$: Enabled (default) bit0 $=1$: Disabled 1: Distinguish the CANopen identity code by models or by series bit1 = 0 : Distinguish the CANopen identity code by models bit1 = 1: Distinguish the CANopen identity code by series	0002h
	09-50	BACnet MS / TP node address	0-127	10
	09-51	BACnet baud rate	$9.6-76.8$ Kbps	38.4
	09-52	BACnet Device index L	0-65535	10
	09-53	BACnet Device index H	0-63	0
	09-55	BACnet Max Address	0-127	127
	09-56	BACnet password	0-65535	0
	09-60	Communication card identifications	0 : No communication card 1: DeviceNet slave 2: Profibus-DP slave 3: CANopen slave / master 5: EtherNet/IP Slave 8: BACnet IP 12: PROFINET	Read only
	09-61	Firmware version of communication card	Read only	Read only
	09-62	Product code	Read only	Read only
	09-63	Error code	Read only	Read only
	09-70	Communication card address (for DeviceNet or PROFIBUS)	DeviceNet: 0-63 Profibus-DP: 1-125	1
	09-71	Communication card speed setting (for DeviceNet)	Standard DeviceNet: 0: 125 Kbps 1: 250 Kbps 2: 500 Kbps 3: 1 Mbps (Delta only) Non-standard DeviceNet: (Delta only) 0: 10 Kbps 1: 20 Kbps 2: 50 Kbps 3: 100 Kbps	2

	Pr.	Parameter Name	Setting Range	Default
			4: 125 Kbps 5: 250 Kbps 6: 500 Kbps 7: 800 Kbps 8: 1 Mbps	
N	09-72	Additional settings for communication card speed (for DeviceNet)	0: Standard DeviceNet In this mode, baud rate can only be 125 Kbps, $250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ in standard DeviceNet speed 1: Non-standard DeviceNet In this mode, DeviceNet baud rate can be the same as that for CANopen (0-8).	0
N	09-75	Communication card IP configuration (for EtherNet)	0 : Static IP 1: Dynamic IP (DHCP)	0
N	09-76	Communication card IP address 1 (for EtherNet)	0-65535	0
N	09-77	Communication card IP address 2 (for EtherNet)	0-65535	0
N	09-78	Communication card IP address 3 (for EtherNet)	0-65535	0
N	09-79	Communication card IP address 4 (for EtherNet)	0-65535	0
N	09-80	Communication card address mask 1 (for EtherNet)	0-65535	0
N	09-81	Communication card address mask 2 (for EtherNet)	0-65535	0
N	09-82	Communication card address mask 3 (for EtherNet)	0-65535	0
N	09-83	Communication card address mask 4 (for EtherNet)	0-65535	0
N	09-84	Communication card gateway address 1 (for EtherNet)	0-65535	0
N	09-85	Communication card gateway address 2 (for EtherNet)	0-65535	0
N	09-86	Communication card gateway address 3 (for EtherNet)	0-65535	0
N	09-87	Communication card gateway address 4 (for EtherNet)	0-65535	0
N	09-88	Communication card password (Low word) (for EtherNet)	0-99	0
N	09-89	Communication card password (High word) (for EtherNet)	0-99	0
N	09-90	Reset communication card (for EtherNet)	0: Disable 1: Reset, return to default	0

Pr.	Parameter Name	Setting Range	Default
$\sim 09-91$	Additional settings for the communication card (for EtherNet) bit1: Enable internet parameters (1 bit). When IP address is set, this bit is enabled. After updating the communication card parameters, this bit changes to disabled. bit2: Enable login password (1 bit). When you enter the login password, this bit is enabled. After updating the communication card parameters, this bit changes to disabled.	0	
$09-92$	Communication card status (for EtherNet)	bit0: Enable password When the communication card is set with password; this bit is enabled. When the password is cleared; this bit is disabled.	0

10 Sensorless Motor Control Parameters

	Pr.	Parameter Name	Setting Range	Default
	10-08	Treatment for speed observer feedback fault (applied to 230V / 460V models)	0: Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop	2
	10-09	Detection time of speed observer feedback fault (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	$\begin{array}{\|l} 0.0-10.0 \mathrm{sec} . \\ 0: \text { Disable } \end{array}$	1.0
	10-10	Speed observer stall level (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	$\begin{array}{\|l\|} \hline 0-120 \% \\ 0 \text { : No function } \\ \hline \end{array}$	115
	10-11	Detection time of speed observer stall (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	0.0-2.0 sec.	0.1
	10-12	Speed observer stall action (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop	2
	10-13	Speed observer slip range (applied to 230V / 460V models)	$\begin{array}{\|l\|} \hline 0-50 \% \\ 0: \text { No function } \\ \hline \end{array}$	50
	10-14	Detection time of speed observer slip (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	0.0-10.0 sec.	0.5
	10-15	Speed observer stall and slip error action (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop	2
	10-31	I/F mode, current command	0-150\% of motor rated current	40
	10-32	PM FOC sensorless speed estimator bandwidth (high speed)	$0.00-600.00 \mathrm{~Hz}$	5.00
	10-33	PM FOC sensorless speed estimator bandwidth (low speed) (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	$0.00-600.00 \mathrm{~Hz}$	1.00
	10-34	PM sensorless speed estimator low-pass filter gain	0.00-655.35	1.00
	10-35	AMR (Kp) gain (applied to 230V / 460V models)	0.00-3.00	1.00
	10-36	AMR (Ki) gain (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	0.00-3.00	1.00
	10-39	Frequency to switch from I/F mode to PM sensorless mode	$0.00-599.00 \mathrm{~Hz}$	20.00
	10-40	Frequency to switch from PM sensorless mode to I/F mode	$0.00-599.00 \mathrm{~Hz}$	20.00
	10-41	I/F mode, Id current low-pass filter time	$0.0-6.0 \mathrm{sec}$.	0.2
	10-42	Initial angle detection pulse value	0.0-3.0 times of motor's rated current	1.0
	10-49	Zero voltage time during start-up	0.000-60.000 sec.	0.000
	10-51	Injection frequency	$0-1200 \mathrm{~Hz}$	500

Chapter 11 Summary of Parameter Settings | CFP2000

	Pr.	Parameter Name	Setting Range	Default
N	10-52	Injection magnitude	$0.0-200.0 \mathrm{~V}$ 230 V models: $0.0-100.0 \mathrm{~V}$ 460 V models: $0.0-200.0 \mathrm{~V}$ 575 V models: $0.0-200.0 \mathrm{~V}$	$\begin{aligned} & 15.0 \\ & 30.0 \\ & 30.0 \end{aligned}$
N	10-53	PM initial rotor position detection method	0 : Disable 1: Using I/F current command to attract the rotor to zero degrees 2: High frequency injection 3: Pulse injection	0
N	10-54	Magnetic flux linkage estimate low-speed gain (applied to 230V / 460V models)	10-1000\%	100
N	10-55	Magnetic flux linkage estimate high-speed gain (applied to 230V / 460V models)	10-1000\%	100
N	10-56	Kp of phase-locked loop (applied to 230V / 460V models)	10-1000\%	100
N	10-57	Ki of phase-locked loop (applied to 230V / 460V models)	10-1000\%	100
N	10-58	Mutual inductance gain compensation (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	0.00-655.35	1.00

11 Advanced Parameters (Applied to 230V / 460V models)

12 PUMP Parameters

Pr.	Parameter Name	Setting Range	Default
12-00	Circulation Control	0: No operation 1: Fixed time circulation (by time) 2: Fixed quantity circulation 3: Fixed quantity control 4: Fixed time circulation + fixed quantity circulation 5: Fixed time circulation + fixed quantity control	0
12-01	Number of motors to be connected	1-8	1
12-02	Operating time for each motor (minutes)	0-65500 min.	0
12-03	Delay time due to the acceleration (or the increment) at motor switching (seconds)	0.0-3600.0 sec.	1.0
12-04	Delay time due to the deceleration (or the decrement) at motor switching (seconds)	0.0-3600.0 sec.	1.0
12-05	Delay time due to fixed quantity circulation at motor switching (seconds)	$0.0-3600.0 \mathrm{sec}$.	10.0
12-06	Frequency when switching motors at fixed quantity circulation (Hz)	0.00-599.00 Hz	60.0
12-07	Action when fixed quantity circulation breaks down	0 : Turn off all output 1: Motors powered by mains electricity continues to operate	0
12-08	Frequency for stopping auxiliary motor (Hz)	$0.00-599.00 \mathrm{~Hz}$	0.00
12-09	Fixed quantity circulation output delay	1.0-3600.0 sec.	1.0
12-10	Motor 1 operation record (min./sec.)	Read only	Read only
12-11	Motor 1 operation record (hour)	Read only	Read only
12-12	Motor 2 operation record (min./sec.)	Read only	Read only
12-13	Motor 2 operation record (hour)	Read only	Read only
12-14	Motor 3 operation record (min./sec.)	Read only	Read only
12-15	Motor 3 operation record (hour)	Read only	Read only
12-16	Motor 4 operation record (min./sec.)	Read only	Read only
12-17	Motor 4 operation record (hour)	Read only	Read only

Pr.	Parameter Name		Setting Range
$12-18$	Motor 5 operation record (min./sec.)	Read only	Refault only
$12-19$	Motor 5 operation record (hour)	Read only	Read only
$12-20$	Motor 6 operation record (min./sec.)	Read only	Read only
$12-21$	Motor 6 operation record (hour)	Read only	Read only
$12-22$	Motor 7 operation record (min./sec.)	Read only	Read only
$12-23$	Motor 7 operation record (hour)	Read only	Read only
$12-24$	Motor 8 operation record (min./sec.)	Read only	Read only
$12-25$	Motor 8 operation record (hour)	Read only	Read only
$12-26$	Clear motor's operation time	0: No function 1: Clear operation time for motor 1 2: Clear operation time for motor 2 3: Clear operation time for motor 3 4: Clear operation time for motor 4 5: Clear operation time for motor 5 6: Clear operation time for motor 6 7: Clear operation time for motor 7 8: Clear operation time for motor 8 10: Clear operation time for all motors	
$12-27$	Priority for circulated operation	0: Terminal order 1: Minimum operation time	0

13 Application Parameters by Industry

Pr.	Parameter Name	Setting Range	Default
$13-00$		0: Disable	
		Industry-specific Parameter Application	1: User-defined Parameter 2: Compressor (IM) 3: Fan 4: Pump I
	Industry Parameters 1-99	10: Air Handling Unit, AHU	
		$0.00-655.35$	0

14 Extension Card Parameters

Chapter 11 Summary of Parameter Settings | CFP2000

	Pr.	Parameter Name	Setting Range	Default
N	14-19	Extension card input selection (Al11)	$\begin{aligned} & \text { 0: 0-10 V (AVI11) } \\ & \text { 1: } 0-20 \mathrm{~mA}(\mathrm{ACI} 11) \\ & \text { 2: } 4-20 \mathrm{~mA}(\mathrm{ACl11}) \end{aligned}$	0
	14-20	AO10 DC output setting level	0.00-100.00\%	0.00
	14-21	AO11 DC output setting level	0.00-100.00\%	0.00
N	14-22	AO10 filter output time	0.00-20.00 sec.	0.01
N	14-23	AO11 filter output time	0.00-20.00 sec.	0.01
N	14-36	AO10 output selection	$\begin{aligned} & \text { 0: } 0-10 \mathrm{~V} \\ & \text { 1: } 0-20 \mathrm{~mA} \\ & \text { 2: } 4-20 \mathrm{~mA} \end{aligned}$	0
N	14-37	AO11 output selection		0

Chapter 12 Description of Parameter Settings

12-1 Description of Parameter Settings

12-2 Adjustment \& Application

12-1 Description of Parameter Settings 00 Drive Parameters

\wedge You can set this parameter during operation.

00-00 AC Motor Drive Identity Code

Default: Read only
Settings Read only

00-01 AC Motor Drive Rated Current Display

Default: Read only
Settings Read only
1 Pr.00-00 displays the AC motor drive identity code. Using the following specification table to check if Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity code of the AC motor drive (Pr.00-00).
1 The default is the rated current for light duty. Set Pr.00-16 to 1 to display the rated current for normal duty.

230V Models																
Frame	A												B			
Power (kW)	0.75		1.5		2.2			3.7			5.5			7.5		11
Power (HP)	1		2		3			5			7.5			10		15
Identity Code	4		6		8			10			12			14		16
Rated Current for Light Duty (A)	5		7.5		10			15			21			31		46
Rated Current for Normal Duty (A)	3		5		8			11			17			25		33
Frame	C				D0							D				
Power (kW)	15	18.5			22			30				37				45
Power (HP)	20	25			30			40				50				60
Identity Code	18	20			22			24				26				28
Rated Current for Light Duty (A)	61	75			90				105			146				180
Rated Current for Normal Duty (A)	49	9	65		75				90			120				146
460V Models																
Frame	A													B		
Power (kW)	0.75	1.5	2.2		3.7		4.0		5.5			7.5		11		15
Power (HP)	1	2		3	5		5		7.5			10			15	20
Identity Code	5	7		9	11		93		13			15			17	19
Rated Current for Light Duty (A)	3.0	4.2		5.5	8.5		10.5		13			18		24		32
Rated Current for Normal Duty (A)	1.7	3.0	4.0		6.0		9.0		10.5			12		18		24
Frame	B			C					D0					D		
Power (kW)	18.5	22		30		37			45			55		75		90
Power (HP)	25	30		40		50			60			75	100			125
Identity Code	21	23		25		27			29			31		33		35
Rated Current for Light Duty (A)	38	45		60		73			91			110		150		180
Rated Current for Normal Duty (A)	32	38		45		60			73			91		110		150

575V Models									
Frame	A						B		
Power (kW)	1.5	2.2	3.7	5.5		7.5	11	15	18.5
Power (HP)	2	3	5	7.5		10	15	20	25
Identity Code	505	506	507	508		509	510	511	512
Rated Current for Light Duty (A)	3	4.3	6.7	9.9		12.1	18.7	24.2	30
Rated Current for Normal Duty (A)	2.5	3.6	5.5	8.2		10	15.5	20	24
Frame	C			D0				D	
Power (kW)	22	30	37		45		55	75	90
Power (HP)	30	40	50		60		75	100	125
Identity Code	513	514	515		516		517	518	519
Rated Current for Light Duty (A)	36	45	54		67		86	104	125
Rated Current for Normal Duty (A)	30	36	45		54		67	86	104

00-02 Parameter Reset

Default: 0

Settings 0: No Function
 1: Write protection for parameters
 5: Reset kWh display to 0
 6: Reset PLC (including CANopen Master Index)
 7: Reset CANopen Slave Index
 9: Reset all parameters to defaults (base frequency is 50 Hz)
 10: Reset all parameters to defaults (base frequency is 60 Hz)

凹1 1: All parameters are read only except Pr.00-02, Pr.00-07 and Pr.00-08. Set Pr.00-02 to 0 before changing other parameter settings.
[1 5: You can return the kWh displayed value to 0 even during drive operation. For example, you can set Pr.05-26-Pr.05-30 to 0.
[al 6: Clear the internal PLC program (includes the related settings of PLC internal CANopen master).
7: Reset the related settings of CANopen slave.
(1) 9 or 10: Reset all parameters to defaults. If you have set a password (Pr.00-08), unlock the password (Pr.00-07) to clear the password you have set before you reset all parameters.
[1] For settings of 6, 7, 9 and 10, you must reboot the motor drive after you finish the setting.

00-03 Start-up Display

Default: 0
$\begin{aligned} \text { Settings } & \text { 0: } \mathrm{F} \text { (Frequency command) } \\ & \text { 1: } \mathrm{H} \text { (Output frequency) } \\ & \text { 2: } \mathrm{U} \text { (User defined, see Pr.00-04) } \\ & \text { 3: } \mathrm{A} \text { (Output current) }\end{aligned}$
Determines the start-up display page after power is applied to the drive. The user-defined contents display according to the Pr.00-04 setting.

00-04 Content of Multi-function Display (User-defined)

Default: 3

```
Settings 0: Display output current (A) (Unit: Amp)
1: Display counter value (c) (Unit: CNT)
2: Display the motor's actual output frequency (H) (Unit: Hz)
3: Display the drive's DC bus voltage (v) (Unit: V DC)
4: Display the drive's output voltage (E) (Unit: V (UC)
5: Display the drive's output power angle (n) (Unit: deg)
6: Display the drive's output power (P) (Unit: kW)
7: Display the motor speed rpm (Unit: rpm)
10: Display PID feedback (b) (Unit: %)
11: Display AVI1 analog input terminal signal (1.) (Unit: %)
12: Display ACI analog input terminal signal (2.) (Unit: %)
13: Display AVI2 analog input terminal signal (3.) (Unit: %)
14: Display the drive's IGBT temperature (i.) (Unit: }\mp@subsup{}{}{\circ}\textrm{C}
15: Display the drive's capacitance temperature (c.) (Unit: }\mp@subsup{}{}{\circ}\textrm{C}
16: The digital input status (ON/OFF) (i)
17: The digital output status (ON/OFF) (o)
18: Display multi-step speed (S)
19: The corresponding CPU digital input pin status (d)
20: The corresponding CPU digital output pin status (0.)
26: Ground fault GFF (G.) (Unit: %)
27: DC bus voltage ripple (r.) (Unit: VDC)
28: Display PLC register D1043 data (C)
30: Display the output of user-defined (U)
31: Display Pr.00-05 user gain (K)
34: Operation speed of fan (F.) (Unit: %)
36: Present operating carrier frequency of the drive (Hz) (J.)
38: Display the drive status (6.)
41: kWh display (J) (Unit: kWh)
42: PID target value (h) (Unit: %)
43: PID compensation (o.) (Unit: %)
44: PID output frequency (b.) (Unit: Hz)
45: Hardware ID
51: PMSVC torque offset
52: Al10%
53: Al11%
68: STO version (d)
69: STO checksum-high word (d)
70: STO checksum-low word (d)
```

Explanation 1
It can display negative values when setting analog input bias (Pr.03-03-03-10).
Example: Assume that AVI1 input voltage is 0 V, $\operatorname{Pr} .03-03$ is 10.0% and $\operatorname{Pr} .03-07$ is 4 (Bias serves as the center).
[al Explanation 2
Example: If REV, MI1 and MI6 are ON, the following table shows the status of the terminals.
Normally opened contact (N.O.), 0: OFF, 1: ON

Terminal	MI15	MI14	MI13	MI12	M111	MI10	MI8	M17	MI6	M15	MI4	MI3	MI2	MI1	REV	FWD
Status	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

NOTE: MI10-MI15 are terminals for extension cards (Pr.02-26-02-31).

- The value is 0000000010000110 in binary and 0086h in HEX. When Pr.00-04 is set to 16 or 19 , the u page on the keypad displays "0086h".
- The setting value 16 is ON / OFF status of digital input according to Pr.02-12 setting, and the setting value 19 is the corresponding CPU pin ON / OFF status of the digital input.
- You can set 16 to monitor the digital input ON / OFF status, and then set 19 to check if the circuit is normal.
[al Explanation 3
Assume that RY1: Pr.02-13 is set to 9 (Drive ready). After the drive powered on, if there is no other abnormal status, the contact is ON. The display status is shown as below.
Normally opened contact (N.O.):

Terminal	MO20	MO19	MO18	MO17	MO16	MO15	MO14	MO13	MO12	MO11	MO10	Reserved	Reserved	RY3	RY2	RY1
Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

- If Pr.00-04 is set to 17 or 20 , it displays the hexadecimal 0001h with LED u page is ON in the keypad.
- The setting value 17 is ON / OFF status of digital output according to Pr.02-18 setting, and the setting value 20 is the corresponding CPU pin ON / OFF status of the digital output.
- You can set 17 to monitor the digital output ON / OFF status, and then set 20 to check if the circuit is normal.
[a] Explanation 4
Setting value 25: when displayed value reaches 100.00%, the drive shows oL as an overload warning.
(1) Explanation 5

Setting value 38 :
bit 0 : The drive is running forward.
bit 1: The drive is running backward.
bit 2: The drive is ready.
bit 3: Errors occurred on the drive.
bit 4: The drive is running.
bit 5 : Warnings occurred on the drive.

00-05 Coefficient Gain in Actual Output Frequency

Default: 1.00
Settings $0.00-160.00$
Sets the user-defined unit coefficient gain. Set Pr.00-04 $=31$ to display the calculation result on the screen (calculation $=$ output frequency \times Pr.00-05).

00-06 Firmware Version

Default: Read only
Settings Read only

00-07 Parameter Protection Password Input

Default: 0
Settings 0-65535
Display 0-4 (the number of password attempts allowed)This parameter allows you to enter your password (which is set in Pr.00-08) to unlock the parameter protection and to make changes to the parameter.
To avoid problems in the future, be sure to write down the password after you set this parameter.Pr.00-07 and Pr.00-08 are used to prevent personnel from setting other parameters by accident. input 9999 again and press ENTER within 10 seconds. After decoding, all the settings return to default.When setting is under password protection, all the parameters read 0 , except Pr.00-08.

00-08 Parameter Protection Password Setting

Default: 0
Settings 0-65535
0: No password protection or password entered correctly (Pr.00-07)
1: Password has been set
[1 This parameter sets the password protection. Password can be set directly the first time. After you set the password, the value of Pr.00-08 is 1 , which means password protection is activated. At this time, if you want to change any of the parameter settings, you must enter the correct password in Pr.00-07 to deactivate the password temporarily, and this would make Pr.00-08 become 0 . After you finish setting the parameters, reboot the motor drive and the password is activated again.
Entering the correct password in Pr.00-07 only temporarily deactivates the password. To permanently deactivate password protection, set Pr.00-08 to 0 manually. Otherwise, password protection is always reactivated after you reboot the motor drive.
The keypad copy function works only when the password protection is deactivated (temporarily or permanently), and the password set in Pr.00-08 cannot be copied to the keypad. So when copying parameters from the keypad to the motor drive, set the password manually again in the motor drive to activate password protection.

Password Decode Flow Chart

00-11 Speed Control Mode

Default: 0

Settings	0: IMVF (IM V/F control)
	2: IM / PM SVC (IM / PM space vector control)
	6: PM Sensorless (PM field-oriented sensorless vector control)
	(applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)
	8: SynRM Sensorless Control (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

[1] Determines the control method of the AC motor drive:
0: IM V/F control: you can set the proportion of V/F as required and control multiple motors simultaneously.
2: IM / PM space vector control: gets the optimal control by auto-tuning the motor parameters.
6: PM sensorless: PM filed oriented sensorless vector control
8: SynRM sensorless: SynRM filed oriented sensorless vector control
1 When you set Pr.00-11 to 0 , the V/F control diagram is as follows:
When you set Pr.00-11 to 2, the space vector control diagram is as follows. Induction Motor Space Vector Control (IMSVC)

Permanent Magnetic Motor Space Vector Control (PMSVC)

When you set Pr.00-11 to 6, PM FOC Sensorless control diagram is as follows:

When you set Pr.00-11 to 8, SynRM Sensorless control diagram is as follows:

00-16 Load Selection

Default: 0

Settings 0: Light duty
 1: Normal duty

(1) Light duty: over-load ability is 120% rated output current in 60 seconds. Refer to Pr.00-17 for the setting of carrier frequency. Refer to Chapter 09 Specifications or Pr.00-01 for the rated current.
[1] Normal duty: over-load ability is 120% rated output current in 60 seconds (160% rated output current in 3 seconds). Refer to Pr.00-17 for the setting of carrier frequency. Refer to Chapter 09 Specifications or Pr.00-01 for the rated current.
10 Pr.00-01 varies with the setting value for Pr.00-16. The default value and maximum setting value for Pr.06-03 and Pr.06-04 also vary with the setting value for Pr.00-16.

00-17 Carrier Frequency

Default: Table below
Settings $\quad 2-15 \mathrm{kHz}$
1 This parameter determines the PWM carrier frequency for the AC motor drive.
10 When you set Pr.00-11 = 8 (SynRM Sensorless control), the maximum setting value of carrier frequency is 8 kHz .

- $230 \mathrm{~V} / 460 \mathrm{~V}$ models:

Control mode	VF, SVC		PMFOC		SRMFOC	
	Settings	Default	Settings	Default	Settings	Default
VFD007-110FP2EA VFD007-185FP4EA	$2-15 \mathrm{kHz}$	6 kHz	$4-10 \mathrm{kHz}$	6 kHz	$4-8 \mathrm{kHz}$	4 kHz
VFD150-300FP2EA VFD220-750FP4EA	$2-10 \mathrm{kHz}$	6 kHz	$4-10 \mathrm{kHz}$	6 kHz	$4-8 \mathrm{kHz}$	4 kHz
VFD370-450FP2EA VFD900FP4EA	$2-9 \mathrm{kHz}$	6 kHz	$4-9 \mathrm{kHz}$	6 kHz	$4-8 \mathrm{kHz}$	4 kHz

- 575 V models:

Model	VF, SVC	
	Settings	Default
VFD015-185FP5EA	$2-15 \mathrm{kHz}$	6 kHz
VFD220-550FP5EA	$2-10 \mathrm{kHz}$	6 kHz
VFD750-900FP5EA	$2-9 \mathrm{kHz}$	6 kHz

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
2 kHz				
8kHz				
15 kHz				

1 From the table, you see that the PWM carrier frequency has significant influences on the electromagnetic noise, the AC motor drive heat dissipation, and the motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency to reduce the temperature rise. Although the motor has quiet operation in the higher carrier frequency, consider the entire wiring and interference.
10 When the carrier frequency is higher than the default, decrease the carrier frequency to protect the drive. Refer to Pr.06-55 for the related setting and details.

00-19 PLC Command Mask

Default: Read only
Settings bit0: Control command is forced by PLC control bit1: Frequency command is forced by PLC control
Determines if the frequency command or control command is locked by PLC

00-20

Master Frequency Command (AUTO) Source / Source Selection of the PID Target

Default: 0
Settings 0: Digital keypad
1: RS-485 communication input
2: External analog input (Refer to Pr.03-00-Pr.03-02)
3: External UP / DOWN terminal (multi-function input terminals)
6: CANopen communication card
8: Communication card (does not include CANopen card)
Determines the master frequency source in AUTO mode. The default is AUTO mode.
[1] Pr.00-20 and Pr.00-21 set the frequency source and operation source in AUTO mode. Pr.00-30 and Pr.00-31 set the frequency source and operation source in HAND mode. You can switch the AUTO / HAND mode with the keypad KPC-CC01 or the multi-function input terminal (MI) to set the master frequency source.
It returns to AUTO mode whenever you cycle the power. If you use a multi-function input terminal to switch between AUTO (REMOTE) and HAND (LOCAL) mode, the highest priority is the multi-function input terminal. When the external terminal is OFF, the drive does not accept any operation signal and cannot execute JOG.

00-21 Operation Command Source (AUTO)

Default: 0

Settings	$0:$ Digital keypad
	1: External terminals
	2: RS-485 communication input
	3: CANopen communication card
	5: Communication card (does not include CANopen card)

110 Determines the operation frequency source in AUTO mode.When you control the operation command by the keypad KPC-CC01, keys RUN, STOP and JOG (F1) are valid.

00-22 Stop Method

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Ramp to stop } \\
& 1: \text { Coast to stop }
\end{array}
$$

Determines how the motor is stopped when the drive receives the STOP command.

Ramp to Stop and Coast to Stop

1. Ramp to stop: the AC motor drive decelerates to 0 or the minimum output frequency (Pr.01-07) according to the set deceleration time, and then to stop.
2. Coast to stop: the AC motor drive stops output immediately, and the motor coasts to stop according to the load inertia.

- Use "ramp to stop" for the safety of personnel, or to prevent material from being wasted in applications where the motor must stop immediately after the drive stops. You must set the deceleration time accordingly.
- If idling is allowed, or the load inertia is large, use "coast to stop". For example, blowers, punching machines and pumps.

00-23 Motor Direction Control

Default: 0

Settings 0: Enable forward / reverse
 1: Disable reverse
 2: Disable forward

1 Enables the AC motor drives to run in the forward and reverse direction. You can use it to prevent a motor from running in a direction that would cause injure or damage to the equipment, especially when only on running direction is allowed from the motor load.

00-24 Digital Operator (Keypad) Frequency Command Memory

Default: Read only
Settings Read onlyIf the keypad is the frequency command source, when Lv or Fault occurs, this parameter stores the current frequency command.

00-25 User-Defined Characteristics

Default: 0
Settings bit0-3: user-defined decimal place
0000b: no decimal place
0001b: one decimal place
0010b: two decimal place
0011b: three decimal place
bit4-15: user-defined unit
000xh: Hz
001xh: rpm
002xh: \%
003xh: kg
004xh: m/s
005xh: kW
006xh: HP
007xh: ppm
008xh: 1/m
009xh: kg/s
00Axh: kg/m
00Bxh: kg/h
00Cxh: lb/s
00Dxh: lb/m
00Exh: lb/h
00Fxh: ft/s
010xh: ft/m
011xh: m
012xh: ft
013xh: degC
014xh: degF
015xh: mbar
016xh: bar
017xh: Pa
018xh: kPa
019xh: mWG
01Axh: inWG
01Bxh: ftWG

01Cxh: psi
01Dxh: atm
01Exh: L/s
01Fxh: L/m
020xh: L/h
021xh: m3/s
022xh: m3/h
023xh: GPM
024xh: CFM
xxxxh: Hz
$10]$ bit0-3: the displayed units for the control frequency F page and user-defined (Pr.00-04 = d10, PID feedback) and the displayed number of decimal places for Pr.00-26 (supports up to three decimal places).
[10) bit4-15: the displayed units for the control frequency F page, user-defined (Pr.00-04 = d10, PID feedback) and Pr.00-26.

[10] You must convert the setting value to decimal when using the keypad to set parameters.
Example:
Assume that the user-defined unit is inWG and user-defined decimal place is the third decimal point. According to the information above, the corresponding unit to inWG is 01 Axh (x is the set decimal point), and the corresponding unit to the third decimal place is 0003h, then inWG and the third decimal point displayed in hexadecimal is 01A3h, that is 419 in decimal value. Thus, set Pr.00-25 = 419 to complete the setting.

00-26 Maximum User-Defined Value

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0 \text { : Disable } \\
& 0-65535 \text { (when Pr.00-25 is set to no decimal place) } \\
& 0.0-6553.5 \text { (when Pr.00-25 is set to one decimal place) } \\
& 0.00-655.35 \text { (when Pr. } 00-25 \text { is set to two decimal places) } \\
& 0.000-65.535 \text { (when Pr.00-25 is set to three decimal places) }
\end{array}
$$

When Pr.00-26 is NOT set to 0 , the user-defined value is enabled. After selecting the displayed unit and number of decimal places with Pr.00-25, the setting value of Pr.00-26 corresponds to Pr.01-00 (drive's maximum operating frequency).

Example: When the frequency set in $\operatorname{Pr} .01-00=60.00 \mathrm{~Hz}$, the maximum user-defined value for Pr.00-26 is 100.0\%. This also means that Pr.00-25 is set as 0021 h .
\llbracket NOTE: Set Pr.00-25 before using Pr.00-26. After you finish setting, when Pr.00-26 is not 0 , the displayed unit on the keypad shows correctly according to Pr.00-25 settings.

00-27 User-Defined Value

Default: Read only
Settings Read only
Pr.00-27 displays the user-defined value when Pr.00-26 is not set to 0 .
[ad The user-defined value is valid only when Pr.00-20 (frequency source) is set to the digital keypad or to RS-485 communication.

00-28 Switching from AUTO mode to HAND mode

Default: 0
Settings bit0: Sleep function control bit
0 : Cancel sleep function
1: Sleep function and AUTO mode are the same bit1: Control bit unit

0: Displaying unit in Hz
1: Same unit as the AUTO mode
bit2: PID control bit
0: Cancel PID control
1: PID control and AUTO mode are the same.
bit3: Frequency source control bit
0 : Frequency source set up by parameter, if the multi-step speed is activated, then multi-step speed has the priority.
1: Frequency command set up by Pr.00-30, regardless of whether the multi-step speed is activated.

00-29 LOCAL / REMOTE Selection

Default: 0
Settings 0: Standard HOA function
1: When switching between local and remote, the drive stops
2: When switching between local and remote, the drive runs with REMOTE settings for frequency and operation status
3: When switching between local and remote, the drive runs with LOCAL settings for frequency and operation status
4: When switching between local and remote, the drive runs with LOCAL settings when switched to Local and runs with REMOTE settings when switch to Remote for frequency and operation status.
10. The default for Pr.00-29 is 0 , that is, the standard HOA (Hand-Off-Auto) function. Set the AUTO and HAND frequency and operation source with Pr.00-20, Pr.00-21 and Pr.00-30, Pr.00-31. Use digital keypad (KPC-CC01) or multi-function input terminal to set MIx $=41$ and 42 (AUTO / HAND mode).
[1] When you set the external terminal (MI) to 41 and 42 (AUTO / HAND mode), Pr.00-29 = 1, 2, 3, 4 are disabled. The external terminal has the highest command priority, and Pr.00-29 functions in standard HOA mode.

If If Pr.00-29 is not set to 0 , the Local / Remote function is enabled, and the top right corner of digital keypad (firmware version 1.021 and above) displays LOC or REM. Set the REMOTE frequency and operation source with Pr.00-20 and Pr.00-21. Set the LOCAL frequency and operation source with Pr.00-30 and Pr.00-31. Select or switch Local / Remote mode with the digital keypad or set the multi-function input terminal MIx $=56$. The AUTO key of the digital keypad is for the REMOTE function, and HAND key is for the LOCAL function.
1 When you set the external terminal (MI) to 56 for LOC / REM mode selection, if you set Pr.00-29 to 0 , then the external terminal function is disabled.
[a] When you set the external terminal (MI) to 56 for LOC / REM mode selection, if Pr.00-29 is not set to 0 , then AUTO / HAND key is disabled, and the external terminal has the highest command priority.
1 The comparison between the setting of each mode and the PLC address:

PLC address / Mode	HOA mode		LOC / REM mode		HOA mode
	HAND-ON	AUTO-ON	LOC-ON	REM-ON	OFF
M1091 $=$	1	0	0	0	1
M1092 $=$	0	0	0	0	0
M1100 $=$	0	1	0	0	0
M1101 $=$	0	0	1	0	0

00-30 Master Frequency Command Source (HAND)

Default: 0

Settings 0: Digital keypad
 1: RS-485 communication input
 2: External analog input (Refer to Pr.03-00-Pr.03-02)
 3: External UP / DOWN terminal
 6: CANopen communication card
 8: Communication card (does not include CANopen card)

凹 Determines the master frequency source in HAND mode.

00-31 Operation Command Source (HAND)

Default: 0

Settings 0: Digital keypad
 1: External terminals
 2: RS-485 communication input
 3: CANopen communication card
 5: Communication card (does not include CANopen card)

1 Sets the operation frequency source in HAND mode.
[1] Use Pr.00-20 and Pr.00-21 to set the frequency source and the operation source in AUTO mode, and use Pr.00-30 and Pr.00-31 to set the frequency source and operation source in HAND mode.

Select or switch AUTO / HAND mode by using the digital keypad KPC-CC01 or setting the multi-function input terminal (MI).
The default for the frequency source or operation source is AUTO mode. It returns to AUTO mode whenever you cycle the power. If you use a multi-function input terminal to switch AUTO / HAND mode, the multi-function input terminal has the highest priority. When the external terminal is OFF, the drive does not accept any operation signal and cannot execute JOG.

00-32 Digital Keypad STOP Function

Default: 0

Settings 0: STOP key disabled

1: STOP key enabled
[ald Valid when the operation command source is not the digital keypad (Pr.00-21 $=0$). When Pr.00-21 = 0, the STOP key on the digital keypad is not affected by this parameter.

00-37 Over-modulation Gain

Default: 100
Settings 80-120
1 When the motor operates in the flux-weakening region or voltage saturation region it can be that a higher voltage output is required. Increase Pr.00-37 to increase the output RMS voltage. Increasing the over-modulation gain reduces the output current and enhances the motor efficiency. However, note that low-frequency harmonics created by the six-step square-wave modulation may occur if the gain is too large.
How to use Pr.00-37:
Gradually increase Pr.00-37 setting value to check if the output current reduces and the operation performance improves for an optimal over-modulation gain value.

00-48 Display Filter Time (Current)

Default: 0.100
Settings: $0.001-65.535 \mathrm{sec}$.
Minimizes the current fluctuation displayed by the digital keypad.

00-49 Display Filter Time (Keypad)

Default: 0.100
Settings: $0.001-65.535 \mathrm{sec}$.
Minimizes the value fluctuation displayed by digital keypad.

00-50 Software Version (Date)

Default: Read only
Settings: Read only
(1) Displays the current drive software version by date.

01 Basic Parameters

You can set this parameter during operation.

01-00 Maximum Operation Frequency of Motor 1

Default: 60.00 / 50.00

> | Settings | $50.00-599.00 \mathrm{~Hz}$ |
| :--- | :--- |
| | Setting range for $45 \mathrm{~kW}(60 \mathrm{HP}): 0.00-400.00 \mathrm{~Hz}$ |

[a] Determines the AC motor drive's maximum operation frequency range. All the AC motor drive frequency command sources ($0-+10 \mathrm{~V}, 4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}, \pm 10 \mathrm{~V}$) are scaled to correspond to the output frequency range.

Minimum Carrier Wave Requirement	Maximum Operation Frequency (IM VF/ IM SVC)
$2 k$	200 Hz
$3 k$	300 Hz
$4 k$	400 Hz
$5 k$	500 Hz
$6 k$	599 Hz

230 V models 55 kW and above: the maximum operation frequency is 400 Hz (the carrier frequency should be set at least 4k)
460 V models 90 kW and above: the maximum operation frequency is 400 Hz (the carrier frequency should be set at least 4k)

01-01 Rated / Base Frequency of Motor 1
 01-35 Rated / Base Frequency of Motor 2

Default: 60.00 / 50.00

Settings $\quad 0.00-599.00 \mathrm{~Hz}$

1 Set this parameter according to the motor's rated frequency on the motor's nameplate. If the motor's rated frequency is 60 Hz , set this parameter to 60 . If the motor's rated frequency is 50 Hz , set this parameter to 50 .

01-02 Rated / Base Voltage of Motor 1
 01-36 Rated / Base Voltage of Motor 2

Default:

Settings	230 V models: $0.0-255.0 \mathrm{~V}$	200.0
	460 V models: $0.0-510.0 \mathrm{~V}$	400.0
	575 V models: $0.0-637.0 \mathrm{~V}$	575.0

1 Set this parameter according to the motor's rated voltage on the motor's nameplate. If the motor's rated voltage is 220 V , set this parameter to 220.0 . If the motor's rated voltage is 200 V , set this parameter to 200.0.
[a] There are many motor types in the market and the power system for each country is also different. The economical and convenient solution is to install an AC motor drive. Then there is no problem using the motor with different voltage and frequency inputs, and the motor drive can improve the original motor characteristics and useful life.
01-03 Mid-point Frequency 1 of Motor 1
Default:
Settings 230 V models: $0.00-599.00 \mathrm{~Hz} \quad 3.00$
460 V models: $0.00-599.00 \mathrm{~Hz}$ 3.00
575 V models: $0.00-599.00 \mathrm{~Hz}$ 0.00
01-04 Mid-point Voltage 1 of Motor 1Default:
Settings 230 V models: $0.0-240.0 \mathrm{~V}$ 11.0
460 V models: $0.0-480.0 \mathrm{~V}$ 22.0
575 V models: $0.0-637.0 \mathrm{~V}$ 0.0
01-37 Mid-point Frequency 1 of Motor 2Default: 3.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
01-38 Mid-point Voltage 1 of Motor 2
Default:
Settings 230 V models: $0.0-240.0 \mathrm{~V}$ 11.0
460 V models: $0.0-480.0 \mathrm{~V}$ 22.0
575 V models: $0.0-637.0 \mathrm{~V}$ 0.0
01-05 Mid-point Frequency 2 of Motor 1
Default: 1.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
01-06 Mid-point Voltage 2 of Motor 1
Default:
Settings 230 V models: $0.0-240.0 \mathrm{~V}$ 5.0
460 V models: $0.0-480.0 \mathrm{~V}$ 10.0
575 V models: $0.0-637.0 \mathrm{~V}$ 0.0
01-39 Mid-point Frequency 2 of Motor 2
Default: 1.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
01-40 Mid-point Voltage 2 of Motor 2
Default:
Settings 230 V models: $0.0-240.0 \mathrm{~V}$ 5.0
460 V models: $0.0-480.0 \mathrm{~V}$ 10.0
575 V models: $0.0-637.0 \mathrm{~V}$ 0.0
01-07 Minimum Output Frequency of Motor 1
Default: 0.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

01-08 Minimum Output Voltage of Motor 1

Default:
Settings 230 V models: $0.0-240.0 \mathrm{~V} \quad 1.0$
460 V models: $0.0-480.0 \mathrm{~V} 2.0$
575 V models: $0.0-637.0 \mathrm{~V} 0.0$

01-41 Minimum Output Frequency of Motor 2

Default: 0.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

01-42 Minimum Output Voltage of Motor 2

Default:

Settings	230 V models: $0.0-240.0 \mathrm{~V}$	1.0
	460 V models: $0.0-480.0 \mathrm{~V}$	2.0
	575 V models: $0.0-637.0 \mathrm{~V}$	0.0

12] You usually set the V/F curve according to the motor's allowable loading characteristics. Pay special attention to the motor's heat dissipation, dynamic balance, and bearing lubrication when the loading characteristics exceed the loading limit of the motor.
[1] There is no limit for the voltage setting, but a high voltage at a low frequency may cause motor damage, overheating, and trigger the stall prevention or the over-current protection; therefore, use low voltage at low frequency to prevent motor damage or drive error.
\square Pr.01-35 to Pr.01-42 is the V/F curve for motor 2. When setting the multi-function input terminals [Pr.02-01-02-08 and Pr.02-26-Pr.02-31 (extension card)] to 14, the AC motor drive acts with the second V/F curve.The diagram below shows the V/F curve for motor 1. You can use the same V/F curve for motor 2.

V/F Curve and The Related Parameters

Common settings of the V/F curve:
(1) General purpose

Motor spec. 50 Hz		
V 4		
220	Pr.	Setting
	01-00	50.0
	01-01	50.0
	01-02	220.0
	$\begin{aligned} & \hline 01-03 \\ & 01-05 \end{aligned}$	1.30
	$\begin{aligned} & 01-04 \\ & 01-06 \end{aligned}$	10.0
1.3 50.0 ${ }^{\text {F }}$	01-07	1.30
	01-08	10.0

(2) For fan and hydraulic machinery

Motor spec. 60 Hz		
$\begin{gathered} V A \\ 220 \end{gathered}$	Pr.	Setting
	01-00	60.0
	01-01	60.0
	01-02	220.0
	$\begin{aligned} & 01-03 \\ & 01-05 \end{aligned}$	30.0
50	$\begin{aligned} & 01-04 \\ & 01-06 \end{aligned}$	50.0
$1.5 \quad 30 \quad 60.0{ }^{\text {F }}$	01-07	1.50
	01-08	10.0

Motor spec. $\mathbf{5 0 H z}$

Pr.	Setting
$01-00$	50.0
$01-01$	50.0
$01-02$	220.0
$01-03$	25.0
$01-05$	
$01-04$	50.0
$01-06$	
$01-07$	1.30
$01-08$	10.0

(3) High starting torque

VA	Pr.	Setting
220 -	01-00	60.0
	01-01	60.0
	01-02	220.0
	$\begin{aligned} & 01-03 \\ & 01-05 \end{aligned}$	3.00
	$\begin{aligned} & 01-04 \\ & 01-06 \end{aligned}$	23.0
$18 \xrightarrow{\square} \mathrm{~F}$	01-07	1.50
1.5360 .0	01-08	18.0

01-09 Start-Up Frequency

Default: 0.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
1 When the starting frequency is larger than the Minimum Output Frequency, the drives' frequency output starts when the starting frequency reaches the F command. Refer to the following diagram for details.

Fcmd: frequency command
Fstart: start-up frequency (Pr.01-09)
fstart: actual start-up frequency of drive
Fmin: fourth output frequency setting (Pr.01-07 / Pr.01-41)
Flow: output frequency lower limit (Pr.01-11)

[1]
When Fcmd > Fmin and Fcmd < Fstart:
If Flow < Fcmd, drive runs directly by Fcmd.
If Flow \geq Fcmd, drive runs by Fcmd, and then rises to Flow according to acceleration time.The output frequency goes directly to 0 when decelerating to Fmin.

01-10 Output Frequency Upper Limit

Default: 599.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

01-11 Output Frequency Lower Limit

Default: 0.00

Settings $\quad 0.00-599.00 \mathrm{~Hz}$

凹I If the output frequency setting is higher than the upper limit (Pr.01-10), the drive runs with the upper limit frequency. If the output frequency setting is lower than the lower limit (Pr.01-11) but higher than the minimum output frequency (Pr.01-07), the drive runs with the lower limit frequency. Set the upper limit frequency $>$ the lower limit frequency (Pr.01-10 setting value must be > Pr.01-11 setting value).
II If the slip compensation function (Pr.07-27) is enabled for the drive, the drive's output frequency may exceed the Frequency command.

When the drive starts, it operates according to the V/F curve and accelerates from the minimum output frequency (Pr.01-07). It is not limited by the lower output frequency settings.Use the frequency upper and lower limit settings to prevent operator misuse, overheating caused by the motor's operating at a too low frequency, or mechanical wear due to a too high operation frequency.If the frequency upper limit setting is 50 Hz and the frequency setting is 60 Hz , the maximum output frequency is 50 Hz .If the frequency lower limit setting is 10 Hz and the minimum operation frequency setting (Pr.01-07) is 1.5 Hz , then the drive operates at 10 Hz when the Frequency command is higher than Pr.01-07 and lower than 10 Hz . If the Frequency command is lower than Pr.01-07, the drive is in ready status with no output.

N	01-12	Acceleration Time 1
N	01-13	Deceleration Time 1
N	01-14	Acceleration Time 2
N	01-15	Deceleration Time 2
N	01-16	Acceleration Time 3
N	01-17	Deceleration Time 3
N	01-18	Acceleration Time 4
N	01-19	Deceleration Time 4
N	01-20	JOG Acceleration Time
N	01-21	JOG Deceleration Time

Default: 10.00
Default: 60.00 / 60.0 (22 kW and above models)
Settings Pr.01-45 $=0: 0.00-600.00$ seconds Pr.01-45 = 1: 0.0-6000.0 seconds
[1] The acceleration time determines the time required for the AC motor drive to ramp from 0.00 Hz to the maximum operation frequency (Pr.01-00). The deceleration time determines the time required for the AC motor drive to decelerate from the maximum operation frequency (Pr.01-00) down to 0.00 Hz .
[a] The acceleration and deceleration time are invalid when using Pr.01-44 Auto-acceleration and Auto-deceleration Setting
1 Select the Acceleration / Deceleration time 1, 2, 3, 4 with the multi-function input terminals settings. The defaults are Acceleration Time 1 and Deceleration Time 1.

1 With the enabled torque limits and stall prevention functions, the actual acceleration and deceleration time are longer than the above action time.
1 Note that setting the acceleration and deceleration time too short may trigger the drive's protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention), and the actual acceleration and deceleration time are longer than this setting.
1 Note that setting the deceleration time too short may cause motor damage or trigger drive protection due to over-current during the drive's deceleration or over-voltage.

1 Use suitable brake resistor (refer to Chapter 07 Optional Accessories) to decelerate in a short time and prevent over-voltage.
When you enable Pr.01-24-Pr.01-27 (S-curve acceleration and deceleration begin and arrival time), the actual acceleration and deceleration time are longer than the setting.

Acceleration / Deceleration Time

01-22 JOG Frequency

Default: 6.00

Settings $\quad 0.00-599.00 \mathrm{~Hz}$

Mou can use both the external terminal JOG and F1 key on the optional keypad KPC-CC01 to set the JOG function. When the JOG command is ON, the AC motor drive accelerates from 0 Hz to the JOG frequency (Pr.01-22). When the JOG command is OFF, the AC motor drive decelerates from the JOG Frequency to stop. The JOG acceleration and deceleration time (Pr.01-20, Pr.01-21) are the time to accelerate from 0.0 Hz to JOG frequency (Pr.01-22). You cannot execute the JOG command when the AC motor drive is running. When the JOG command is executing, other operation commands are invalid.

01-23 Switch Frequency between First and Fourth Acceleration / Deceleration

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
\square This function does not require the external terminal switching function; it switches the acceleration and deceleration time automatically according to the Pr.01-23 setting. If you set the external terminal, the external terminal has priority over Pr.01-23.Use this parameter to set the switch frequency between acceleration and deceleration slope. The First / Fourth Accel. / Decel. slope is calculated by the Max. Operation Frequency (Pr.01-00) / acceleration / deceleration time.
Example: when the Max. Operation Frequency (Pr.01-00) $=80 \mathrm{~Hz}$, and Switch Frequency between First and Fourth Accel./ Decel. (Pr.01-23) $=40 \mathrm{~Hz}$:
a. If Acceleration Time 1 (Pr.01-02) $=10 \mathrm{sec}$., Acceleration Time $4(\operatorname{Pr} .01-18)=6 \mathrm{sec}$., then the acceleration time is 3 sec . for $0-40 \mathrm{~Hz}$ and 5 sec . for $40-80 \mathrm{~Hz}$.
b. If Deceleration Time 1 (Pr.01-13) $=8 \mathrm{sec}$., Deceleration Time 4 (Pr.01-19) $=2 \mathrm{sec}$., then the deceleration time is 4 sec . for $80-40 \mathrm{~Hz}$ and 1 sec . for $40-0 \mathrm{~Hz}$.

01-24 S-curve for Acceleration Begin Time 1
 01-25 S-curve for Acceleration Arrival Time 2
 01-26 S-curve for Deceleration Begin Time 1
 01-27 S-curve for Deceleration Arrival Time 2

Default: 0.20

$$
\begin{array}{ll}
\text { Settings } & \text { Pr. } 01-45=0: 0.00-25.00 \text { seconds } \\
& \text { Pr. } 01-45=1: 0.0-250.0 \text { seconds }
\end{array}
$$Using an S-curve gives the smoothest transition between speed changes. The acceleration and deceleration curve adjusts the acceleration and deceleration S-curve. When enabled, the drive produces a different acceleration and deceleration curve according to the acceleration and deceleration time.The S-curve function is invalid when you set the acceleration and deceleration time to 0 .When Pr.01-12, Pr.01-14, Pr.01-16, Pr.01-18 \geq Pr.01-24 and Pr.01-25, the actual acceleration time $=\operatorname{Pr} .01-12, \operatorname{Pr} .01-14, \operatorname{Pr} .01-16, \operatorname{Pr} .01-18+(\operatorname{Pr} .01-24+\operatorname{Pr} .01-25) \div 2$When Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 \geq Pr.01-26 and Pr.01-27, the actual deceleration time $=$ Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 + (Pr.01-26 + Pr.01-27) $\div 2$

> | 01-28 | Skip Frequency 1 (upper limit) |
| :---: | :---: |
| 01-29 | Skip Frequency 1 (lower limit) |
| 01-30 | Skip Frequency 2 (upper limit) |
| 01-31 | Skip Frequency 2 (lower limit) |
| 01-32 | Skip Frequency 3 (upper limit) |
| 01-33 | Skip Frequency 3 (lower limit) |

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$Sets the AC motor drive's skip frequency. The drive's frequency setting skips these frequency ranges. However, the frequency output is continuous. There are no limits for these six parameters and you can combine them. Pr.01-28 does not need to be greater than Pr.01-29; Pr.01-30 does not need to be greater than Pr.01-31; Pr.01-32 does not need to be greater than Pr.01-33. You can set Pr.01-28-01-33 as you required. There is no size distinction among these six parameters.
[1] These parameters set the skip frequency ranges for the AC motor drive. You can use this function to avoid frequencies that cause mechanical resonance. The skip frequencies are useful when a motor has resonance vibration at a specific frequency bandwidth. Skipping this frequency avoids the vibration. There are three frequency skip zones available.You can set the frequency command (F) within the range of skip frequencies. Then the output frequency (H) is limited to the lower limit of skip frequency ranges.During accelerating and decelerating, the output frequency still passes through the skip frequency ranges.

01-34 Zero-speed Mode

Default: 0
Settings 0: Output waiting
1: Zero-speed operation
2: Minimum frequency (Refer to Pr.01-07 and Pr.01-41)
1 When the drive's Frequency command is lower than Fmin (Pr.01-07 or Pr.01-41), the drive operates according to this parameter.0 : the AC motor drive is in waiting mode without voltage output from terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.1: the drive executes the DC brake by Vmin (Pr.01-08 and Pr.01-42) in V/F and SVC modes.
1 2: the AC motor drive runs using Fmin (Pr.01-07, Pr.01-41) and Vmin (Pr.01-08, Pr.01-42) in V/F and SVC modes.
\square In V/F and SVC modes

01-43 V/F Curve Selection

Default: 0
Settings 0: V/F curve determined by Pr.01-00-01-08
1: V/F curve to the power of 1.5
2: V/F curve to the power of 2
3: 60 Hz , voltage saturation in 50 Hz
4: 72 Hz , voltage saturation in 60 Hz
5: 50 Hz , decrease gradually with cube
6: 50 Hz , decrease gradually with square
7: 60 Hz , decrease gradually with cube
8: 60 Hz , decrease gradually with square
9: 60 Hz , medium starting torque
$10: 60 \mathrm{~Hz}$, high starting torque
11: 60 Hz , medium starting torque
12: 60 Hz , high starting torque
13: 90 Hz , voltage saturation in 60 Hz
14: 120 Hz , voltage saturation in 60 Hz
15: 180 Hz , voltage saturation in 60 Hz
[0] When setting to 0 , refer to Pr.01-01-01-08 for the motor $1 \mathrm{~V} / \mathrm{F}$ curve. For motor 2, refer to Pr.01-35-01-42.
1 When setting to 1 or 2 , the second and third voltage frequency setting are invalid.If the load on the motor is a variable torque load (torque is in direct proportion to rotating speed, such as the load of fan or pump), the load torque is low at low rotating speed. You can decrease
the input voltage appropriately to make the magnetic field of the input current smaller and reduce flux loss and iron loss for the motor to increase efficiency.
(1)]

When you set the V/F curve to high power, it has lower torque at low frequency, and the drive is not suitable for rapid acceleration and deceleration. Do NOT use this parameter for rapid acceleration and deceleration.

01-44 Auto-acceleration and Auto-deceleration Setting

Default: 0
Settings 0: Linear acceleration and deceleration
1: Auto-acceleration and linear deceleration
2: Linear acceleration and auto-deceleration
3: Auto-acceleration and auto-deceleration
4: Stall prevention by auto-acceleration and auto-deceleration (limited by Pr.01-12 to Pr.01-21)
0 (linear acceleration and linear deceleration): the drive accelerates and decelerates according to the setting for Pr.01-12-01-19.1 or 2 (auto / linear acceleration and auto / linear deceleration): the drive auto-tunes the acceleration and deceleration to effectively reduce the mechanical vibration during the load start-up and stop and make the auto-tuning process more easily. It does not stall during acceleration and does no need a brake resistor during deceleration to stop. It can also improve operation efficiency and save energy.
1 (auto-acceleration and auto-deceleration-decelerate by the actual load): the drive auto-detects the load torque and automatically accelerates from the fastest acceleration time and smoothest start-up current to the setting frequency. During deceleration, the drive automatically determines the loaded regenerative energy to steadily and smoothly stop the motor in the fastest deceleration time.4 (stall prevention by auto-acceleration and deceleration-reference to the acceleration and deceleration time settings): if the acceleration and deceleration are within a reasonable range, the actual accelerates and decelerates time refer to Pr.01-12-01-19 settings. If the acceleration and deceleration time are too short, the actual acceleration and deceleration time are greater than the acceleration and deceleration time settings.

(1) Optimize the acceleration / deceleration time when Pr.01-44 is set to 0 .
(2) Optimize the acceleration / deceleration time which load needs actually when Pr.01-44 is set to 3 .

01-45 Time Unit for Acceleration / Deceleration and S Curve

Default: 0
Settings 0 : Unit 0.01 sec .
1: Unit 0.1 sec .

01-46 CANopen Quick Stop Time

Default: 1.00
Settings Pr. 01-45 $=0: 0.00-600.00 \mathrm{sec}$.
Pr. $01-45=1: 0.0-6000.0 \mathrm{sec}$.
Sets the time to decelerate from the maximum operation frequency (Pr.01-00) to 0.00 Hz through the CANopen control.

01-49 Deceleration Method Selection

Default: 0
Settings 0: Normal deceleration
1: Over-voltage energy restriction
2: Traction energy control (TEC)
3: Electromagnetic energy traction control
\square Different control modes for Pr.01-49:

Setting / Control mode	Induction Motor (IM)			Permanent Magnet Synchronous Motor (PM)		
	VF	SVC	PMSVC	PMFOC	Synchronous Reluctance Motor (SynRM)	
	HFI	FOC				
: Normal deceleration	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1: Over-voltage energy restriction	\checkmark					
2: Traction energy control (TEC)	\checkmark					
3: Electromagnetic energy traction control	\checkmark					

[1] 0: The drive decelerates or stops based on the original deceleration time settings. Use this setting when brake resistors are used.
$[1$ 1: During deceleration, the drive controls the motor according to Pr.06-01 (Over-voltage Stall Prevention) setting and the regenerative DC bus voltage. When the regenerative DC bus voltage reaches 95% of Pr.06-01, the controller is enabled. If Pr.06-01 $=0$, the drive controls on the basis of the working voltage and regenerative DC bus voltage instead. When using this method, the drive decelerates according to the deceleration time setting. However, the actual deceleration time is equal to or larger than the deceleration setting time.
@1 2: During deceleration, the drive controls the motor according Pr.06-01 (Over-voltage Stall Prevention) setting and the regenerative DC bus voltage. When the regenerative DC bus voltage reaches 95% of Pr.06-01, the drive dynamically adjusts the output frequency and output voltage to consume the regenerative energy. Use this method when the deceleration time that is set to fulfill the system requirement for application triggers over-voltage.
\llbracket 3: During operation (acceleration / steady speed / deceleration), the drive adjusts the output voltage according to the amount of regenerative energy and consumes the regenerative energy timely to reduce the risk of over-voltage. Moreover, you can also use Pr.01-50 (Electromagnetic Traction Energy Consumption Coefficient) to adjust the drive's output voltage strength.
[1] If you use the electromagnetic energy traction control (Pr.01-49 = 3) during linear deceleration (no triggering of over-voltage stall prevention), you can enhance the output current by increasing the output voltage ($\mathrm{V}_{\text {out }}$) to further suppress the regenerative DC bus voltage that is prompt to rise. Using this function with Pr.06-02 = 1 (Smart Over-voltage Stall Prevention) can achieve a smoother and faster deceleration.

Ele Electromagnetic energy traction control activates in the following three conditions:

1. Activates when DC bus is larger than the over-voltage stall prevention level (Pr.06-01) during acceleration and deactivates once Pr.06-01 is disabled.
2. Activates when DC bus is larger than the over-voltage stall prevention level (Pr.06-01) during steady operation and deactivates once Pr.06-01 is disabled.
3. Activates during deceleration (including stop) and deactivates once acceleration occurs or deceleration is stopped.When Pr.01-49 = 3, Pr.06-02 = 1 (Smart Over-voltage Stall Prevention) is automatically set to increase the stability during deceleration.

01-50 Electromagnetic Traction Energy Consumption Coefficient

Default: 0.50

Settings $\quad 0.00-5.00 \mathrm{~Hz}$

During acceleration / steady speed / deceleration, the drive will dynamically adjust the output voltage based on the DC bus voltage level in order to prevent the drive from tripping on over-voltage. The output voltage is adjusted based on this parameter setting.[1] The drive's output current and the efficiency of regenerative energy consumption increase when Pr.01-50 is increased. When Pr.01-50 is decreased, also the drive's output current and the efficiency of regenerative energy consumption will decrease.
[a] When setting Pr.01-50, pay attention to the drive's output current. The drive's output current must be lower than 80% of the motor's rated current to prevent the motor from overheating.

01-51 Flux-weakening Overload Stall Prevention Time (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 1.00
Settings $0.00-600.00 \mathrm{sec}$.
\square This parameter is only valid when Pr.00-11 = 8 (SynRM Sensorless Control Mode).
1 When the drive operates in flux-weakening zone, and the motor decelerates due to its sudden loading increment, adjust the setting for this parameter.

02 Digital Input / Output Parameter

\wedge You can set this parameter during operation.

02-00 Two-wire / Three-wire Operation Control

Default: 0
Settings 0: Two-wire mode 1, power on for operation control
1: Two-wire mode 2, power on for operation control
2: Three-wire, power on for operation control
11 This parameter sets the configuration of the terminals (Pr.00-21 = 1 or Pr.00-31 = 1) which control the operation. There are three different control modes listed in the following table.

Pr.02-00	Control Circuits of the External Terminal	
Settings: 0 Two-wire mode 1 FWD / STOP REV / STOP	FWD/STOP \qquad REV/STOP $\overline{00}$	```FWD ("OPEN": STOP) ("CLOSE":FWD) REV ("OPEN":STOP) ("CLOSE":REV)```
Settings: 1 Two-wire mode 2 RUN / STOP REV / FWD	$\begin{aligned} & \text { RUN/STOP } \quad \overline{\mathrm{O}}- \\ & \text { FWD/REV } \end{aligned} \overline{\mathrm{OO}-}$	
Settings: 2 Three-wire operation control		FWD ("CLOSE": RUN) MI1 ("OPEN": STOP) REV/FWD ("OPEN": FWD) DCM ("CLOSE": REV) DCM CFP2000

02-01 Multi-function Input Command 1 (MI1)

Default: 1

02-02 Multi-function Input Command 2 (MI2)

Default: 2

02-03 Multi-function Input Command 3 (MI3)

Default: 3

02-04 Multi-function Input Command 4 (MI4)

Default: 4
02-05 Multi-function Input Command 5 (MI5)
02-06 Multi-function Input Command 6 (MI6)
02-07 Multi-function Input Command 7 (MI7)
02-08 Multi-function Input Command 8 (MI8)
02-26 Input terminal of I/O extension card (MI10)
02-27 Input terminal of I/O extension card (MI11)

02-28 Input terminal of I/O extension card (MI12)
02-29 Input terminal of I/O extension card (MI13)
02-30 Input terminal of I/O extension card (MI14)
02-31 Input terminal of I/O extension card (MI15)
Default: 0
Settings
0 : No function
1: Multi-step speed command 1
2: Multi-step speed command 2
3: Multi-step speed command 3
4: Multi-step speed command 4
5: Reset
6: JOG command (by external control or KPC-CC01)
7: Acceleration / deceleration speed inhibit
8: $1^{\text {st }}$ and $2^{\text {nd }}$ acceleration / deceleration time selection
9: $3^{\text {rd }}$ and $4^{\text {th }}$ acceleration / deceleration time selection
10: External Fault (EF) input (Pr.07-20)
11: Base Block (B.B.) input from external
12: Output voltage stops
13: Cancel the setting of auto-acceleration / auto-deceleration time
14: Switch between motor 1 and motor 2
15: Rotating speed command from AVI1
16: Rotating speed command from ACI
17: Rotating speed command from AVI2
18: Forced to stop (Pr.07-20)
19: Frequency up command
20: Frequency down command
21: PID function disabled
22: Clear the counter
23: Input the counter value (MI6)
24: FWD JOG command
25: REV JOG command
28: Emergency stop (EF1)
29: Signal confirmation for Y-connection
30: Signal confirmation for Δ-connection
38: Disable write EEPROM function
40: Force coasting to stop
41: HAND switch
42: AUTO switch
49: Enable drive
50: Slave dEb action to execute

51: Selection for PLC mode bit0
52: Selection for PLC mode bit1
53: Trigger CANopen quick stop
54: UVW output electromagnetic valve switch
55: Brake release
56: Local / Remote selection
58: Enable fire mode (with RUN command)
59: Enable fire mode (without RUN command)
60: Disable all the motors
61: Disable Motor 1
62: Disable Motor 2
63: Disable Motor 3
64: Disable Motor 4
65: Disable Motor 5
66: Disable Motor 6
67: Disable Motor 7
68: Disable Motor 8
69: Preheating command
1 This parameter selects the functions for each multi-function terminal.
\square Pr.02-26-Pr.02-31 are entity input terminals only when the extension cards are installed, otherwise, these are virtual terminals. For example, when using the multi-function extension card EMC-D42A, Pr.02-26-Pr.02-29 are defined as the corresponded parameters for MI10-MI13. In this case, Pr.02-30-Pr.02-31 are virtual terminals.

When Pr.02-12 is defined as virtual terminal, use digital keypad KPC-CC01 or communication method to change its status (0: ON; 1: OFF) of bit8-15.
1 If $\mathrm{Pr} .02-00$ is set to three-wire operation control, terminal MI1 is for the STOP contact. The function set previously for this terminal is automatically invalid.

Summary of function settings
Take the normally open contact (N.O.) for example, ON: contact is closed, OFF: contact is open

Settings	Functions	
0	No Function	
1	Multi-step speed command 1	Descriptions
2	Multi-step speed command 2	You can set 15 steps of speed or 15 positions with the digital status of these four terminals. You can use 16-steps of speed if
3	Multi-step speed command 3	you include the master speed when setting as 15 steps of speed (refer to Parameter Group 04 Multi-step Speed Parameters).
4	Multi-step speed command 4	Use this terminal to reset the drive after clearing a drive fault.
5	Reset	

Settings	Functions	Descriptions
10	External fault (EF) input	For external fault input. The drive decelerates according to the Pr.07-20 setting, and the keypad shows EF. (It shows the fault record when an external fault occurs). The drive keeps running until the fault is cleared (terminal status restored) after RESET.
11	B.B. input from external (B.B.: Base Block)	ON: the output of the drive stops immediately. The motor is in free run and the keypad displays the B.B. signal. Refer to Pr.0708 for details.
12	Output voltage stops	ON: the output of the drive stops immediately and the motor is in free run status. The drive is in output waiting status until the switch is turned to OFF, and then the drive restarts and runs to the current setting frequency.
13	Cancel the setting for auto-acceleration / autodeceleration time	Set Pr.01-44 to one of the Pr.01-04 setting modes before using this function. When this function is enabled, OFF is for auto mode and ON is for linear acceleration / deceleration.
14	Switch between motor 1 and motor 2	ON: use parameters for motor 2. OFF: use parameters for motor 1.
15	Rotating speed command from AVI1	ON: force the source of the frequency to be AVI1. (If the rotating speed commands are set to $\mathrm{AVI1}, \mathrm{ACl}$ and AVI 2 at the same time, the priority is AVI1 > ACI > AVI2)
16	Rotating speed command from ACI	ON : force the source of the frequency to be ACI . (If the rotating speed commands are set to $\mathrm{AVI1}, \mathrm{ACl}$ and AVI 2 at the same time. The priority is AVI1 > ACI > AVI2)
17	Rotating speed command from AVI2	ON: force the source of the frequency to be AVI2. (If the rotating speed commands are set to AVI1, ACI and AVI2 at the same time. The priority is AVI1 > ACI > AVI2)
18	Forced to stop (Pr.07-20)	ON: the drive ramps to stop according to Pr.07-20 setting.
19	Frequency up command	ON: the frequency of the drive increases or decreases by one unit. If this function remains ON continuously, the frequency

Settings	Functions	Descriptions
20	Frequency down command	increases or decreases according to Pr.02-09 / Pr.02-10. The Frequency command returns to zero when the drive stops, and the displayed frequency is 0.0 Hz . If you select Pr.11-00, bit7 $=1$, the frequency is not saved.
21	PID function disabled	ON: the PID function is disabled.
22	Clear the counter	ON: the current counter value is cleared and displays " 0 ". The drive counts up when this function is disabled.
23	Input the counter value	ON: the counter value increases by 1 . Use the function with Pr.02-19.
24	FWD JOG command	This function is valid when the source of the operation command is external terminal. ON: the drive executes forward JOG.
25	REV JOG command	This function is valid when the source of the operation command is external terminal. ON: the drive executes reverse JOG.
28	Emergency stop (EF1)	ON: the output of the drive stops immediately, displays EF1 on the keypad, and the motor is in the free run status. The drive keeps running until the fault is cleared after you press RESET on the keypad (EF: External Fault).
29	Signal confirmation for Y connection	When the control mode is V / F, ON : the drive operates by the first V/F.
30	Signal confirmation for Δ connection	When the control mode is V / F, ON : the drive operates by the second V/F.
38	Disable EEPROM write function (parameters memory disable)	ON: writing to EEPROM is disabled. Changed parameters are not saved after power off
40	Force coasting to stop	ON: during operation, the drive free runs to stop.

Settings	Functions	Descriptions
59	Enable fire mode (without RUN Command)	Enable this function under fire mode to force the drive to run (while there is not a RUN command).
60	Disable all the motors	ON: when the multi-motor circulative control is enable, all motors coast to stop.
$61-68$	Disable Motor 1-8	These functions work with multi-motor circulative control, motor 1 to 8 can be set to coast to stop. If any of Auxiliary Motor 1 to Motor 8 is out of order or under maintenance, enable this terminal to bypass that motor.
69	Preheating Command	ON: if the preheating function is open and drive is in STOP status, the preheating function is executed; until the contact status changes to OFF, or the drive status turns to RUN and stops the preheating function. Refer to Pr.02-72-02-73 for detail.

02-09 External Terminal UP / DOWN Key Mode

Default: 0

$$
\text { Settings } 0 \text { : By the acceleration or deceleration time }
$$

1: Constant speed (Pr.02-10)

02-10 External Terminal Speed of the UP / DOWN Key

Default: 0.001
Settings $\quad 0.001-1.000 \mathrm{~Hz} / \mathrm{ms}$
Use when the multi-function input terminals are set to 19, 20 (Frequency UP / DOWN command). The frequency increases or decreases according to Pr.02-09 and Pr.02-10.
[1] When Pr.02-09 is set to 0 : the increasing or decreasing frequency command (F) operates according to the setting for acceleration or deceleration time (refer to Pr.01-12-Pr.01-19)

1 When Pr.02-09 is set to 1: the increasing / decreasing frequency command (F) operates according to the setting for Pr.02-10 $(0.01-1.00 \mathrm{~Hz} / \mathrm{ms})$.

02-11 Multi-function Input Response Time

Default: 0.005
Settings $0.000-30.000 \mathrm{sec}$.
\square Sets the response time of the digital input terminals FWD, REV and MI1-MI8.
$\mathbb{1} \square$ This function is to delay and confirm the digital input terminal signal. The time for delay is also the time for confirmation. The confirmation prevents interference that could cause error in the input to the digital terminals. In the meanwhile, it delays the response time, though confirmation improves accuracy.

02-12 Multi-function Input Mode Selection

Default: 0000h
Settings 0000h-FFFFh (0: N.O.; 1: N.C.)
[10] The parameter setting is in hexadecimal.
[1] This parameter sets the status of the multi-function input signal (0 : normal open ; 1: normal close) and it is not affected by the status of SINK / SOURCE.bit2-bit15 correspond to MI1-MI15.
$\mathbb{1}$ The default for bit0 is FWD terminal, and the default for bit1 is REV terminal. You cannot use this parameter to change the input mode.
1 You can change the terminal ON / OFF status through communications.
For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward $+2^{\text {nd }}$ step speed command $=1001_{2}=9_{10}$. As long as Pr.02-12 $=$ 9 is set through communications, there is no need to wire any multi-function terminal to run forward with the second step speed.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MI 5	MI 14	MI 13	MI 2	MI 11	MI 10	MI 8	MI	$\mathrm{MI6}$	$\mathrm{MI5}$	MI	MI	MI	MI	REV	FWD

02-13 Multi-function Output 1 (Relay1)

Default: 11

02-14 Multi-function Output 2 (Relay2)

Default: 1

02-15 Multi-function Output 3 (Relay3)

Default: 66

02-36 Output Terminal of the I/O Extension Card (MO10) or (RA10)
 02-37 Output Terminal of the I/O Extension Card (MO11) or (RA11)

02-38	Output Terminal of the I/O Extension Card (RA12)
02-39	Output Terminal of the I/O Extension Card (RA13)
02-40	Output Terminal of the I/O Extension Card (RA14)
02-41	Output Terminal of the I/O Extension Card (RA15)
$\mathbf{0 2 - 4 2}$	Output Terminal of the I/O Extension Card (MO16 Virtual Terminal)
$\mathbf{0 2 - 4 3}$	Output Terminal of the I/O Extension Card (MO17 Virtual Terminal)
$\mathbf{0 2 - 4 4}$	Output Terminal of the I/O Extension Card (MO18 Virtual Terminal)
$\mathbf{0 2 - 4 5}$	Output Terminal of the I/O Extension Card (MO19 Virtual Terminal)
$\mathbf{0 2 - 4 6}$	Output Terminal of the I/O Extension Card (MO20 Virtual Terminal)

Default: 0
Settings
0 : No function
1: Indication during RUN
2: Operation speed reached
3: Desired frequency reached 1 (Pr.02-22)
4: Desired frequency reached 2 (Pr.02-24)
5: Zero speed (Frequency command)
6: Zero speed including STOP (Frequency command)
7: Over-torque 1 (Pr.06-06-06-08)
8: Over-torque 2 (Pr.06-09-06-11)
9: Drive is ready
10: Low voltage warning (Lv) (Pr.06-00)
11: Malfunction indication
12: Mechanical brake release (Pr.02-32)
13: Over-heat warning (Pr.06-15)
14: Software brake signal indication (Pr.07-00)
15: PID feedback error (Pr.08-13, Pr.08-14)
16: Slip error (oSL)
17: Count value reached, does not return to 0 (Pr.02-20)
18: Count value reached, returns to 0 (Pr.02-19)
19: External interrupt B.B. input (Base Block)
20: Warning output
21: Over-voltage
22: Over-current stall prevention
23: Over-voltage stall prevention
24: Operation mode
25: Forward command
26: Reverse command
27: Output when current \geq Pr.02-33
28: Output when current < Pr.02-33
29: Output when frequency \geq Pr.02-34

30: Output when frequency < Pr.02-34
31: Y-connection for the motor coil
32: Δ-connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed including stop (actual output frequency)
35: Error output selection 1 (Pr.06-23)
36: Error output selection 2 (Pr.06-24)
37: Error output selection 3 (Pr.06-25)
38: Error output selection 4 (Pr.06-26)
40: Speed reached (including stop)
44: Low current output (use with Pr.06-71-Pr.06-73)
45: UVW output electromagnetic valve switch
46: Master dEb output
50: Output control for CANopen
51: Analog output control for RS-485 interface (InnerCOM / Modbus)
52: Output control for communication cards
53: Fire mode indication
54: Bypass fire mode indication
55: Motor 1 output
56: Motor 2 output
57: Motor 3 output
58: Motor 4 output
59: Motor 5 output
60: Motor 6 output
61: Motor 7 output
62: Motor 8 output
66: SO output logic A
67: Analog input level reached
68: SO output logic B
69: Preheating output indication
1 Use this parameter to set the function of the multi-function terminals.
[1] Pr.02-36-Pr.02-41 requires additional extension cards to display the parameters; the choices of optional cards are EMC-D42A and EMC-R6AA.
1 The optional card EMC-D42A provides two output terminals, use with Pr.02-36-02-37.
$\square \square$ The optional card EMC-R6AA provides six output terminals, use with Pr.02-36-02-41.MO16-MO20 are virtual terminals, set the status of bit11-15 of Pr.02-18 to control these virtual terminals.

Summary of function settings

(Take the normally open contact (N.O.) for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions
0	No function	

Settings	Functions	Descriptions
1	Operation indication	Activates when the drive is not in STOP.
2	Operation speed reached	Activates when output frequency of the drive reaches the setting frequency.
3	Desired frequency reached 1 (Pr.02-22)	Activates when the desired frequency (Pr.02-22) reached.
4	Desired frequency reached 2 (Pr.02-24)	Activates when the desired frequency (Pr.02-24) reached.
5	Zero Speed (frequency command)	Activates when frequency command $=0$ (the drive must be in RUN status)
6	Zero Speed, includes Stop (frequency command)	Activates when frequency command $=0$ or stopped.
7	Over-torque 1	Activates when the drive detects over-torque. Pr.06-07 sets the overtorque detection level, Pr.06-08 sets the over-torque detection time. Refer to Pr.06-06-Pr.06-08.
8	Over-torque 2	Activates when the drive detects over-torque. Pr.06-10 sets the overtorque detection level, and Pr.06-11 sets the over-torque detection time. Refer to Pr.06-09-06-11.
9	Drive is ready	Activates when the drive is ON with no error detected.
10	Low voltage warning (Lv)	Activates when the DC bus voltage is too low (refer to Pr.06-00 low voltage level).
11	Malfunction indication	Activates when fault occurs (except Lv stop).
12	Mechanical Brake Release (Pr.02-32)	Activates when the drive runs after the set delayed time for Pr.02-32. This function must use with DC brake function.
13	Over-heat warning	Activates when IGBT or heat sink overheats, to prevent the drive from shutting down due to over-heating (refer to Pr.06-15).
14	Software brake signal indication	Activates when the soft brake function is ON (refer to Pr.07-00).
15	PID feedback error	Activates when the PID feedback signal error is detected.
16	Slip Error (oSL)	Activates when the slip error is detected.
17	Count value reached, does not return to 0 (Pr.02-20)	Activates when the drive executes external counter, this contact is active if the count value is equal to the setting value for Pr.02-20. This contact is not active when the setting value for Pr.02-20 > Pr.02-19.
18	Counter value reached, returns to 0 (Pr.02-19)	Activates when the drive executes the external counter, this contact is active if the count value is equal to the setting value for Pr.02-19.
19	External interrupt B.B. input (Base Block)	Activates when external interrupt (B.B.) stop output occurs in the drive.
20	Warning Output	Activates when a warning is detected.
21	Over-voltage	Activates when the over-voltage is detected.

Settings	Functions	Descriptions
22	Over-current stall prevention	Activates when the over-current stall prevention is detected.
23	Over-voltage stall prevention	Activates when the over-voltage stall prevention is detected.
24	Operation mode indication	Activates when the operation command is not controlled by digital keypad. $(\text { Pr.00-21 = 0 })$
25	Forward command	Activates when the operation direction is forward.
26	Reverse command	Activates when the operation direction is reverse.
27	Output when Current \geq Pr.02-33	Activates when the current is \geq Pr.02-33.
28	Output when Current < Pr.02-33	Activates when the current is < Pr.02-33
29	Output when frequency $\geq \text { Pr. } 02-34$	Activates when the frequency is \geq Pr.02-34.
30	Output when Frequency < Pr.02-34	Activates when the frequency is < Pr.02-34.
31	Y-connection for the motor coil	Activates when Pr.05-24 = 1, the frequency output is lower than Pr.05-23 minus 2 Hz , and the time is longer than Pr.05-25.
32	Δ-connection for the motor coil	Activates when Pr.05-24 = 1, the frequency output is higher than Pr.05-23 plus 2 Hz , and the time is longer than Pr.05-25.
33	Zero Speed (actual output frequency)	Activates when the actual output frequency is 0 . (the drive is in RUN mode)
34	Zero Speed includes stop (actual output frequency)	Activates when the actual output frequency is 0 or Stopped.
35	Error output selection 1 \|(Pr.06-23)	Activates when Pr.06-23 is ON.
36	Error output selection 2 \|(Pr.06-24)	Activates when Pr.06-24 is ON.
37	Error output selection 3 \|(Pr.06-25)	Activates when Pr.06-25 is ON.
38	Error output selection 4 \|(Pr.06-26)	Activates when Pr.06-26 is ON.
40	Speed reached (including STOP)	Activates when the output frequency reaches the setting frequency or stopped.
44	Low current output	This function needs to be used with Pr.06-71-Pr.06-73
45	UVW output electromagnetic valve switch	Use this function with external terminal input $=49$ (drive enabled) and external terminal output $=45$ (electromagnetic valve enabled), and then the electromagnetic valve is ON or OFF according to the status of the drive.

Settings	Functions	Descriptions			
		Enable Contactor	ON ON		
46	Master dEb output	When dEb rises at master, MO sends a dEb signal to the slave. Output the message when the master triggers dEb . This ensures that the slave also triggers dEb . Then slave follows the deceleration time of the master to stop simultaneously with the master.			
50	Output control for CANopen	Control multi-function output terminals through CANopen. To control RY2, set Pr.02-14 $=50$ The mapping table of the CANopen DO is shown in the following table:			
		Physical Terminal	Setting of Related Parameters	Attribute	Corresponding Index
		RY1	Pr.02-13 $=50$	RW	The bit0 at 2026-41
		RY2	Pr.02-14 $=50$	RW	The bit1 at 2026-41
		RY3	Pr.02-15 $=50$	RW	The bit2 at 2026-41
		MO10 / RY10	Pr.02-36 $=50$	RW	The bit5 at 2026-41
		MO11 / RY11	Pr.02-37 $=50$	RW	The bit6 at 2026-41
		RY12	Pr.02-38 $=50$	RW	The bit7 at 2026-41
		RY13	Pr.02-39 = 50	RW	The bit8 at 2026-41
		RY14	Pr.02-40 $=50$	RW	The bit9 at 2026-41
		RY15	Pr.02-41 $=50$	RW	The bit10 at 2026-41
		Refer to Section 15-3-5 for more information.			
51	Analog output control for RS-485 interface	For RS-485 interface (InnerCOM / Modbus) communication control output.			
		Physical Terminal	$\begin{gathered} \text { Setting of Related } \\ \text { Parameters } \\ \hline \end{gathered}$	Attribute	Corresponding Index
		RY1	Pr.02-13 = 51	RW	The bit0 at 2640h
		RY2	Pr.02-14 = 51	RW	The bit1 at 2640h
		RY3	Pr.02-15 = 51	RW	The bit2 at 2640h
		MO10 / RY10	Pr.02-36 = 51	RW	The bit5 at 2640h
		MO11 / RY11	Pr.02-37 = 51	RW	The bit6 at 2640h
		RY12	Pr.02-38 $=51$	RW	The bit7 at 2640h
		RY13	Pr.02-39 = 51	RW	The bit8 at 2640h
		RY14	Pr.02-40 $=51$	RW	The bit9 at 2640h
		RY15	Pr.02-41 $=51$	RW	The bit10 at 2640h

Settings	Functions	Descriptions				
52	Output control for communication cards	Control the output through communication cards (CMC-EIP01, CMC-PN01 and CMC-DN01)				
		Physical Terminal	Setting of Related Parameters		Attribute	Corresponding Index
		RY1	Pr.02-13 = 52		RW	The bit0 at 2640h
		RY2	Pr.02-14 = 52		RW	The bit1 at 2640h
		RY3	Pr.02-15 = 52		RW	The bit2 at 2640h
		MO10 / RY10	Pr.02-36 = 52		RW	The bit5 at 2640h
		MO11 / RY11	Pr.02-37 = 52		RW	The bit6 at 2640h
		RY12	Pr.02-38 = 52		RW	The bit7 at 2640h
		RY13	Pr.02-39 = 52		RW	The bit8 at 2640h
		RY14	Pr.02-40 = 52		RW	The bit9 at 2640h
		RY15	Pr.02-41 = 52		RW	The bit10 at 2640h
53	Fire mode indication	This function is enabled when setting 58 or 59 is enabled.				
54	Bypass fire mode indication	The contact works when bypass function is enabled in the fire mode.				
55	Motor 1 output	When setting multi-motor circulative function, the multi-function output terminal automatically sets up Pr.02-13-Pr.02-15 and Pr.02-36- Pr.02-40 in accordance with the setting for Pr.12-01.				
56	Motor 2 output					
57	Motor 3 output					
58	Motor 4 output					
59	Motor 5 output	When setting multi-motor circulative function, the multi-function output terminal automatically sets up Pr.02-13-Pr.02-15 and Pr.02-36- Pr.02-40 in accordance with the setting for Pr.12-01.				
60	Motor 6 output					
61	Motor 7 output					
62	Motor 8 output					
66	SO output logic A (N.O.)	Status of drive		Status of safety output		
				N.O. (MOx = 66)		N.C. ($\mathrm{MOx}=68$)
		Normal		Broken circuit (Open)		Short circuit (Close)
68	SO output logic B (N.C.)	STO		Short circuit (Close)		Broken circuit (Open)
		STL1-STL3		Short circuit (Close)		Broken circuit (Open)
67	Analog input level reached	The multi-function output terminals operate when the analog input level is between the high level and the low level. Pr.03-44: Select one of the analog signal channels (AVI1, ACI, and AVI2) to be compared. Pr.03-45: The high level for the analog input, default is 50.00% Pr.03-46: The low level for the analog input, default is 10.00%. If analog input > Pr.03-45, the multi-function output terminal operates. If analog input < Pr.03-46, the multi-function output terminal stops output.				
69	Preheating output indication	Activates when the preheating is detected.				

[1] Add Remote IO function to directly control the drive's AO / DO and read current AI / DI status through the standard Modbus. The corresponding index of 26 xx is as following:

Chapter 12 Description of Parameter Settings | CFP2000

	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
2600h	MI15	MI14	MI13	MI12	MI11	MI10	M18	M17	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD
2640h	-	-	-	-	-	MO15	MO14	MO13	MO12	MO11	MO10	-	-	RY3	RY2	RY1
2660h	AVI1		-	-	-	-	-	-	-	-	-	-	-	-	-	-
2661h	ACI		-	-	-	-	-	-	-	-	-	-	-	-	-	-
2662h	AVI2		-	-	-	-	-	-	-	-	-	-	-	-	-	-
266Ah	Al10		-	-	-	-	-	-	-	-	-	-	-	-	-	-
266Bh	Al11		-	-	-	-	-	-	-	-	-	-	-	-	-	-
26A0h	AFM1			-	-	-	-	-	-	-	-	-	-	-	-	-
26A1h	AFM2			-	-	-	-	-	-	-	-	-	-	-	-	-
26AAh	AO10			-	-	-	-	-	-	-	-	-	-	-	-	-
26ABh	AO11			-	-	-	-	-	-	-	-	-	-	-	-	-

In addition, the AI and DI values can be read directly, while DO and AO must be controlled by Modbus under corresponding parameter function. The related parameter definition is as following:
DO

Terminal	Parameter Setting	Direct control the index corresponded to Modbus
RY1	Pr.02-13 $=51$	bit0 of 2640h
RY2	Pr.02-14 $=51$	bit1 of 2640 h
RY3	Pr.02-15 $=51$	bit2 of 2640 h
MO10 / RY10	Pr.02-36 $=51$	bit5 of 2640 h
MO11 / RY11	Pr.02-37 $=51$	bit6 of 2640 h
MO12	Pr.02-38 $=51$	bit7 of 2640 h
MO13	Pr.02-39 $=51$	bit8 of 2640 h
MO14	Pr.02-40 $=51$	bit9 of 2640 h
MO15	Pr.02-41 $=51$	bit10 of 2640 h

AO

Terminal	Parameter Setting	Direct control the index corresponded to Modbus
AFM1	Pr.03-20 $=21$	The value of 26A0h
AFM2	Pr.03-23 $=21$	The value of 26A1h
AFM10	Pr.14-12 $=21$	The value of 26AAh
AFM11	Pr.14-13 $=21$	The value of 26ABh

02-18 Multi-function Output Direction

Default: 0000h
Settings 0000h-FFFFh (0: N.O.; 1: N.C.)
[1] This parameter is in hexadecimal.
[1] This parameter is set by a bit. If the bit is 1 , the corresponding multi-function output acts in an opposite way.

Example:
Assume Pr.02-13 = 1 (indication when the drive is operating). If the output is positive, the bit is set to 0 , and then Relay is ON when the drive runs and is OFF when the drive stops. On the contrary, if the output is negative, and the bit is set to 1 , then the Relay is OFF when the drive runs and is ON when the drive stops.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MO 20	MO 19	MO 18	MO 17	MO 16	MO 15	MO 14	MO 13	MO 12	MO 11	MO 10	Reserved	RY3	RY2	RY1	

02-19 Terminal Counting Value Reached (return to 0)

Default: 0
Settings 0-65500
1 Yau can set the input point for the counter using the multi-function terminal MI6 as a trigger
terminal (set Pr.02-06 to 23). When counting is completed, the specified multi-function output terminal is activated (Pr.02-13, Pr.02-14, Pr.02-36, Pr.02-37 are set to 18), and Pr.02-19 cannot be set to 0 at this time.

Example:

When the displayed value is c5555, the drive count is 5,555 times. If the displayed value is c5555•, the actual count value is $55,550-55,559$.

02-20 Preliminary Counting Value Reached (does not return to 0)

Default: 0
Settings 0-65500
[1] When the count value counts from 1 to reach this value, the corresponding multi-function output terminal is activated (Pr.02-13, Pr.02-14, Pr.02-36, Pr.02-37 are set to 17). You can use this parameter as the end of counting to make the drive run from the low speed to stop.

02-22 Desired Frequency Reached 1
 02-24 Desired Frequency Reached 2

Default: 60.00 / 50.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

02-23 The Width of the Desired Frequency Reached 1 02-25 The Width of the Desired Frequency Reached 2

Default: 2.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
Once output speed (frequency) reaches the desired speed (frequency), if the corresponding multi-function output terminal is set to 3-4 (Pr.02-13, Pr.02-14, Pr.02-36, and Pr.02-37), this multi-function output terminal is "closed".

02-32 Brake Delay Time

Default: 0.000
Settings $0.000-65.000 \mathrm{sec}$.
[1] When the AC motor drive runs after the setting delay time of Pr.02-32, the corresponding multifunction output terminal (12: mechanical brake release) is "closed". The function must be used with DC brake.

1 This parameter is invalid if it is used without DC brake. Refer to the following operation timing.

02-33 Output Current Level Setting for Multi-function Output Terminals

Default: 0
Settings 0-150\%
1 When the drive outputs current higher than or equal to Pr.02-33 (\geq Pr.02-33), the multi-function output parameters active (Pr.02-13, Pr.02-14, and Pr.02-15 are set to 27).
$10]$ When the drive outputs current lower than Pr.02-33 (< Pr.02-33), the multi-function output parameters active (Pr.02-13, Pr.02-14, and Pr.02-15 are set to 28).

02-34 Output Frequency Setting for Multi-function Output Terminals

Default: 3.00

$$
\text { Settings } \quad 0.00-599.00 \mathrm{~Hz}
$$

[1] When the drive outputs frequency higher than or equal to Pr.02-34 (actual output frequency $\mathrm{H} \geq$ Pr.02-34), the multi-function terminal active (Pr.02-13, Pr.02-14 and Pr.02-15 are set to 29).When the drive outputs frequency lower than Pr.02-34 (actual output frequency $\mathrm{H}<\operatorname{Pr} .02-34$), the multi-function terminals active (Pr.02-13, Pr.02-14 and Pr.02-15 are set to 30).

02-35 External Operation Control Selection after Reset and Reboot

Default: 0

Settings	0 : Disable
	1: Drive runs if the RUN command remains after reset or reboot

Setting 1: the drive automatically executes the RUN command under the following circumstances, pay extra attention on this.

- Status 1: After the drive is powered on and the external terminal for RUN stays ON, the drive runs.
- Status 2: After clearing a fault once a fault is detected and the external terminal for RUN stays ON, you can run the drive by pressing RESET key.

02-50 Display the Status of Multi-function Input Terminal

Default: Read only
Settings Monitor the status of multi-function input terminals

1 Example:
When Pr.02-50 displays 0034h (hex), (that is, the value is 110100 (binary), it means that MI1, MI3 and MI4 are ON.

| Weights | 2^{5} | 2^{4} | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bit | 1 | 1 | 0 | 1 | 0 | 0 |
| | 1 | | | | | |\(\quad \begin{aligned} \& 0=O F F

\&

\& \end{aligned}\)

02-51 Display the Status of Multi-function Output Terminal

Default: Read only
Settings Monitor the status of multi-function output terminals

Example:
When Pr.02-51 displays 0023h (hex) (that is, the value is 100011 (binary)), it means that RY1, RY2 and MO10 are ON.

$$
\begin{aligned}
& 0=\text { OFF } \\
& 1=\text { ON } \\
& \text { Settings } \\
& =\text { bit } 5 \times 2^{5}+\text { bit } 1 \times 2^{1}+\text { bit0 } \times 2^{0} \\
& =1 \times 2^{5}+1 \times 2^{1}+1 \times 2^{0} \\
& =32+2+1 \\
& =35
\end{aligned}
$$

02-52 Display the External Multi-function Input Terminals Used by PLC

Default: Read only
Settings Monitor the status of PLC external output terminals
Pr.02-52 displays the external multi-function input terminals that used by PLC.

© Example:

When Pr.02-52 displays 0034h (hex) (that is, the value is 110100 (binary)), it means MI1, MI3 and MI4 are used by PLC.

$0=$ Not used by PLC
1=Used by PLC
Display value
$=$ bit5 $\times 2^{5}+b i t 4 \times 2^{4}+b i t 2 \times 2^{2}$
$=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}$
$=32+16+4=52$

Note		
$2^{14}=16384$	$2^{13}=8192$	$2^{12}=4096$
$2^{11}=2048$	$2^{10}=1024$	$2^{9}=512$
$2^{8}=256$	$2^{7}=128$	$2^{6}=64$
$2=32$	$2^{4}=16$	$2^{3}=8$
$2=4$	$2^{\frac{1}{=}} 2$	$2^{0}=1$
2		

02-53 Display the External Multi-function Output Terminal Used by PLC

Default: Read only

Settings Monitoring status of PLC external multi-function output terminal
1 Pr.02-53 displays the external multi-function output terminal that used by PLC.

1 Example:
When Pr.02-53 displays 0003h (hex) (that is, the value is 0011 (binary)), it means that RY1 and RY2 are used by PLC.

$\begin{aligned} & 0=\text { Not used by PLC } \\ & 1=\text { Used by PLC } \end{aligned}$		
Display value		
$3=2+1$		
$=1 \times 2+1 \times 2^{0}$		
$=$ bit $1 \times 2^{1}+$ bit 0×2^{0}		
Note		
$2^{7}=128$	$2^{6}=64$	
$2^{5}=32$	$2^{4}=16$	
	$2^{1}=2$	

02-54 Display the Frequency Command Executed by External Terminal
 Default: Read only

Settings $\quad 0.00-599.00 \mathrm{~Hz}$
1 When you set the source of the frequency command as the external terminal, if Lv or Fault occurs, the external terminal frequency command is saved in this parameter.

02-70 IO Card Types

Default: Read only
Settings 1: EMC-BPS01
4: EMC-D611A
5: EMC-D42A
6: EMC-R6AA
11: EMC-A22A

02-72 Preheating Output Current Level

Default: 0
Settings 0-100\%
[1] When a motor drive is not in operation (STOP) and is placed in a cold and humid environment, enabling the preheating function to output DC current to heat up the motor drive can prevent the invasion of humidity into the motor drive, which creates condensation affects the normal function of the motor drive.

1 Sets the output current level from the motor drive to the motor after enabling the preheating. The percentage of the preheating DC current is 100% of the rated current of the motor drive (Pr.0501, Pr.05-13 and Pr.05-34). When setting this parameter, slowly increase the percentage to reach the sufficient preheating temperature.

02-73 Preheating Output Cycle

Default: 0
Settings 0-100\%
Sets the output current cycle of preheating. $0-100 \%$ corresponds to $0-10$ seconds. When set to 0%, there is no output current. When set to 100%, there is a continuous output. For example, when set to 50%, a cycle of preheating goes from OFF (5 seconds) to ON (5 seconds), and vice versa.

Related Parameters of Preheating

Parameter	Description	Setting Range	Explanation
$02-72$	Output current level of preheating	$0-100 \%$ (rated current of the motor) 0% No output	Output current level of preheating
$02-73$	Output cycle of preheating	$0-100 \%$ (0-10 sec.) 0% No output 100% Continuous output	Output cycle of preheating
$02-01-08$ $02-26-31$	Multi-input function commands (MIx)	69 Preheating command	Enable or disable the preheating
$02-13-15$ $02-36-46$	Multi-output function commands (MOx)	69 Output command of preheating	Indication of the preheating

1 Enable preheating: When Pr.02-72 and Pr.02-73 are NOT set to zero.Preheating function A: If Pr.07-72 and Pr.07-23 are set before the motor drive stops operation (STOP), preheating is enabled right after the motor drive stops. However, if Pr.07-72 and Pr.0773 are set after the motor drives stops operation, preheating is not enabled. Preheating is enabled only when the motor drive stops again or restarts.
\ldots Preheating function B : When the motor drive is in operation (RUN) or stops operating (STOP), set Pr.02-72 and Pr.02-73 between 1-100\% and set MIx $=69$ and MIx $=$ ON. Preheating is enabled whenever the motor drive stops; no matter the motor drive is in operation (RUN) or stops operating (STOP).

1 Preheating priority: if preheating function A and B are both enabled, function B takes priority.

Sequential Diagram of the Preheating Function:

1. Setting parameters to enable preheating (Function A)

Set Pr.02-72 and Pr.02-73 not equal to zero (50% in the diagram) and stop running the motor drive, then preheating is enabled to output DC current. At the same time, MOx (Output Command of Preheating) is $\mathrm{ON}(\mathrm{MOx}=69)$. Once the drive is rebooted, the preheating function is enabled right away. The sequence of preheating goes from OFF (5 seconds) to ON (5 seconds). When the motor is in operation (RUN), the preheating function is OFF even it is enabled. Meanwhile, MOx is OFF $(\mathrm{MOx}=69)$ and the preheating is enabled when the motor drive stops.

2. Enable preheating via multi-input terminals (Function B)

Set Pr.02-72 and Pr.02-73 (50\% in the diagram) not equal to zero and set $\mathrm{Mlx}=69$, and $\mathrm{Mlx}=$ ON, then Function B takes priority to enable / disable preheating on the motor drive. At the same time, enabling preheating by parameters is automatically invalid. If, at this moment, the motor drive is already STOP, the preheating function is enabled to output DC current and the MOx (Output Command of Preheating) is ON (MOx = 69). The sequence of preheating goes from OFF (5 seconds) to ON (5 seconds). When the motor is in operation (RUN), the preheating function is OFF even it is enabled. Meanwhile, MOx is OFF (MOx $=69$) and the preheating is enabled when the motor drive stops.

3. Enable DC brake function

DC brake and preheating are enabled at the same time. The motor drive operates with the same logic described above for preheating. The only difference is that no matter the motor drive is in operation (RUN) or stops operating (STOP), DC brake enables first. When the motor drive stops, preheating is activated.

03 Analog Input / Output Parameter

N You can set this parameter during operation.

03-00 AVI1 Analog Input Selection

Default: 1

03-01 ACI Analog Input Selection (ACI)

Default: 0

03-02 AVI2 Analog Input Selection

Default: 0

Settings	0: No function
	1: Frequency command (speed limit under torque control
	mode)
4: PID target value	
5: PID feedback signal	
6: Thermistor (PTC) input value	
11: PT100 thermistor input value	
13: PID compensation value	

(1) When you use analog input as the PID reference target input, you must set Pr.00-20 to 2 (external analog input).

Setting method 1: Pr.03-00-03-02 set 1 as Frequency command.
Setting method 4: Pr.03-00-03-02 set 4 as PID target value.
If the setting value 1 and setting value 4 exist at the same time, the AVI1 input has highest priority to become the PID reference target input value.When you use analog input as the PID compensation value, you must set Pr.08-16 to 1 (source of PID compensation value is analog input). You can see the compensation value with Pr.08-17.When using the Frequency command, the corresponding value for $0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}$ is $0-$ maximum output frequency (Pr.01-00).If the settings for Pr.03-00-Pr.03-02 are the same, the AVI1 input has highest priority.

03-03 AVI1 Analog Input Bias

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding AVI1 voltage for the external analog input 0 .

03-04 ACI Analog Input Bias

Default: 0.0
Settings -100.0-100.0\%
1 Sets the corresponding ACI current for the external analog input 0 .

03-05 AVI2 Analog Voltage Input Bias

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding AVI2 voltage for the external analog input 0 .The corresponding external input voltage / current signal and the set frequency is $0-10 \mathrm{~V}$ (4-20 mA) corresponds to 0-maximum frequency (Pr.01-00).

Default: 0
Settings 0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Using negative bias to set the frequency greatly reduces the noise interference. In a noisy environment, do NOT use signals less than 1 V to set the drive's operation frequency.

In the diagram below: Black line: Curve with no bias. Gray line: curve with bias
Diagram 1

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3. The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI1) $=100 \%$

Diagram 2

Diagram 3

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI1) $=100 \%$

Diagram 4

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI1) $=100 \%$

Diagram 5

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI1)= 100\%

Diagram 6

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11Analog Input Gain (AVI1)=100\%

Diagram 7

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI1) $=100 \%$

Diagram 8

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain $(A V I 1)=100 \%$

Diagram 9

Pr.03-03=-10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI1)= 100\%

Diagram 10

Pr.03-03=-10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI1)=100\%

Diagram 11

Pr.03-03=-10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain $($ AVI1 $)=100 \%$

Diagram 12

Diagram 13

Pr.03-03=-10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Pr.03-11 Analog Input Gain (AVI1) $=100 \%$

Diagram 14

Pr.03-03=-10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI1) = 100\%

Diagram 15

Pr.03-03=-10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain (AVI1) = 100\%

Diagram 16

Pr.03-03=-10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI1) $=100 \%$

Diagram 17

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain (AVI1)= 111.1\%

Diagram 18

Diagram 20

Diagram 19
 Diagram

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

$$
\begin{aligned}
\text { Pr.03-11 Analog Input Gain (AVI1) } & =111.1 \% \\
10 / 9 & =111.1 \%
\end{aligned}
$$

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI1)=111.1\%

$$
10 / 9=111.1 \%
$$

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive
1: Neagtive frequency is valid. Positive
frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI1) $=111.1 \%$ $10 / 9=111.1 \%$
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Diagram 21

Diagram 22

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI1) $=111.1 \%$

$$
10 / 9=111.1 \%
$$

Diagram 23

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain (AVI1) $=111.1 \%$

$$
10 / 9=111.1 \%
$$

Diagram 24

Pr.03-03=10\%
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain (AVI1) $=111.1 \%$
$10 / 9=111.1 \%$

Diagram 25

Pr.03-07-03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 26

Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%$

Diagram 27

Diagram 28

Diagram 29

Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

$$
=-11.1 \%
$$

Pr.03-07-03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%$

Diagram 30

Diagram 31

Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%$

Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%$

Diagram 33

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$ Pr.03-07-03-09 (Positive/Negative Bias Mode)

0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain (AVI2) $=100 \%$ Pr.03-14 Analog Positive Input Gain (AVI2) $=100 \%$

Diagram 34

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain (AVI2) $=100 \%$
Pr.03-14 Analog Positive Input Gain (AVI2) $=100 \%$

Diagram 35

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$ Pr.03-07-03-09 (Positive/Negative Bias Mode)

0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain (AVI2) $=100 \%$
Pr.03-14 Analog Positive Input Gain (AVI2) $=100 \%$

Diagram 36

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain (AVI2) $=100 \%$
Pr.03-14 Analog Positive Input Gain (AVI2) $=100 \%$

Diagram 37

Diagram 38

Diagram 39

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07-03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain (AVI2) $=111.1 \%$
(10/9) $\times 100 \%=111.1 \%$
Pr.03-14 Analog Positive Input Gain (AVI2) $=90.9 \%$
$(10 / 11) \times 100 \%=90.9 \%$

Diagram 40

03-10 Reverse Setting when Analog Signal Input is Negative Frequency

Default: 0
Settings 0: Negative frequency is not allowed. The digital keypad or external terminal controls the forward and reverse direction.
1: Negative frequency is allowed. Positive frequency = run in a forward direction; negative frequency = run in a reverse direction. The digital keypad or external terminal control cannot change the running direction.Use this parameter only for $\mathrm{AVI1}$ or ACl analog input.Requirements for negative frequency (reverse running):

1. $\operatorname{Pr} .03-10=1$
2. Bias mode = Bias as the center
3. Corresponded analog input gain <0 (negative); this makes the input frequency negative.

In using the additional analog input function (Pr.03-18 = 1), when the analog signal is negative after the addition, you can set this parameter to allow or not allow the reverse running. The result after adding depends on the "Requirements for negative frequency (reverse running) ".

Default: 100.0
Settings -500.0-500.0\%
Use Pr.03-03-Pr.03-14 when the Frequency command source is the analog voltage or current signal.

03-15 AVI1 Analog Input Filter Time
 03-16 ACI Analog Input Filter Time
 03-17 AVI2 Analog Input Filter Time

Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.Analog signals, such as those entering AVI1, ACI and AVI2, are commonly affected by interference that affects the stability of the analog control. Use the Input Noise Filter to create a more stable system.When the time constant setting is too large, the control is stable but the control response is slow. When the time constant setting is too small, the control response is be faster but the control may be unstable. For optimal setting, adjust the setting based on the control stability or the control response.

03-18 Analog Input Addition Function

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Disable (AVI1, ACI, AVI2) } \\
& \text { 1: Enable }
\end{array}
$$

When Pr.03-18 = 1:
Example 1: Pr.03-00 = Pr.03-01 = 1, Frequency command = AVI1 + ACI
Example 2: Pr.03-00 = Pr.03-01 = Pr.03-02 = 1, Frequency command = AVI1 + ACI + AVI2
Example 3: Pr.03-00 $=$ Pr.03-02 $=1$, Frequency command $=$ AVI1 + AVI2
Example 4: Pr.03-01 = Pr.03-02 = 1, Frequency command = ACI + AVI2When Pr.03-18 = 0 and the analog input selection settings (Pr.03-00, Pr.03-01 and Pr.03-02) are the same, AVI1 has priority over ACI and AVI2 (AVI1 > ACI > AVI2).

Fcmd $=\left[(\text { ay } \pm \text { bias })^{*} \text { gain }\right]^{*} \frac{\operatorname{Fmax}(01-00)}{10 \mathrm{~V} \text { or } 16 \mathrm{~mA} \text { or } 20 \mathrm{~mA}}$
Fcmd: the corresponding frequency of 10 V or 20 mA
ay : 0~10V, 4~20mA, $0 \sim 20 \mathrm{~mA}$
bias: Pr.03-03, Pr. 03-04, Pr.03-05
gain : Pr.03-11, Pr.03-12, Pr.03-13, Pr.03-14

03-19 Signal Loss Selection for the Analog Input 4-20 mA

Default: 0

Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to 0 Hz
3: Stop immediately and display ACE
10 Determines the treatment when the $4-20 \mathrm{~mA}$ signal is lost [AVIc (Pr.03-28 = 2) or AClc (Pr.03-29 $=0)$].

Lal When $\operatorname{Pr} .03-28 \neq 2$, the voltage input to $\mathrm{AVI1}$ terminal is $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$, and the $\operatorname{Pr} .03-19$ is invalid.
(1) When Pr.03-29 $\neq 0$, the voltage input to ACI terminal is $0-10 \mathrm{~V}$, and $\operatorname{Pr} .03-19$ is invalid.

1 When the setting is 1 or 2 , the keypad displays the warning code ANL. It keeps blinking until the ACI signal is recovered.
10 When the setting is 3 , and the ACI terminal is disconnected, the keypad displays ACE error. It keeps blinking until the connection is recovered and the error is reset.
1 When the drive stops, the condition that causes the warning does not exist, so the warning automatically disappears.

03-20 AFM1 Analog Output Selection
 03-23 AFM2 Analog Output Selection

Default: 0
Settings 0-23
Function Chart

Settings	Functions		scriptions
0	Output frequency (Hz)	Maximum freque	-00 is process
1	Frequency command (Hz)	Maximum freque	-00 is process
2	Motor speed (Hz)	Maximum freque	-00 is process
3	Output current (rms)	($2.5 \times$ rated curr	cessed as 100\%
4	Output voltage	($2 \times$ rated voltag	essed as 100\%
5	DC bus voltage	$450 \mathrm{~V}(900 \mathrm{~V})=1$	
6	Power factor	-1.000-1.000 =	
7	Power	Drive rated pow	essed as 100\%
9	AVI1 percentage	0-10 V / 0-20 m	$\mathrm{mA}=0-100 \%$
10	ACI percentage	4-20 mA / 0-10	$\mathrm{mA}=0-100 \%$
11	AVI2 percentage	$0-10 \mathrm{~V}=0-100$	
20	CANopen analog output	For CANopen communication analog output	
		Terminal	Corresponding Address
		AFM1	2026-A1
		AFM2	2026-A2
		AO10	2026-AB
		AO11	2026-AC

Settings	Functions	Descriptions		
21	RS-485 analog output	For RS-485 (InnerCOM / Modbus) control analog output		
		Terminal	Corresponding Address	
		AFM1	26 AOH	
		AFM2	26A1H	
		AO10	26AAH	
		AO11	26ABH	
22	Communication card analog output	For communication analog output (CMC-EIP01, CMC-PN01, CMC-DN01)		
		Terminal	Corresponding Address	
		AFM1	26 AOH	
		AFM2	26A1H	
		AO10	26AAH	
		AO11	26ABH	
23	Constant voltage output	Pr.03-32 and Pr.03-33 control the voltage output level $0-100 \%$ of Pr.03-32 corresponds to $0-10 \mathrm{~V}$ of AFM1. $0-100 \%$ of Pr.03-33 corresponds to $0-10 \mathrm{~V}$ of AFM2.		

* 03-21 AFM1 Analog Output Gain
 * 03-24 AFM2 Analog Output Gain

Default: 100.0
Settings 0.0-500.0\%
$1 \mathbb{1}$ Adjusts the voltage level outputted to the analog meter from the analog signal (Pr.03-20) output terminal AFM of the drive.

N 03-22 AFM1 Analog Output REV Direction
 N 03-25 AFM2 Analog Output REV Direction

Default: 0
Settings 0 : Absolute value in output voltage
1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$
2: Reverse output 5-0 V; forward output 5-10 V

Selections for the analog output direction

03-27 AFM2 Output Bias

Default: 0.00
Settings -100.00-100.00\%
[1] Example 1, AFM2 $0-10 \mathrm{~V}$ is set to the output frequency, the output equation is:
$10 \mathrm{~V} \times$ (output frequency \div Pr.01-00) \times Pr.03- $24+10 \mathrm{~V} \times$ Pr.03-27Example 2, AFM2 $0-20 \mathrm{~mA}$ is set to the output frequency, the output equation is: $20 \mathrm{~mA} \times$ (output frequency \div Pr.01-00) \times Pr. 03- $24+20 \mathrm{~mA} \times$ Pr.03-27Example 3, AFM2 4-20 mA is set to the output frequency, the output equation is:
$4 \mathrm{~mA}+16 \mathrm{~mA} \times$ (output frequency \div Pr.01-00) \times Pr.03- $24+16 \mathrm{~mA} \times$ Pr.03-27This parameter sets the corresponding voltage of the analog output 0 .

03-28 AVI1 Terminal Input Selection

Default: 0
Settings $0: 0-10 \mathrm{~V}$
1: $0-20 \mathrm{~mA}$
2: 4-20 mA

03-29 ACI Terminal Input Selection

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: 4-20 \mathrm{~mA} \\
& 1: 0-10 \mathrm{~V} \\
& \text { 2: } 0-20 \mathrm{~mA}
\end{array}
$$

When you change the input mode, verify that the external terminal switch (SW3, SW4) corresponds to the setting for Pr.03-28-Pr.03-29.When you change the setting, proportion to the corresponding ACl and ACl will change to default.

03-30 PLC Analog Output Terminal Status

Default: Read only
Settings Monitor the status of the PLC analog output terminals
[id Pr.03-30 displays the external multi-function output terminal that used by PLC.

\square For Example:
When Pr.03-30 displays 0002h (hex), it means that AFM2 is used by PLC.

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: 0-20 \mathrm{~mA} \text { output } \\
& 1: 4-20 \mathrm{~mA} \text { output }
\end{array}
$$

03-32 AFM1 DC Output Setting Level
 03-33 AFM2 DC Output Setting Level

Default: 0.00
Settings 0.00-100.00\%
Pair with multi-function output: 23, Pr.03-32 and Pr.03-33 outputs constant AFM voltage.
[1] Set Pr.03-32 between 0-100.00\% to correspond to $0-10 \mathrm{~V}$ of AFM1.
[1] Set Pr.03-33 between 0-100.00\% to correspond to $0-10 \mathrm{~V}$ of AFM2.

\mathcal{N}	03-35	AFM1 Filter Output Time
\mathcal{N}	$03-36$	AFM2 Filter Output Time

Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.

03-44 Multi-function Output (MO) by AI Level Source

Default: 0
Settings 0: AVI1
1: ACI
2: AVI2

03-45 AI Upper Level

Default: 50.00
Settings -100.00-100.00\%

03-46 AI Lower Level

Default: 10.00
Settings -100.00-100.00\%
[1] Use this function (Pr.03-44) with the multi-function output setting 67 (analog input level reached). The MO is active when the Al input level is higher than the Pr.03-45. The MO is disabled when the Al input is lower than the Pr.03-46.When setting levels, Pr.03-45 Al upper level must be higher than Pr.03-46 AI lower level.

03-50 Analog Input Curve Selection

Default: 7
Settings 0: Normal Curve
1: Three-point curve of AVI1
2: Three-point curve of ACI
3: Three-point curve of AVI1 \& ACI
4: Three-point curve of AVI2
5: Three-point curve of AVI1 \& AVI2

6: Three-point curve of ACI \& AVI2
7: Three-point curve of AVI1 \& ACI \& AVI2
\square Sets the calculation method for analog input.
When Pr.03-50 $=0$, all analog input signal is calculated by bias and gain.
When Pr.03-50 = 1, AVI1 calculates by frequency and voltage / current (Pr.03-51-Pr.03-56), other analog input signal calculates by bias and gain.
1 When Pr.03-50 = 2, ACI calculates by frequency and voltage / current (Pr.03-57-Pr.03-62), other analog input signal calculates by bias and gain.
[al When Pr.03-50 $=3, \mathrm{AVI1}$ and ACl calculate by frequency and voltage / current (Pr.03-51-Pr.03-62), other analog input signal calculate by bias and gain.
1 When Pr.03-50 = 4, AVI2 calculates by frequency and voltage (Pr.03-63-Pr.03-68), other analog input signal calculates by bias and gain.

When Pr.03-50 = 5, AVI1 and AVI2 calculate by frequency and voltage / current (Pr.03-51-Pr.03-56 and Pr.03-63-Pr.03-68), other analog input signal calculate by bias and gain.When Pr. $03-50=6, \mathrm{ACI}$ and AVI2 calculate by frequency and voltage / current (Pr.03-57-Pr.03-68), other analog input signal calculates by bias and gain.
1 When Pr.03-50 = 7, all analog input signal calculate by frequency and voltage / current (Pr.03-51-Pr.03-68).

03-51 AVI1 Lowest Point

Default: 0.00 / 0.00 / 4.00
Settings Pr.03-28 $=0,0.00-10.00 \mathrm{~V}$
Pr. $03-28=1,0.00-20.00 \mathrm{~mA}$
Pr.03-28 = 2, 4.00-20.00 mA

03-52 AVI1 Proportional Lowest Point

Default: 0.00
Settings -100.00-100.00\%
03-53 AVI1 Mid-Point
Default: 5.00 / 10.00 / 12.00
Settings Pr. $03-28=0,0.00-10.00 \mathrm{~V}$
Pr. $03-28=1,0.00-20.00 \mathrm{~mA}$
Pr. 03-28 $=2,0.00-20.00 \mathrm{~mA}$

03-54 AVI1 Proportional Mid-Point

Default: 50.00
Settings -100.00-100.00\%

03-55 AVI1 Highest Point

Default: 10.00 / 20.00 / 20.00

$$
\begin{array}{ll}
\text { Settings } & \text { Pr. } 03-28=0,0.00-10.00 \mathrm{~V} \\
& \text { Pr. } 03-28=1,0.00-20.00 \mathrm{~mA} \\
& \text { Pr. } 03-28=2,0.00-20.00 \mathrm{~mA} \\
\hline
\end{array}
$$

03-56 AVI1 Proportional Highest Point

Default: 100.00
Settings -100.00-100.00\%When Pr. $03-28=0$, the AVI1 setting is $0-10 \mathrm{~V}$ and the unit is in voltage (V).When Pr. $03-28 \neq 0$, the AVI1 setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and the unit is in current (mA).When you set the analog input AVI1 to frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency).The requirement for these there parameters (Pr.03-51, Pr.03-53 and Pr.03-55) is Pr.03-51 < Pr.03-53 < Pr.03-55. The values for three proportional points (Pr.03-52, Pr.03-54 and Pr.03-56) have no limits. Values between two points are calculated by a linear equation. The ACI and AVI2 are the same as AVI1.
(1) The output percentage is 0% when the AVI1 input value is lower than the lowest point setting. Example: Pr. $03-51=1 \mathrm{~V}, \operatorname{Pr} .03-52=10 \%$. The output is 0% when AVI1 input is lower than 1 V . If the AVI1 input varies between 1 V and 1.1 V , the drive's output frequency is between 0% and 10%.

Pr.03-51=1V ; Pr.03-52=10\%
Pr.03-53=5V ; Pr.03-54=50\%
Pr.03-55=10V; Pr.03-56=100\%

Pr.03-51=0V; Pr.03-52=100\%
Pr.03-53=5V; Pr.03-54=50\%
Pr.03-55=10V ; Pr.03-56=0\%

Pr.03-51=1V; Pr.03-52=10\%
Pr.03-53=5V; Pr.03-54 =50\%
Pr.03-55=9V ; Pr.03-56=100\%

03-57 ACI Lowest Point

Default: 4.00 / 0.00 / 0.00

$$
\begin{array}{ll}
\text { Settings } & \text { Pr. } 03-29=0,4.00-20.0 \mathrm{~mA} \\
& \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\
& \text { Pr. } 03-29=2,0.00-20.00 \mathrm{~mA}
\end{array}
$$

03-58 ACI Proportional Low Point

Default: 0.00
Settings -100.00-100.00\%

03-59 ACI Mid-Point

Default: 12.00 / 5.00 / 10.00

$$
\begin{aligned}
\text { Settings } & \text { Pr. } 03-29=0,0.00-20.00 \mathrm{~mA} \\
& \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\
& \text { Pr. } 03-29=2,0.00-20.00 \mathrm{~mA}
\end{aligned}
$$

03-60 ACI Proportional Mid-Point

Default: 50.00
Settings -100.00-100.00\%

03-61 ACI Highest Point

Default: 20.00 / 10.00 / 20.00

$$
\begin{aligned}
\text { Settings } & \text { Pr. } 03-29=0,0.00-20.00 \mathrm{~mA} \\
& \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\
& \text { Pr. } 03-29=2,0.00-20.00 \mathrm{~mA}
\end{aligned}
$$

03-62 ACI Proportional Highest Point

Default: 100.00
Settings -100.00-100.00\%
[1] When Pr.03-29 = 1, the ACl setting is $0-10 \mathrm{~V}$ and the unit is in voltage (V).
When $\operatorname{Pr} .03-29 \neq 1$, the ACl setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$, and the unit is in current (mA).
[】 When you set the analog input ACI to the Frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency).
[1] The requirement for these three parameters (Pr.03-57, Pr.03-59 and Pr.03-61) is Pr.03-57 < Pr.03-59 < Pr.03-61. The values for three proportional points (Pr.03-58, Pr.03-60 and Pr.03-62) have no limits. There is a linear calculation between two points.

The output percentage becomes 0% when the ACI input value is lower than the lowest point setting.
Example: Pr. $03-57=2 \mathrm{~mA} ; \operatorname{Pr} .03-58=10 \%$, then the output becomes 0% when the AVI1 input is $\leq 2 \mathrm{~mA}$. If the ACl input swings between 2 mA and 2.1 mA , the drive's output frequency oscillates between 0% and 10%.

03-63 Positive AVI2 Voltage Lowest Point

Default: 0.00
Settings $0.00-10.00 \mathrm{~V}$

03-64	Positive AVI2 Proportional Lowest Point	
	Settings $-100.00-100.00 \%$	Default: 0.00

03-65 Positive AVI2 Voltage Mid-Point

Default: 5.00
Settings $0.00-10.00 \mathrm{~V}$

03-66 Positive AVI2 Proportional Mid-Point

Default: 50.00
Settings -100.00-100.00\%

03-67 Positive AVI2 Voltage Highest Point

Default: 10.00
Settings $0.00-10.00 \mathrm{~V}$

03-68 Positive AVI2 Proportional Highest Point

Default: 100.00
Settings -100.00-100.00\%
When you set the positive voltage AVI2 to the Frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency) and the motor runs in the forward direction.
[1] The requirement for these three parameters (Pr.03-63, Pr.03-65 and Pr.03-67) is Pr.03-63 < Pr.03-65 < Pr.03-67. The values for three proportional points (Pr.03-64, Pr.03-66 and Pr.03-68) have no limits. There is a linear calculation between two points.
\llbracket The output percentage becomes 0% when the positive voltage AVI2 input value is lower than the lowest point setting.
For example:
If Pr.03-63 = 1 V ; Pr.03-64 $=10 \%$, then the output becomes 0% when the input is lower than 1 V . If the AVI input swings between 1 V and 1.1 V , the drive's output frequency oscillates between 0% and 10%.
Ild When AVI1 Selection (Pr.03-28) is $0-10$ V, the setting ranges for Pr.03-51, Pr.03-53, and Pr.03-55 must be $0.00-10.00$ or $0.00-20.00$.
1 When ACI Selection (Pr.03-29) is $0-10$ V, the setting ranges for Pr.03-57, Pr.03-59 and Pr.03-61 must be 0.00-10.00 or 0.00-20.00.
(1)

Use Pr.03-51-Pr.03-68 to set the open circuit corresponding function of analog input value and maximum operation frequency (Pr.01-00), as shown in the figure below.

04 Multi-Step Speed Parameters

\mathbb{N} You can set this parameter during operation.

04-00	Speed Frequency
04-01	$2^{\text {nd }}$ Step Speed Frequency
04-02	$3^{\text {rd }}$ Step Speed Frequency
04-03	$4^{\text {th }}$ Step Speed Frequency
04-04	$5^{\text {th }}$ Step Speed Frequency
04-05	$6^{\text {th }}$ Step Speed Frequency
04-06	$7{ }^{\text {th }}$ Step Speed Frequency
04-07	$8^{\text {th }}$ Step Speed Frequency
04-08	$9^{\text {th }}$ Step Speed Frequency
04-09	$10^{\text {th }}$ Step Speed Frequency
04-10	$11^{\text {th }}$ Step Speed Frequency
04-11	$12^{\text {th }}$ Step Speed Frequency
04-12	$13^{\text {th }}$ Step Speed Frequency
04-13	$14^{\text {th }}$ Step Speed Frequency
04-14	$15^{\text {th }}$ Step Speed Frequency

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
© Use the multi-function input terminals (refer to setting 1-4 of Pr.02-01-Pr.02-08 and Pr.02-26-Pr.02-31 Multi-function Input Command) to select the multi-step speed command (the maximum is $15^{\text {th }}$ step speed). Pr.04-00 to Pr.04-14 set the multi-step speed frequency as shown in the following diagram.The external terminal / digital keypad / communication controls the RUN and STOP commands with Pr.00-21.You can set each multi-step speed between $0.00-599.00 \mathrm{~Hz}$ during operation.
[1] Explanation for the timing diagram of the multi-step speed and external terminals.
The related parameter settings are:

1. Pr.04-00-04-14: sets the $1^{\text {st }}$ to $15^{\text {th }}$ multi-step speed (to set the frequency of each step speed)
2. Pr.02-01-02-08 and Pr.02-26-02-31: sets the multi-function input terminals (multi-step speed command 1-4)Related parameters:
Pr.01-22 JOG Frequency
Pr.02-01 Multi-function Input Command 1 (MI1)
Pr.02-02 Multi-function Input Command 2 (MI2)
Pr.02-03 Multi-function Input Command 3 (MI3)
Pr.02-04 Multi-function Input Command 4 (MI4)

04-50	PLC Buffer 0
04-51	PLC Buffer 1
04-52	PLC Buffer 2
04-53	PLC Buffer 3
04-54	PLC Buffer 4
04-55	PLC Buffer 5
04-56	PLC Buffer 6
04-57	PLC Buffer 7
04-58	PLC Buffer 8
04-59	PLC Buffer 9
04-60	PLC Buffer 10
04-61	PLC Buffer 11
04-62	PLC Buffer 12
04-63	PLC Buffer 13
04-64	PLC Buffer 14
04-65	PLC Buffer 15
04-66	PLC Buffer 16
04-67	PLC Buffer 17
04-68	PLC Buffer 18
04-69	PLC Buffer 19

Default: 0
Settings 0-65535
[]. You can combine the PLC buffer with the built-in PLC function for a variety of applications.

Default: 0
Settings 0-65535
[1] Pr.04-70-Pr.04-99 are user-defined parameters. You can combine these 30 PLC Application Parameters with the PLC programming for a variety of applications.

05 Motor Parameters

The following are abbreviations for different types of motors:

- IM: Induction motor
- PM: Permanent magnet synchronous AC motor
- IPM: Interior permanent magnet synchronous AC motor
- SPM: Surface permanent magnet synchronous AC motor
- SynRM: Synchronous reluctance motor

You can set this parameter during operation.

05-00 Motor Parameter Auto-Tuning

Default: 0

Settings	$0:$ No function
	1: Simple rolling auto-tuning for induction motor (IM)
	2: Static auto-tuning for induction motor (IM)
	5: Rolling auto-tuning for PM (IPM / SPM)
	11: SynRM parameter auto-tuning (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)
	13: Static auto-tuning for PM (IPM / SPM)

[1] Refer to Section 12-2 <Adjustment and Application> for more details of motor adjustment process.

05-01 Full-load Current for Induction Motor 1 (A)

Default: Depending on the model power
Settings Depending on the model power
1 Sets this value according to the rated current of the motor as indicated on the motor nameplate.
[0] The default is 90% of the drive's rated current.
Example: The rated current for a $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A . The default is 22.5 A .
The setting range is between $2.5-30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$

05-02 Rated Power for Induction Motor 1(kW)

Default: Depending on the model power
Settings $0.00-655.35 \mathrm{~kW}$
Sets the rated power for motor 1. The default is the drive's power value.

05-03 Rated Speed for Induction Motor 1 (rpm)

Default: Depending on the number of motor poles

> | Settings | $0-x x x x \mathrm{rpm}$ (Depending on the number motor poles) |
| :--- | :--- |
| | $1710(60 \mathrm{~Hz} 4$ poles $) ; 1410(50 \mathrm{~Hz} 4$ poles $)$ |Sets the rated speed for the motor as indicated on the motor nameplate.Pr.01-01 and Pr.05-04 determine the maximum rotor speed for IM.

For example: Pr.01-01 = $20 \mathrm{~Hz}, \operatorname{Pr} .05-04=2$, according to the equation $120 \times 20 \mathrm{~Hz} \div 2=1200$ rpm and take integers. Due to the slip of the IM, the maximum setting value for Pr.05-03 is 1199 rpm (1200 rpm - 1).

05-04 Number of poles for Induction Motor 1

Default: 4

> Settings 2-64Sets the number poles for the motor (must be an even number).Set up Pr.01-01 and Pr.05-03 before setting up Pr.05-04 to make sure motor operates normally. Pr.01-01 and Pr.05-03 determine the maximum set up number poles for the IM. For example: Pr.01-01 = 20 Hz and Pr.05-03 = 39 rpm , according to the equation $120 \times 20 \mathrm{~Hz} / 39$ rpm=61.5 and take even number, the number of poles is 60 . Therefore, Pr.05-04 can be set to the maximum of 60 poles.

05-05 No-load Current for Induction Motor 1 (A)

Default: Depending on the model power
Settings 0.0-Pr.05-01 default
[1] The default is $10-40 \%$ of motor rated current.
\square For model with 110 kW and above, default setting is 20% of motor rated current.

05-06 Stator Resistance (Rs) for Induction Motor 1

Default: Depending on the model power
Settings $0.000-65.535 \Omega$

05-07 Rotor Resistance (Rr) for Induction Motor 1

Default: 0.000
Settings $0.000-65.535 \Omega$
05-08 Magnetizing Inductance (Lm) for Induction Motor 1
05-09 Stator Inductance (Lx) for Induction Motor 1
Default: 0.0
Settings $\quad 0.0-6553.5 \mathrm{mH}$

05-13 Full-load Current for Induction Motor 2 (A)

Default: Depending on the model power
Settings Depending on the model power
Set this value according to the rated current of the motor as indicated on the motor nameplate. The default is 90% of the drive's rated current.
Example: The rated current for a $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ motor is 25 A . The default is 22.5 A .
The setting range is between $2.5-30 \mathrm{~A}$. $(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$

05-14 Rated Power for Induction Motor $2(\mathrm{~kW})$

Default: Depending on the model power
Settings $\quad 0.00-655.35 \mathrm{~kW}$Set the rated power for motor 2 . The default is the drive's power value.

05-15 Rated Speed for Induction Motor 2 (rpm)

Default: Depending on the number of motor poles
Settings $0-x x x x \mathrm{rpm}$ (Depending on the number of motor poles)
1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)
1 Sets the rated speed for the motor as indicated on the motor nameplate.

05-16 Number of Poles for Induction Motor 2

Default: 4

Settings 2-64
1 Sets the number of poles for the motor (must be an even number).Set up Pr.01-35 and Pr.05-15 before setting up Pr.05-16 to make sure the motor operates normally. Pr.01-35 and Pr.05-15 determine the maximum set up number of poles.
For example: Pr.01-35 = 20 Hz and Pr.05-15 = 39 rpm , according to the equation $120 \times 20 \mathrm{~Hz} / 39$ rpm=61.5 and take even number, the number of poles is 60 . Therefore, Pr.05-16 can be set to the maximum of 60 poles.

05-17 No-load Current for Induction Motor 2 (A)

Default: Depending on the model power
Settings $0.00-\mathrm{Pr} .05-13$ default
[1] The default is $10-40 \%$ of motor rated current.For model with 110 kW and above, default setting is 20% of motor rated current.

05-18 Stator Resistance (Rs) for Induction Motor 2

Default: Depending on the model power

Settings $0.000-65.535 \Omega$

05-19 Rotor Resistance (Rr) for Induction Motor 2

Default: 0.000
Settings $0.000-65.535 \Omega$

05-20 Magnetizing Inductance (Lm) for Induction Motor 2

05-21 Stator Inductance (Lx) for Induction Motor 2
Default: 0.0
Settings $\quad 0.0-6553.5 \mathrm{mH}$

05-22 Induction Motor 1 / 2 Selection

Default: 1
Settings 1: Motor 1
2: Motor 2
[a] Sets the motor currently operated by the AC motor drive.

05-23 Frequency for Y-connection / Δ-connection Switch for an Induction Motor
 Default: 60.00

Settings $\quad 0.00-599.00 \mathrm{~Hz}$

05-24 Y-connection / Δ-connection Switch for Induction Motor

Default: 0

Settings 0: Disable
 1: Enable

05-25 Delay Time for Y-connection / Δ-connection Switch for an Induction Motor

Default: 0.200

Settings $0.000-60.000 \mathrm{sec}$.

[1] You can apply Pr.05-23-Pr.05-25 in a wide range of motors, and the motor coil executes the Y -connection / Δ-connection switch as required. The wide range motors are related to the motor design. In general, the motor has higher torque with low speed Y-connection, and has higher speed with high speed Δ-connection).
[0] Pr.05-24 enables and disables the switch of Y-connection / Δ-connection.When you set Pr.05-24 as 1, the drive uses the Pr.05-23 setting and current motor frequency and switches the current motor to Y-connection or Δ-connection. You can switch the relevant motor parameter settings simultaneously.Pr.05-25 sets the switch delay time of Y-connection / Δ-connection.When the output frequency reaches Y-connection / Δ-connection switch frequency, the drive delays according to Pr.05-25 before activating the multi-function output terminals.

05-28 Accumulated Watt-hour for a Motor (W-hour)

Default: Read only
Settings 0.0-6553.5

05-29 Accumulated Watt-hour for a Motor in Low Word (kW-hour)

Default: Read only
Settings 0.0-6553.5

05-30 \quad Accumulated Watt-hour for a Motor in High Word (MW-hour)

Default: Read only

Settings 0-65535
[1] Pr.05-28-05-30 record the amount of power consumed by the motors. The accumulation begins when the drive is activated and the record is saved when the drive stops or turns OFF. The amount of consumed watts continues to accumulate when the drive is activated again. To clear the accumulation, set Pr.00-02 as 5 to return the accumulation record to 0 .
凹 The accumulated total watts of the motor per hour $=$ Pr.05-30 $\times 1000000+$ Pr. $05-29 \times 1000+$ Pr.05-28 Wh

Example: When Pr.05-30 = 76 MWh and Pr.05-29 = 150 kWh , Pr.05-28 = 400 Wh (or 0.4 kWh), the accumulated total kilowatts of the motor per hour $=76 \times 1000000+150 \times 1000+40=$ $76150400 \mathrm{~Wh}=76150.4 \mathrm{kWh}$

05-31 Accumulated Motor Operation Time (Minutes)

Default: 0
Settings 0-1439

05-32 Accumulated Motor Operation Time (Days)

Default: 0
Settings 0-65535
Use Pr.05-31 and Pr.05-32 to record the motor operation time. To clear the operation time, set Pr.05-31 and Pr.05-32 as 00. An operation time shorter than 60 seconds is not recorded.

05-33

Induction Motor (IM) or Permanent Magnet Synchronous AC Motor (PM) Selection

Default: 0
Settings 0: IM
1: SPM
2: IPM
3: SynRM (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

05-34

Full-load Current for a Permanent Magnet Synchronous AC Motor / Reluctance Motor

Default: Depending on the model power

Settings Depending on the model power

Sets the full-load current for the motor according to motor's nameplate. The default is 90% of the drive's rated current.
For example: The rated current of a $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A . The default is 22.5 A .
The setting range is between $2.5-30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$

05-35
 Rated Power for a Permanent Magnet Synchronous AC Motor / Reluctance Motor

Default: Depending on the motor power

$$
\text { Settings } \quad 0.00-655.35 \mathrm{~kW}
$$

Sets the rated power for the permanent magnet synchronous AC motor. The default is the drive's power value.

05-36

Rated Speed for a Permanent Magnet Synchronous AC Motor / Reluctance Motor

Default: 2000
Settings 0-65535 rpm

05-37
Pole Number for a Permanent Magnet Synchronous AC Motor / Reluctance Motor

Default: 10
Settings 0-65535

05-38

System Inertia for a Permanent Magnet Synchronous AC Motor / Reluctance Motor

Default: Depending on the motor power
Settings $\quad 0.0-6553.5 \mathrm{~kg}-\mathrm{cm}^{2}$
Default values are as below:

Rated Power (kW)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	9.3	11
Rotor Inertia $\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	1.2	3.0	6.6	15.8	25.7	49.6	82.0	121.6	177.0

Rated Power (kW)	14.1	18.2	27	33	40	46	54	Above 54
Rotor Inertia $\left({\left.\mathrm{kg}-\mathrm{cm}^{2}\right)}^{2}\right.$	211.0	265.0	308.0	527.0	866.0	1082.0	1267.6	1515.0

05-39

Stator Resistance for a Permanent Magnet Synchronous AC Motor / Reluctance Motor

Default: 0.000
Settings $0.000-65.535 \Omega$

05-40 Permanent Magnet Synchronous AC Motor / Reluctance Motor Ld

Default: 0.00
Settings $\quad 0.00-655.35 \mathrm{mH}$

05-41 Permanent Magnet Synchronous AC Motor / Reluctance Motor Lq

Default: 0.00
Settings $\quad 0.00-655.35 \mathrm{mH}$

05-43 Ke parameter for a Permanent Magnet Synchronous AC Motor
 Default: 0
 Settings 0-65535 (Unit: V/krpm)

\square Ke parameter of a permanent magnet synchronous AC motor ($\mathrm{V}_{\text {phase, ms }} / \mathrm{krpm}$).When Pr.05-00 = 5, the induction electromotive force Ke is measured according to the motor's actual operation.
1 When Pr.05-00 = 13, the Ke is automatically calculated according to the motor power, current and rotor speed.

06 Protection Parameters

\mathcal{N} You can set this parameter during operation.

06-00 Low Voltage Level

Default:

$$
\begin{array}{rll}
\text { Settings } & \text { 230V models: } 150.0-220.0 \mathrm{~V}_{\mathrm{DC}} & 180.0 \\
& \text { 460V models: } 300.0-440.0 \mathrm{~V} \text { DC } & 360.0 \\
& \text { 575V models: } 420.0-520.0 \mathrm{~V} \text { DC } & 470.0
\end{array}
$$

[1] Sets the Low Voltage (Lv) level. When the DC bus voltage is lower than Pr.06-00, an Lv fault is triggered, and the drive stops output and the motor coasts to stop.
[0] If the Lv fault is triggered during operation, the drive stops output and the motor coasts to stop. There are three Lv faults: LvA (Lv during acceleration), Lvd (Lv during deceleration), and Lvn (Lv in constant speed) that are triggered according to the status of acceleration or deceleration. You must press RESET to clear the Lv fault. The drive automatically restarts if you set to restart after momentary power loss (refer to Pr.07-06 Restart after Momentary Power Loss and Pr.07-07 Allowed Power Loss Duration for details).
[1] If the Lv fault is triggered when the drive is in STOP status, the drive displays LvS (Lv during stop), which is not recorded, and the drive restarts automatically when the input voltage is higher than Pr.06-00 + Lv return level (as listed below).

Lv Return Level	230 V	460 V	575 V
Frame A-D	30 VDC	60 VDC	100 VDC

06-01 Over-voltage Stall Prevention

Default:

Settings	$0:$ Disabled	
	230 V models: $0.0-450.0 \mathrm{~V}$ DC	380.0
	460 V models: $0.0-900.0 \mathrm{~V} \mathrm{VC}$	760.0
	575 V models: $0.0-1116.0 \mathrm{~V}$ DC	920.0

[1] Setting Pr.06-01 to 0.0 disables the over-voltage stall prevention function (connected with braking unit or brake resistor). Use this setting when braking units or brake resistors are connected to the drive.

Setting Pr.06-01 to a value >0.0 enables the over-voltage stall prevention. This setting refers to the power supply system and loading. If the setting is too low, then over-voltage stall prevention is easily activated, which may increase the deceleration time.
[a] Related parameters:

- Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Deceleration Time 1-4
- Pr.02-13-Pr.02-15 Multiple-function Output (Relay1-3)
- Pr.06-02 Selection for Over-voltage Stall Prevention.

06-02 Selection for Stall Prevention

Default: 0

Settings 0: Traditional over-voltage and traditional over-current stall prevention
1: Smart over-voltage and traditional over-current stall prevention
2: Traditional over-voltage and smart over-current stall prevention
3: Smart over-voltage and smart over-current stall prevention
[1] A comparison between traditional stall prevention and smart stall prevention:

Type	Over-voltage			Over-current		
	Description	Action	Parameter	Description	Action	Parameter
Traditional	Frequency maintains during deceleration	Deceleration stops	Pr.06-01	Frequency maintains during acceleration	Acceleration stops	Pr.06-03
				Frequency decreases at constant speed	Frequency gradually decreases	Pr.06-04
Smart	Frequency increases during acceleration / deceleration / constant speed	Frequency gradually increases	Pr.06-01	Frequency decreases during acceleration / deceleration	Frequency gradually decreases	Pr.06-03
				Frequency decreases at constant speed	Frequency gradually decreases	Pr.06-04

[4] Pr.06-02 (Selection for stall prevention) can be used with Pr.01-49 (Regenerative energy restriction control method), but Pr.06-02 cannot work with Pr.01-44 (Auto-acceleration and auto-deceleration setting).
When Pr.06-02 or Pr.01-49 is enabled (setting value > 0), Pr.01-44 (Auto-acceleration and auto-deceleration setting) automatically disables (setting value $=0$) and cannot be set; when Pr.01-44 is enabled (setting value >0), Pr.06-02 and Pr.01-49 automatically disable and cannot be set.
[1] If you use smart over-voltage or smart over-current stall prevention for industries that require fast response, you can decrease the deceleration time when needed.When using smart over-voltage stall prevention, the drive decelerates to stop with the fastest deceleration time according to different working condition, rather than the first to fourth deceleration time (Pr.01-13-01-19).
凹or $220 \mathrm{~V} / 440 \mathrm{~V} 160 \mathrm{~kW}$ models and above, the default for Pr.06-02 is automatically set to 1 (Smart over-voltage and traditional over-current stall prevention). If you need to set the deceleration time with Pr.01-13-01-19, set Pr.06-02 $=0$.
[0] Related parameters:

- Pr.06-01 Over-voltage stall prevention
- Pr.06-03 Over-current stall prevention during acceleration
- Pr.06-04 Over-current stall prevention during operation
- Pr.06-05 Acceleration / deceleration time selection for stall prevention at constant speed
- Pr.01-12-01-19 Acceleration / Deceleration time 1-4
- Pr.02-13-02-15 Multi-function output (Relay 1-3).

Traditional over-voltage stall prevention

\llbracket Used for uncertain load inertia. When it stops under normal load, the over-voltage does not occur during deceleration and fulfills the deceleration time setting. However, load regenerative inertia may occasionally increase and does not trip due to over-voltage when decelerating to stop. In this case, the drive automatically increases the deceleration time until it stops.
\square Because of the motor load inertia, the motor may exceed the synchronous speed when the drive decelerates; in this case, the motor becomes generator. If the motor load inertia is larger, or the setting for drive's decelerating time is too small, the motor regenerates energy to the drive, and makes the DC bus voltage increase to the maximum allowable value. Thus, when traditional over-voltage stall prevention is enabled, the drive does not decelerate further and maintains the output frequency until the voltage drops below the setting value again.
[1] When the over-voltage stall prevention is enabled, the drive deceleration time is larger than the setting time.
[a] When there is a problem with the deceleration time, this function is disabled. See below for solution:

1. Increase the deceleration time properly.
2. Install a brake resistor (refer to Section 7-1 Brake Resistors and Brake Units Selection Chart for details) to dissipate the heat, that is, the electrical energy regenerating from the motor.

Smart over-voltage stall prevention

[1] Adopts closed-loop control and takes the setting for Pr.06-01 over-voltage stall prevention as target command during acceleration, deceleration and constant speed. When the DC bus voltage is higher than the stall prevention level, the controller increases the output frequency gradually according to closed-loop response until the DC bus voltage drops below the stall prevention level, and returns to target frequency based on the previous setting for deceleration time when the $D C$ bus voltage is lower than the stall prevention level. If the $D C$ bus voltage is still higher than the stall prevention level during the adjustment, the output frequency increases to the maximum operation frequency (Pr.01-00).

Traditional over-current stall prevention

[0] When the output current exceeds the over-current stall prevention level (Pr.06-03) during acceleration, the output frequency stops accelerating. The output frequency continues to accelerate when the output current drops below the stall prevention level to protect the drive.When the output current exceeds the over-current stall prevention during operation (Pr.06-04), the output frequency decreases according to the setting for acceleration / deceleration time selection for over-current stall prevention at constant speed (Pr.06-05). When the output current drops below the stall prevention level, the output frequency accelerates to the target frequency according to its previous set acceleration time.

Smart over-current stall prevention

[1] Adopts closed-loop control. It takes the setting for Pr.06-03 over-current stall prevention during acceleration as target command during acceleration and deceleration, and takes Pr.06-04 over-current stall prevention during operation as target command at constant speed. When the output current exceeds the stall prevention level, the controller decreases the output frequency gradually according to the closed-loop response until the current drops below the stall prevention level, and returns to target frequency based on the previous setting when the current is lower than the stall prevention level. If the output current is still higher than the stall prevention level during the adjustment, the output frequency decreases to the minimum output frequency at 0.5 Hz .

06-03 Over-current Stall Prevention during Acceleration

Default: 120
Settings 230V/460V models:
Light duty: 0-130\% (100\%: drive's rated current)
Normal duty: 0-160\% (100\%: drive's rated current)
575V models:
Light duty: 0-125\% (100\%: drive's rated current)
Normal duty: 0-150\% (100\%: drive's rated current)
This parameter only works in VF and SVC control modes.If the motor load is too large or the drive's acceleration time is too short, the output current of the drive may be to too high during acceleration, and it may cause motor damage or trigger the drive's protection functions (oL or oc). Use this parameter to prevent these situations.
©® During acceleration, the output current of the drive may increase abruptly and exceed the setting value of Pr.06-03. In this case, the drive stops accelerating and keeps the output frequency constant, and then continues to accelerate until the output current decreases.

Actual acceleration time when over-current stall prevention is enabled

Refer to Pr.06-16 for more details of stall level in flux weakening region. The protection curve is as following:

[1] When you enable the over-current stall prevention, the drive's acceleration time is longer than the setting.

When the over-current stall prevention occurs because the motor capacity is too small or operates in the default, decrease the Pr.06-03 setting value.
[al When you encounter any problem with the acceleration time, refer to the following guides for troubleshooting:

1. Increase the acceleration time to a proper value.
2. Setting Pr.01-44 Auto-Acceleration and Auto-Deceleration Setting to 1,3 or 4 (auto-acceleration).
(1) Related parameters:

- Pr.01-12, Pr.01-14, Pr.01-16, Pr.01-18 Acceleration Time 1-4
- Pr.01-44 Auto-Acceleration and Auto-Deceleration Setting
- Pr.02-13-02-15 Multi-function Output Relay1-3.

06-04 Over-current Stall Prevention during Operation

Default: 120
Settings $230 \mathrm{~V} / 460 \mathrm{~V}$ models:
Light load: 0-130\% (100\%: drive's rated current)
Normal load: 0-160\% (100\%: drive's rated current)
575 V models:
Light load: 0-125\% (100\%: drive's rated current)
Normal load: 0-150\% (100\%: drive's rated current)
[al This parameter only works in VF and SVC control modes.
$[1]$ This is a protection for the drive to decrease output frequency automatically when the motor over-loads abruptly during constant motor operation.
【】 If the output current exceeds the setting value for Pr.06-04 when the drive is operating, the drive decelerates according to the Pr.06-05 setting to prevent the motor from stalling. The lower limit for the over-current stall prevention is determined by the maximum value among 0.5 Hz , Pr.01-07 and Pr.01-11.
! If the output current is lower than the setting value for Pr.06-04, the drive accelerates (according to Pr.06-05) again to the setting frequency.

06-05
Acceleration / Deceleration Time Selection for Stall Prevention at Constant Speed

Default: 0
Settings 0: By current acceleration / deceleration time
1: By the first acceleration / deceleration time
2: By the second acceleration / deceleration time
3: By the third acceleration / deceleration time
4: By the fourth acceleration / deceleration time
5: By auto-acceleration / auto-deceleration
Sets the acceleration / deceleration time selection when stall prevention occurs at constant speed.

06-06 Over-torque Detection Selection (OT1)

Default: 0

Settings 0: No function
1: Continue operation after over-torque detection during constant speed operation

2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN

06-09 Over-torque Detection Selection (OT2)

Default: 0
Settings 0: No function
1: Continue operation after over-torque detection during constant speed operation
2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN
W. When you set Pr.06-06 and Pr.06-09 to 1 or 3, a warning message displays, but there is not error record.When you set Pr.06-06 and Pr.06-09 to 2 or 4, an error message displays and there is an error record.

06-07 Over-torque Detection Level (OT1)

Default: 120
Settings 10-200\% (100\% corresponds to the light-duty rated current of the drive)

06-08 Over-torque Detection Time (OT1)

Default: 0.1
Settings $0.0-60.0 \mathrm{sec}$.

06-10 Over-torque Detection Level (OT2)

Default: 120
Settings 10-200\% (100\% corresponds to the light-duty rated current of the drive)

06-11 Over-torque Detection Time (OT2)

Default: 0.1
Settings $0.0-60.0 \mathrm{sec}$.
IId When the output current exceeds the over-torque detection level (Pr.06-07 or Pr.06-10) and exceeds the over-torque detection time (Pr.06-08 or Pr.06-11), the over-torque detection follows the setting of Pr.06-06 and Pr.06-09.
When you set Pr.06-06 or Pr.06-09 to 1 or 3 , an ot 1 / ot 2 warning displays while the drive keeps running after over-torque detection. The warning remains on until the output current is smaller than 5% of the over-torque detection level.

When you set Pr.06-06 or Pr.06-09 to 2 or 4, an ot 1 / ot2 warning displays and the drive stops running after over-torque detection. The drive does not run until you manually reset it.

06-12 Current Limit

Default: 150
Settings $0-200 \%$ (100% corresponds to the rated current of the drive)
\square Sets the maximum output current of the drive. Use Pr.11-17-Pr.11-20 to set the drive's output current limit. When setting the control mode to PMFOC and SynRM FOC, if the output frequency of the drive reaches this current limit, the output frequency decreases automatically. It works like the current stall prevention.
This parameter is invalid in VF and SVC control mode.

06-13 Electronic Thermal Relay Selection 1 (Motor 1)
 06-27 Electronic Thermal Relay Selection 2 (Motor 2)

Default: 2
Settings 0: Inverter motor (with external forced cooling)
1: Standard motor (motor with fan on the shaft)
2: Disable
1 Prevents self-cooled motor from overheating under low speed. Use an electronic thermal relay to limit the drive's output power.

1 Ead Setting the parameter to 0 is suitable for an inverter motor (motor fan using independent power supply). For this kind of motor, there is no significant correlation between cooling capacity and motor speed. Therefore, the action of electronic thermal relays remains stable in low speed to ensure the load capability of the motor in low speed.

1 Setting the parameter to 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is lower in low speed; therefore, the action of electronic thermal relay reduces the action time to ensure the life of motor.
When the power is cycled frequently, if the power is switched OFF, the electronic thermal relay protection is reset; therefore, even setting the parameter to 0 or 1 may not protect the motor well. If there are several motors connected to one drive, install an electronic thermal relay in each motor.

06-14 Electronic Thermal Relay Action Time 1 (Motor 1)
 06-28 Electronic Thermal Relay Action Time 2 (Motor 2)

Settings $\quad 30.0-600.0 \mathrm{sec}$.
⒈ Set the parameter to 150% of motor rated current and use with the setting of Pr.06-14 and Pr.06-28 to prevent motor damage due to overheating. When it reaches the setting, the drive displays EoL1 / EoL2, and the motor coasts to stop.
@ Use this parameter to set the action time of electronic thermal relay. It works based on the $\mathrm{I}^{2} \mathrm{t}$ characteristic curve of electronic thermal relay, the output frequency and current of the drive, and the operation time to prevent motor from overheating.

$1 \mathbb{1}$ The action of electronic thermal relay depends on the setting for Pr.06-13 and Pr.06-27.

1. Pr. 06-13 or Pr.06-27 is set to 0 (using inverter motor) :

When the output current of motor drive is higher than 150% of the motor rated current (refer to the motor rated current \% corresponded to the motor rated frequency in the motor cooling curve with independent fan), motor drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr.06-14 or 06-28.
2. Pr.06-13 or Pr.06-27 is set to 1 (using standard motor) : When the output current of the drive is higher than 150% of the motor rated current (refer to the motor rated current \% corresponded to the motor rated frequency in the motor cooling curve with shaft-fixed fan), the drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr.06-14 or 06-28
3. If the motor's rated current (Pr.05-01) is not set, set 90% of the drive's rated current (Pr.00-01) as the default for this parameter.

1 The actual electronic thermal relay action time adjusts according to the drive output current (shown as the motor loading rate \%). The action time is short when the current is high, and the action time is long when the current is low. Refer to following diagram: (The motor cooling curve with shaft-fixed fan and motor cooling curve with independent fan $\mathrm{F}=50 \mathrm{~Hz}$ are the same one.)

Operation time
(sec.)

06-15 Temperature Level Overheat (oH) Warning

Default: 105.0
Settings $\quad 0.0-110.0^{\circ} \mathrm{C}$
If $\operatorname{Pr} .06-15$ is set to $110^{\circ} \mathrm{C}$, when the temperature reaches $110^{\circ} \mathrm{C}$, the drive stops with an IGBT overheat fault.

1 For Frame C and above, when IGBT temperature is above Pr.06-15 minus $15^{\circ} \mathrm{C}$, the cooling fan enhances performance to 100%; however, when IGBT temperature is below $35^{\circ} \mathrm{C}$ of Pr.06-15 and the temperature of capacitance is below $10^{\circ} \mathrm{C}$ of oH2 over-heat warning (Pr.06-51), the cooling fan resets. The temperature $35^{\circ} \mathrm{C}$ is the criterion if Pr. $06-15$ is set below to $35^{\circ} \mathrm{C}$.

06-16
 Stall Prevention Limit Level (Weak Magnetic Area Current Stall Prevention Level)

Default: 50
Settings 0-100\% (Refer to Pr.06-03)
[1] Sets the over-current stall prevention level when the motor's operation frequency is larger than Pr.01-01 (base frequency). This parameter only works during acceleration.
Example: Pr.06-03 = 150\%, Pr.06-04 = 100\% and Pr.06-16 = 80\%, when the operation frequency is larger than Pr.01-01, the lowest over-current stall prevention level during acceleration is: Pr. 06-03 \times Pr.06-16 $=150 \times 80 \%=120 \%$. (Refer to Pr.06-03 diagram for the protection curve)Pr.06-16 is invalid when the over-current stall prevention activates according to Pr.06-04 at constant speed.

06-17 Fault Record 1
 06-18 Fault Record 2
 06-19 Fault Record 3
 06-20 Fault Record 4

06-21 Fault Record 506-22 Fault Record 6Settings0 : No fault record
1: Over-current during acceleration (ocA)
2: Over-current during deceleration (ocd)
3: Over-current during steady speed (ocn)
4: Ground fault (GFF)
5: IGBT short-circuit between upper bridge and lower bridge (occ)
6: Over-current at stop (ocS)
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage at constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage at constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Phase loss protection (OrP)
16: IGBT overheating (oH1)
17: Heatsink overheating (oH2)
18: IGBT temperature detection failure (tH1o)
19: Capacitor hardware error (tH2o)
21: Over load (oL)
22: Electronic thermal relay 1 protection (EoL1)
23: Electronic thermal relay 2 protection (EoL2)
24: Motor overheating (oH3) (PTC / PT100)
26: Over torque 1 (ot1)
27: Over torque 2 (ot2)
28: Under current (uC)
30: EEPROM write error (cF1)
31: EEPROM read error (cF2)
33: U-phase error (cd1)
34: V-phase error (cd2)
35: W-phase error (cd3)
36: cc (current clamp) hardware error (Hd0)
37: oc (over-current) hardware error (Hd1)
38: ov (over-voltage) hardware error (Hd2)
39: occ hardware error (Hd3)
40: Auto-tuning error (AUE)
41: PID loss ACI (AFE)

48: ACI loss (ACE)
49: External fault (EF)
50: Emergency stop (EF1)
51: External Base Block (bb)
52: Enter wrong password three times and locked (Pcod)
53: Firmware version error (ccod)
54: Illegal command (CE1)
55: Illegal data address (CE2)
56: Illegal data value (CE3)
57: Data is written to read-only address (CE4)
58: Modbus transmission time-out (CE10)
60: Brake transistor error (bF)
61: Y-connection / Δ-connection switch error (ydc)
62: Deceleration Energy Backup error (dEb)
63: Over slip error (oSL)
64: Electric valve switch error (ryF)
68: Reverse direction of the speed feedback (SdRv)
69: Over speed rotation feedback (SdOr)
70: Large deviation of speed feedback (SdDe)
71: Watchdog (WDTT)
72: STO loss 1 (STL1)
73: Emergency stop for external safety (S1)
74: FIRE mode output (Fire)
76: Safety Torque Off (STO)
77: STO loss 2 (STL2)
78: STO loss 3 (STL3)
82: Output phase loss U phase (OPHL)
83: Output phase loss V phase (OPHL)
84: Output phase loss W phase (OPHL)
89: Rotor position detection error (RoPd)
90: Forced to stop (FStp)
101: CANopen guarding error (CGdE)
102: CANopen heartbeat error (CHbE)
104: CANopen bus off error (CbFE)
105: CANopen index error (CidE)
106: CANopen station address error (CAdE)
107: CANopen memory error (CFrE)
111: InrCOM time-out error (ictE)
142: Auto-tuning error 1 (no feedback current error) (AUE1)
143: Auto-tuning error 2 (motor phase loss error) (AUE2)
144: Auto-tuning error 3 (no-load current I_{0} measuring error) (AUE3)
148: Auto-tuning error (leakage inductance Lsigma measuring error) (AUE4)
$1 \mathbb{1}$ The parameters record when the fault occurs and forces a stop.
1 When low-voltage at stop fault (LvS) occurs, the fault is not recorded. When low-voltage during operation faults (LvA, Lvd, Lvn) occur, the faults are recorded.
When dEb function is valid and enabled, the drive executes dEb and records fault code 62 to Pr.06-17-Pr.06-22 simultaneously.

Default: 0
Settings 0-65535 (Refer to bit table for fault code)
(1) Use these parameters with multi-function output terminal (set Pr.06-23-Pr.06-26 to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals are activated. Convert the binary value to decimal value before you enter the value for Pr.06-23-Pr.06-26).

Fault Code	bit0	bit1	bit2	bit3	bit4	bit5	bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
1: Over-current during acceleration (ocA)	\bullet						
2: Over-current during deceleration (ocd)	\bullet						
3: Over-current during steady speed (ocn)	\bullet						
4: Ground fault (GFF)	\bullet						
5: IGBT short-circuit between upper bridge and lower bridge (occ)	\bullet						
6: Over-current at stop (ocS)	\bullet						
7: Over-voltage during acceleration (ovA)		\bullet					
8: Over-voltage during deceleration (ovd)		\bullet					
9: Over-voltage at constant speed (ovn)		\bullet					
10: Over-voltage at stop (ovS)		\bullet					
11: Low-voltage during acceleration (LvA)		\bullet					
12: Low-voltage during deceleration (Lvd)		\bullet					
13: Low-voltage at constant speed (Lvn)		\bullet					
14: Low-voltage at stop (LvS)		\bullet					
15: Phase loss protection (OrP)		\bullet					
16: IGBT overheating (oH1)			\bullet				
17: Heatsink overheating (oH2)			\bullet				
18: IGBT temperature detection failure (tH1o)			\bullet				
19: Capacitor hardware error (tH2o)			\bullet				
21: Over load (oL)			\bullet				
22: Electronic thermal relay 1 protection (EoL1)			\bullet				
23: Electronic thermal relay 2 protection (EoL2)			\bullet				
24: Motor overheating (oH3) (PTC / PT100)			\bullet				
26: Over torque 1 (ot1)			\bullet				
27: Over torque 2 (ot2)			\bullet				
28: Under current (uC)	\bullet						
30: EEPROM write error (cF1)			\bullet				

Fault Code	bit0	bit1	bit2	bit3	bit4	bit5	bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
31: EEPROM read error (cF2)				\bullet			
33: U-phase error (cd1)				\bullet			
34: V-phase error (cd2)				\bullet			
35: W-phase error (cd3)				\bullet			
36: cc (current clamp) hardware error (Hd0)				\bullet			
37: oc (over-current) hardware error (Hd1)				\bullet			
38: ov (over-voltage) hardware error (Hd2)				\bullet			
39: occ hardware error (Hd3)				\bullet			
40: Auto-tuning error (AUE)				\bullet			
41: PID loss ACI (AFE)					\bullet		
48: ACI loss (ACE)					\bullet		
49: External fault input (EF)						\bullet	
50: Emergency stop (EF1)					\bullet		
51: External Base Block (bb)						\bullet	
52: Enter wrong password three times and				\bullet			
locked (Pcod)				\bullet			
53: Firmware version error (ccod)				\bullet			
54: Illegal command (CE1)							\bullet
55: Illegal data address (CE2)							\bullet
56: Illegal data value (CE3)							\bullet
57: Data is written to read-only address (CE4)							\bullet
58: Modbus transmission time-out (CE10)							\bullet
60: Brake transistor error (bF)							\bullet
61: Y-connection/4-connection switch error (ydc)						\bullet	
62: Deceleration Energy Backup Error (dEb)		\bullet					
63: Over slip error (oSL)							
64: Electric valve switch error (ryF)							
68: Reverse direction of the speed feedback							
(SdRv)							
69: Over speed rotation feedback (SdOr)					\bullet		
70: Large deviation of speed feedback (SdDe)					\bullet		
71: Watchdog (WDTT)				\bullet			
72: STO loss 1 (STL1)				\bullet			
73: Emergency stop for external safety (S1)				\bullet			
74: FIRE mode output (Fire)						\bullet	
76: Safety Torque Off (STO)				\bullet			
77: STO loss 2 (STL2)							
78: STO loss 3 (STL3)							
82: Output phase loss U phase (OPHL)							
83: Output phase loss V phase (OPHL)							
84: Output phase loss W phase (OPHL)							
89: Rotor position detection error (RoPd)							
90: Forced to stop (FStp)							
101: CANopen guarding error (CGdE)							
102: CANopen heartbeat error (CHbE)							
104: CANopen bus off error (CbFE)							

Fault Code	bit0	bit1	bit2	bit3	bit4	bit5	bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
105: CANopen index error (CidE)							\bullet
106: CANopen station address error (CAdE)							\bullet
107: CANopen memory error (CFrE)							\bullet
111: InrCOM time-out error (ictE)							\bullet
142: Auto-tuning error 1 (no feedback current error) (AUE1)	\bullet						
143: Auto-tuning error 2 (motor phase loss error) (AUE2)				\bullet			
144: Auto-tuning error 3 (no-load current Io measuring error) (AUE3)	\bullet						
148: Auto-tuning error 4 (leakage inductance Lsigma measuring error) (AUE4)	\bullet						

06-29 PTC Detection Selection / PT100 Motion

Default: 0
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
3: No warning
\llbracket Sets the operation mode of a drive after detecting PTC / PT100.

06-30 PTC Level

Default: 50.0
Settings 0.0-100.0\%
1 Sets AVI1 / ACI / AVI2 analog input function Pr.03-00-03-02 to 6 [Thermistor (PTC) input value].
1 Use this to set the PTC level, the corresponding value for 100% is the analog input maximum value.

06-31 Frequency Command at Malfunction

Default: Read only
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
When a malfunction occurs, check the current frequency command. If it happens again, it overwrites the previous record.

06-32 Output Frequency at Malfunction

Default: Read only
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
When a malfunction occurs, check the current output frequency. If it happens again, it overwrites the previous record.

06-33 Output Voltage at Malfunction

Default: Read only
Settings 0.0-6553.5 V
[1] When a malfunction occurs, check the current output voltage. If it happens again, it overwrites the previous record.

06-34 DC bus Voltage at Malfunction

Default: Read only
Settings $0.0-6553.5 \mathrm{~V}$
When a malfunction occurs, check the current DC bus voltage. If it happens again, it overwrites the previous record.

06-35 Output Current at Malfunction

Default: Read only
Settings $0.0-6553.5 \mathrm{Amp}$
When a malfunction occurs, check the current output current. If it happens again, it overwrites the previous record.

06-36 IGBT Temperature at Malfunction

Default: Read only
Settings $\quad-3276.7-3276.7^{\circ} \mathrm{C}$
1 When a malfunction occurs, check the current IGBT temperature. If it happens again, it overwrites the previous record.

06-37 Capacitance Temperature at Malfunction

Default: Read only
Settings $\quad-3276.7-3276.7^{\circ} \mathrm{C}$
1 When a malfunction occurs, check the current capacitance temperature. If it happens again, it overwrites the previous record.

06-38 Motor Speed at Malfunction

Default: Read only
Settings -32767-32767 rpm
When a malfunction occurs, check the current motor speed in rpm. If it happens again, it overwrites the previous record.

06-40 Status of the Multi-function Input Terminal at Malfunction

Default: Read only
Settings 0000h-FFFFh

06-41 Status of the Multi-function Output Terminal at Malfunction

Default: Read only
Settings 0000h-FFFFh
When a malfunction occurs, check the current status of multi-function input / output terminals. If it happens again, it overwrites the previous record.

06-42 Drive Status at Malfunction

Default: Read only

Settings 0000h-FFFFh

1 When a malfunction occurs, check the current drive status (communication address 2101H). If it happens again, it overwrites the previous record.

06-44 STO Latch Selection

Default: 0
Settings 0: STO Latch
1: STO No latchPr.06-44 = 0: STO Alarm Latch. After you clear the cause of the STO Alarm, use a Reset command to clear the STO Alarm.Pr.06-44 = 1: STO Alarm no Latch. After you clear the cause of the STO Alarm, the STO Alarm clears automatically.
All of STL1-STL3 errors are Alarm Latch mode (in STL1-STL3 mode, the Pr.06-44 function is not available).

06-45 Output Phase Loss Detection Action (OPHL)

Default: 3

Settings	0 : Warn and continue operation
	1: Fault and ramp to stop
	2: Fault and coast to stop
	3: No warning

The OPHL protection is enabled when Pr.06-45 is not set to 3 .

06-46 Detection Time for Output Phase Loss

Default: 0.500
Settings $0.000-65.535 \mathrm{sec}$.
06-47 Current Detection Level for Output Phase Loss
Default: 1.00
Settings 0.00-100.00\%

06-48 DC Brake Time for Output Phase Loss

Default: 0.000
Settings $0.000-65.535 \mathrm{sec}$.

- There are two situations for the output phase loss detection: "detect when the drive is in operation" and "detect before operation". Setting Pr.06-48 to 0 disables the OPHL detection function before operation.
- The status of output phase loss detection are as following:
- Status 1: The drive is in operation

When any phase current is less than the Pr.06-47 setting, and exceeds Pr.06-46 setting time, the drive executes according to the Pr.06-45 setting.

- Status 2: The drive is in STOP; Pr.06-48 = $0 ; \operatorname{Pr} .07-02 \neq 0$

After the drive starts, the DC brake operates according to Pr.07-01 and Pr.07-02. During this period, OPHL detection is not active. After the DC brake action is completed, the drive starts to run, and enables the OPHL protection as mentioned above for status 1.

- \quad Status 3: The drive is in STOP; Pr.06-48 $=0$; Pr.07-02 $\neq 0$

When the drive starts, it executes Pr.06-48 first, and then executes Pr.07-02 (DC brake). The DC brake current level in this state includes two parts: one is 20 times the Pr.06-47 setting value in Pr.06-48 setting time; the other is the Pr.07-02 setting value in Pr.07-01 setting time. The total DC brake time is $\mathrm{T}=\mathrm{Pr} .06-48+$ Pr.07-02.

Status 3-1: Pr.06-48 $=0$, Pr.07-02 $\neq 0$ (No OPHL detected before operation)

Status 3-2: Pr. 06-48 $\neq 0$, Pr. $07-20 \neq 0$ (OPHL detected before operation)
In this period, if an OPHL occurs within the time for Pr.06-48, the drive executes the Pr.06-45 setting after the drive starts counting for half the time of Pr.06-48.

- \quad Status 4: The drive is in STOP; Pr.06-48 $=0 ; \operatorname{Pr} .07-02=0$

When the drive starts, it executes Pr.06-48 as the DC brake. The DC brake current level is 20 times the Pr.06-47 setting value.

Status 4-1: Pr.06-48 $\neq 0, \operatorname{Pr} .07-02=0$ (No OPHL detected before operation)

Status 4-2: Pr.06-48 $=0$, Pr.07-02 $=0$ (OPHL detected before operation)
In this period, if an OPHL occurs within the time for Pr.06-48, the drive executes the Pr.06-45 setting after the drive starts counting for half the time of Pr.06-48.

06-49 LvX Auto-Reset

Default: 0
Settings 0: Disable
1: Enable

06-50 Time for Input Phase Loss Detection

Default: 0.20
Settings $0.00-600.00 \mathrm{sec}$.Sets the time for input phase loss detection; setting 0.20 seconds means to check every 0.20 sec.

06-52 Ripple of Input Phase Loss

Default: 30.0 / 60.0 / 75.0

$$
\begin{array}{ll}
\text { Settings } & 230 \mathrm{~V} \text { models: } 0.0-160.0 \mathrm{VDC} \\
& 460 \mathrm{~V} \text { models: } 0.0-320.0 \mathrm{VC} \\
& 575 \mathrm{~V} \text { models: } 0.0-400.0 \mathrm{~V} \mathrm{DC}
\end{array}
$$

1 When the drive detects the DC bus ripple is higher than the setting for Pr.06-52, and lasts for the time of Pr.06-50 plus 30 seconds, the drive executes the input phase loss protection according to Pr.06-53.
1 In the period of Pr.06-50 setting plus 30 seconds, if the DC bus ripple is lower than the setting for Pr.06-52, the OrP protection recalculates.

06-53 Input Phase Loss Detection Action (OrP)

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Fault and ramp to stop } \\
& \text { 1: Fault and coast to stop }
\end{array}
$$

1 When the DC bus ripple voltage lasts for Pr.06-50 ripple time, the drive activates the Input Phase Loss protection according to the Pr.06-53 settings:

- DC bus ripple frequency $\leq 166 \mathrm{~Hz}$
- The amplitude is higher than Pr.06-52 setting [default 30 V (230 V models), 60 V (460 V models)]. It starts to count time after 20 consecutive times.
- When the counting lasts for the following time conditions, an ORP occurs.
(I)\% is rated current percentage

$(1) \%$	Actual seconds
50	432
75	225
120	60

1×1 When any of the above condition is not met, the ORP protection recalculates.

06-55 Derating Protection

Default: 0
Settings 0: Auto-decrease carrier frequency and limit output current
1: Constant carrier frequency and limit output current
2: Auto-decrease carrier frequency
[1] Refer to Pr.00-01 (Maximum Operation Frequency) for allowable maximum output frequency in each control mode.
1 The corresponded carrier frequency lower limit under each control mode:

- VF, SVC: $599 \mathrm{~Hz}, 6 \mathrm{~K}$
- FOC sensorless (IM): $300 \mathrm{~Hz}, 6 \mathrm{~K}$
- FOC sensorless (PM): $500 \mathrm{~Hz}, 10 \mathrm{~K}$

1 Refer to Section 9-6 Derating for Ambient Temperature, Altitude and Carrier Frequency for the derating ratio.
(1) Setting 0 :

- Actual over-current stall prevention level $=$ derating ratio \times over-current stall prevention level (Pr.06-03 and Pr.06-04).
- Rated current derating level: derating ratio \times rated current (Pr.00-01).
- When the operating point is greater than the derating curve, the rated current is constant, and carrier frequency (Fc) output by the drive decreases automatically according to the ambient temperature, overload output current and time.
- Applicable conditions: If overloads are not frequent, the concern is only about the carrier frequency operating with the rated current for a long time, and changes to the carrier wave due to short overload are acceptable, set to 0 .
- Take VFD007FP4EA-52 in Normal Duty for example: ambient temperature $50^{\circ} \mathrm{C}$, UL Open Type, and independent installation. When the carrier frequency is set to 15 kHz , it corresponds to 72% of the derating ratio. When the output current is higher than the value, it automatically decreases the carrier frequency according to the ambient temperature, output current and overload time (for example, set Pr.06-03 to 200\%). At this time, the over-current stall prevention level is 144% ($=72 \% \times 200 \%$) of the rated current (Pr.00-01).
Setting 1 :
- When the operating point is greater than the derating curve 1, the carrier frequency (Fc) output by the drive is fixed to the default value.
- Applicable conditions: Select this mode if the change of carrier frequency and motor noise caused by ambient temperature and frequent overload are not acceptable. Refer to Pr.00-17.
- Take VFD007FP4EA-52 in Normal Duty for example: ambient temperature $50^{\circ} \mathrm{C}$, UL Open Type, and independent installation. When the carrier frequency maintains at 15 kHz , it corresponds to 72% of the derating ratio. The oL protection executes when the current is $120 \% \times 72 \%=86 \%$ for one minute; therefore, it must operate by the curve to keep the carrier frequency.

Setting 2 :

- The protection method and action are set to 0 , but this disables the current limit when output current is the derating ratio $\times 160 \%$ of output current in normal load, and derating ratio \times 130% of output current in light load.
- The advantage is that it can provide a higher starting output current (Pr.06-55 = 0) when the carrier frequency (Pr.00-17) setting is higher than the default value. The disadvantage is that the carrier frequency derates easily when it overloads.
For example, when Pr.06-55 $=0$ or 1, the over-current stall prevention level $=$ Ratio \times Pr.06-03. When Pr.06-55 = 2, the over-current stall prevention level $=$ Pr.06-03.
Use with the settings for Pr.00-16 and Pr.00-17.

06-56 PT100 Voltage Level 1

Default: 5.000
Settings $0.000-10.000 \mathrm{~V}$

06-57 PT100 Voltage Level 2

Default: 7.000
Settings $0.000-10.000 \mathrm{~V}$Condition settings: PT100 voltage level Pr.06-57 > Pr.06-56.

06-58 PT100 Level 1 Frequency Protection

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

06-59 PT100 Activation Level 1 Protection Frequency Delay Time

Default: 60
Settings $0-6000 \mathrm{sec}$.
[1] PT100 operation instructions:
(1) Use voltage type analog input (AVI1, AVI2 and ACI voltage $0-10 \mathrm{~V}$) and select PT100 mode.
(2) Select one of the voltage type analog inputs below:
(a) $\mathrm{AVI1}(\operatorname{Pr} .03-00=11)$
(b) AVI2 (Pr.03-02 = 11)
(c) ACI (Pr.03-01 = 11 and Pr.03-29 = 1)
(3) When selecting Pr.03-01 $=11$ and Pr.03-29 $=1$, you must switch SW4 to $0-10 \mathrm{~V}$ for the external I/O board.
(4) The AFM2 outputs constant voltage or current, then Pr.03-23 $=23$. You must switch AFM2 SW2 to 0-20 mA for the external I/O board, and set AFM2 output level to 45\% (Pr.03-33 = 45%) of $20 \mathrm{~mA}=9 \mathrm{~mA}$.
(5) Use Pr.03-33 to adjust the constant voltage or constant current of the AFM2 output; the setting range is $0-100.00 \%$.
(6) There are two types of action levels for PT100. The diagram below shows the PT100 protecting action:

(7) PT100 wiring diagram:

Figure 1
(1) When Pr.06-58 $=0.00 \mathrm{~Hz}$, PT100 function is disabled.

Case:
When using PT100, if the motor temperature is higher than $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$, the drive starts to count the delay time for auto-deceleration (Pr.06-59). The drive decreases the motor frequency to the setting for Pr.06-58 when it reaches the delay time count value. The drive operates at the frequency set for Pr.06-58 until the motor temperature is lower than $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$. If the motor temperature is higher than $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$, the drive automatically decelerates to STOP and displays the warning oH3.

Set up process:

1. Switch AFM2 to $0-20 \mathrm{~mA}$ on the I/O control terminal block. (Refer to Figure 1, PT100 wiring diagram)
2. Wiring (Refer to Figure 1, PT100 wiring diagram):

Connect external terminal AFM2 to "+"
Connect external terminal ACM to "-"
Connect external terminals AFM2 and AVI1 to "short circuit"
3. Set Pr. $03-00=11$ or Pr. $03-23=23$ or Pr. $03-33=45 \% ~(9 \mathrm{~mA})$.
4. Refer to the RTD temperature and resistance comparison table

Temperature $=135^{\circ} \mathrm{C}$, resistance $=151.71 \Omega$; input current: 9 mA , voltage: about $1.37 \mathrm{~V}_{\mathrm{DC}}$
Temperature $=150^{\circ} \mathrm{C}$, resistance $=157.33 \Omega$; input current: 9 mA , voltage: about $1.42 \mathrm{~V}_{\mathrm{DC}}$
5. When the RTD temperature is $>135^{\circ} \mathrm{C}$, the drive decelerates to the specified operation frequency automatically. Then, Pr.06-56 $=1.37$ and Pr. $06-58=10 \mathrm{~Hz}$. (When Pr.06-58 $=0$, it disables the specified operation frequency.)
6. When the RTD temperature is $>150^{\circ} \mathrm{C}$, the drive outputs a fault, decelerates to STOP, and displays the warning oH3. Then, Pr.06-57 = 1.42 V and Pr.06-29 = 1 (fault and ramp to stop).

06-60 Software Detection GFF Current Level

Default: 60.0
Settings $0.0-6553.5 \%$ (100% corresponds to the light-load rated current of the drive)

06-61 Software Detection GFF Filter Time

Default: 0.10
Settings $0.00-655.35 \mathrm{sec}$.
[1] When the drive detects that the unbalanced three-phase output current is higher than the setting for Pr.06-60, GFF protection activates. The drive then stops output.

06-63 Operation Time of Fault Record 1 (Day)
 06-65 Operation Time of Fault Record 2 (Day)
 06-67 Operation Time of Fault Record 3 (Day)
 06-69 Operation Time of Fault Record 4 (Day)

Default: Read only
Settings 0-65535 days

06-64 Operation Time of Fault Record 1 (Minutes)

06-66 Operation Time of Fault Record 2 (Minutes)
06-68 Operation Time of Fault Record 3 (Minutes)
06-70 Operation Time of Fault Record 4 (Minutes)
Default: Read only
Settings 0-1439 min
If there is any malfunctions when the drive operates, Pr.06-17-Pr.16-22 record the malfunctions and Pr.06-63-Pr.06-70 record the operation time for four sequential malfunctions. Check if there is any problem with the drive according to the interval of the recorded fault.
Example:
The first error: ocA occurs after motor drive operates for 1000 minutes.
The second error: ocd occurs after another 1000 minutes.
The third error: ocn occurs after another 1000 minutes.
The fourth error: ocA occurs after another 1000 minutes.
The fifth error: ocd occurs after another 1000 minutes.
The sixth error: ocn occurs after 1000 minutes.
Then Pr.06-17-Pr.06-22 and Pr.06-63-Pr.06-70 are recorded as follows:

	$1^{\text {st }} f a u l t$	$2^{\text {nd }} f a u l t$	$3^{\text {rd }}$ fault	$4^{\text {th }}$ fault	$5^{\text {th }}$ fault	$6^{\text {th }}$ fault
Pr.06-17	ocA	ocd	ocn	ocA	ocd	ocn
Pr.06-18	0	ocA	ocd	ocn	ocA	ocd
Pr.06-19	0	0	ocA	ocd	ocn	ocA
Pr.06-20	0	0	0	ocA	ocd	ocn
Pr.06-21	0	0	0	0	ocA	ocd
Pr.06-22	0	0	0	0	0	ocA
Pr.06-63	0	1	2	2	3	4
Pr.06-64	1000	560	120	1120	680	240
Pr.06-65	0	0	1	2	2	3
Pr.06-66	0	1000	560	120	1120	680
Pr.06-67	0	0	0	1	2	2
Pr.06-68	0	0	1000	560	120	1120
Pr.06-69	0	0	0	0	1	2
Pr.06-70	0	0	0	1000	560	120

NOTE: By examining the time record, you can see that the last fault (Pr.06-17) happened after the drive ran for 4 days and 240 minutes.

06-71 Low Current Setting Level

Default: 0.0
Settings $0.0-100.0 \%$ (100% corresponds to the light-load rated current of the drive)

06-72 Low Current Detection Time

Default: 0.00
Settings $0.00-360.00 \mathrm{sec}$.

06-73 Low Current Action

Default: 0
Settings 0: No function
1: Fault and coast to stop
2: Fault and ramp to stop by the second deceleration time
3: Warn and operation continue
[1] The drive operates according to the setting for Pr.06-73 when the output current is lower than the setting for Pr.06-71, and when the time of the low current exceeds the detection time for Pr.06-72. Use this parameter with the external multi-function output terminal 44 (for low current output).
The low current detection function does not execute when the drive is in sleep or standby status.
1 Sets Pr.06-71 low current level according to the drive's rated current, the equation is Pr.00-01 (drive's rated current) \times Pr.06-71 (low current setting level)\% = low current detection level (A). The drive changes the setting for Pr.00-01 (rated current) according to the setting for Pr.00-16 (load selection).

06-76 dEb Motion Offset

Default:
Settings 230V models: $0.0-200.0 V_{D C} 20.0$
460 V models: $0.0-200.0 \mathrm{~V}_{\mathrm{DC}} 40.0$
575 V models: $0.0-200.0 \mathrm{~V}_{\mathrm{DC}} \quad 50.0$

06-80 Fire Mode

Default: 0.00

Settings	$0:$ Disable
	1: Forward (counter clockwise) operation
	2: Reverse (clockwise) operation

Use this parameter with multi-function input terminal setting 58 or 59, and multi-function output terminal setting 53 or 54 .
0 : Fire detection is invalid.
1: The motor operates in a counterclockwise direction ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).
2: The motor operates in a clockwise direction ($\mathrm{U}, \mathrm{W}, \mathrm{V}$).

06-81 Operating Frequency when running Fire Mode

Default: 60.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[10. Enables fire mode (Pr.06-80 = 1 or 2) and sets the operation frequency in fire mode (Pr.06-81). The drive operates with operation frequency in fire mode when the fire mode is enabled. Refer to Pr.06-86 Fire mode operating sequence for details.

06-82 Enable Bypass in Fire Mode

Default: 0
Settings 0: Disable Bypass
1: Enable Bypass
\square The Bypass function only enables in Fire mode.When the Bypass function enables and the fault listed in Table 1 occurs, the drive automatically switches to mains power for the motor's operation.

06-83 Bypass Delay Time in Fire Mode

Default: 0.0
Settings $0.0-6550.0 \mathrm{sec}$.
1 Conditions to enable the Bypass function (Pr.06-82 = 1):
(1) When a fault that can enable the Bypass function (as shown in Table 1) occurs in Fire mode, and the fire alarm lasts for Pr.06-83 setting time, the Bypass function enables and the Bypass fire mode indication ($\mathrm{MOx}=54$) is ON .
(2) When a fault that can be reset (as shown in Table 1) occurs in Fire mode, the automatic reset time is zero, and the fire alarm lasts for Pr.06-83 setting time, then the Bypass function enables and the Bypass fire mode indication ($\mathrm{MOx}=54$) is ON . If the fault is successfully reset (no fault) before the Bypass function enabled, the counter of bypass delay time returns to zero and waits for the next trigger.

Table 1: Fault detection under Normal mode, Fire mode and Bypass function in Fire mode. (V means detectable)

Code	Fault name	Normal Mode	Fire Mode	Enable Bypass Function
1	Over-current during acceleration (ocA)	$\mathrm{V}(\mathrm{RS})$	V (able to auto-reset)	V
2	Over-current during deceleration (ocd)	$\mathrm{V}(\mathrm{RS})$	V (able to auto-reset)	V

Code	Fault name	Normal Mode	Fire Mode	Enable Bypass Function
3	Over-current during steady speed (ocn)	V (RS)	V (able to auto-reset)	V
4	Ground Fault (GFF)	V	V (able to auto-reset)	V
5	IGBT short-circuit between upper bridge and lower bridge (occ)	V(RS)	V (able to auto-reset)	V
6	Over-current at stop (ocS)	V (RS)	V (able to auto-reset)	V
7	Over-voltage during acceleration (ovA)	V (RS)	V (able to auto-reset)	V
8	Over-voltage during deceleration (ovd)	$V(R S)$	V (able to auto-reset)	V
9	Over-voltage at constant speed (ovn)	$V(R S)$	V (able to auto-reset)	V
10	Over-voltage at stop (ovS)	$V(R S)$	V (able to auto-reset)	V
11	Low-voltage during acceleration (LvA)	V	Not-detectable	Not-detectable
12	Low-voltage during deceleration (Lvd)	V	Not-detectable	Not-detectable
13	Low-voltage at constant speed (Lvn)	V	Not-detectable	Not-detectable
14	Low-voltage at Stop (LvS)	V	Not-detectable	Not-detectable
15	Phase loss protection (OrP)	V	V (able to auto-reset)	V
16	IGBT overheating (oH1)	V	V (able to auto-reset)	V
17	Heatsink overheating (oH2)	V	V (able to auto-reset)	V
18	IGBT temperature detection failure (tH1o)	V	V (able to auto-reset)	V
19	Capacitor hardware error (tH2o)	V	V (able to auto-reset)	V
21	Over load (oL) (150\% 1Min, Inverter)	V	Not-detectable	Not-detectable
22	Electronic thermal relay 1 protection (EoL1)	V	Not-detectable	Not-detectable
23	Electronic thermal relay 2 protection (EoL2)	V	Not-detectable	Not-detectable
24	Motor overheating (oH3) (PTC / PT100)	V	V (able to auto-reset)	V
26	Over torque 1 (ot1)	V	Not-detectable	Not-detectable
27	Over torque 2 (ot2)	V	Not-detectable	Not-detectable
28	Under current (uC)	V	Not-detectable	Not-detectable
30	EEPROM write error (cF1)	V	Not-detectable	Not-detectable
31	EEPROM read error (cF2)	V	V	Not-detectable
33	U-phase error (cd1)	V	V	Not-detectable
34	V-phase error (cd2)	V	V	Not-detectable
35	W-phase error (cd3)	V	V	Not-detectable
36	cc (current clamp) hardware error (Hd0)	V	V	Not-detectable
37	oc (over-current) hardware error (Hd1)	V	V	Not-detectable
38	ov (over-voltage) hardware error (Hd2)	V	V	Not-detectable
39	occ hardware error (Hd3)	V	V	Not-detectable
40	Auto-tuning error (AUE)	V	Not-detectable	Not-detectable
41	PID loss ACI (AFE)	V	Not-detectable	Not-detectable
48	ACI loss (ACE)	V	Not-detectable	Not-detectable
49	External fault (EF)	V	Not-detectable	Not-detectable
50	Emergency stop (EF1)	V	Not-detectable	Not-detectable
51	External base block (bb)	V	Not-detectable	Not-detectable
52	Enter wrong password three times and locked (Pcod)	V	Not-detectable	Not-detectable
53	Firmware version error (ccod)	V	V	Not-detectable
54	Illegal command (CE1)	V	Not-detectable	Not-detectable
55	Illegal data address (CE2)	V	Not-detectable	Not-detectable

Code	Fault name	Normal Mode	Fire Mode	Enable Bypass Function
56	Illegal data value (CE3)	V	Not-detectable	Not-detectable
57	Data is written to read-only address (CE4)	V	Not-detectable	Not-detectable
58	Modbus transmission time-out (CE10)	V	Not-detectable	Not-detectable
60	Braking transistor error (bF)	V	Not-detectable	Not-detectable
61	Y-connection / \triangle-connection switch error (ydc)	V	Not-detectable	Not-detectable
62	Deceleration energy backup error (dEb)	V	Not-detectable	Not-detectable
63	Over slip error (oSL)	V	Not-detectable	Not-detectable
64	Electric valve switch error (ryF)	V	Not-detectable	Not-detectable
68	Reverse direction of the speed feedback (SdRv)	V	Not-detectable	Not-detectable
69	Over speed rotation feedback (SdOr)	V	Not-detectable	Not-detectable
70	Large deviation of speed feedback (SdDe)	V	Not-detectable	Not-detectable
71	Watchdog (WDTT)	Not detectable	Not-detectable	Not-detectable
72	STO loss 1 (STL1)	V	V	Not-detectable
73	Emergency stop for external safety (S1)	V	V	Not-detectable
74	Fire mode output (Fire)	V	V (keeps operating)	V (keeps operating)
76	Safety Torque Off (STO)	V	V	Not-detectable
77	STO loss 2 (STL2)	V	V	Not-detectable
78	STO loss 3 (STL3)	V	V	Not-detectable
82	Output phase loss U-phase (OPHL)	V	V(able to auto-reset)	V
83	Output phase loss V-phase (OPHL)	V	V(able to auto-reset)	V
84	Output phase loss W-phase (OPHL)	V	V (able to auto-reset)	V
89	Rotor position detection error (RoPd)	V	V	V
90	Forced to stop (FStp)	V	Not-detectable	Not-detectable
101	CANopen guarding error (CGdE)	V	Not-detectable	Not-detectable
102	CANopen heartbeat error (CHbE)	V	Not-detectable	Not-detectable
104	CANopen bus off error (CbFE)	V	Not-detectable	Not-detectable
105	CANopen index error (CidE)	V	Not-detectable	Not-detectable
106	CANopen station address error (CAdE)	V	Not-detectable	Not-detectable
107	CANopen memory error (CFrE)	V	Not-detectable	Not-detectable
111	InrCOM time-out error (ictE)	V	Not-detectable	Not-detectable
142	Auto-tuning error 1 (no feedback current error) (AUE1)	Not detectable	Not-detectable	Not-detectable
143	Auto-tuning error 2 (motor phase loss error) (AUE2)	Not detectable	Not-detectable	Not-detectable
144	Auto-tuning error 3 (no-load current lo measuring error) (AUE3)	Not detectable	Not-detectable	Not-detectable
148	Auto-tuning error 4 (leakage inductance Lsigma measuring error) (AUE4)	Not detectable	Not-detectable	Not-detectable

06-84 Number of Times of Reset in Fire Mode

Default: 0
Settings 0-10

When a fault occurs in fire mode, the drive attempts resetting the fault to prevent entering bypass mode. Use Pr.06-84 and Pr.06-85 to set this function.When this function is disabled (Pr.06-84=0) and a fault that listed in Table 1 occurs, the drive enters bypass mode (Pr.06-82 = 1, bypass function is enabled).
Example: If Pr.06-83 $=3$, the drive attempts to reset the fault for three times at most. When the fourth fault occurs in the setting time for Pr.06-85, the drive will no longer attempt to reset the fault, and directly goes into Bypass mode after the setting delay time for Pr.06-83.

06-85 Length of Time of Reset in Fire Mode

Default: 60.0
Settings $0.0-6000.0 \mathrm{sec}$.
Tad The settings for Pr.06-82 to Pr.06-85 determine whether to switch the motor operation to mains power when in fire mode.

06-86 Fire Mode Motion

Default: 0

Settings bit0: $0=$ Open Loop; 1 = Close Loop (PID control)
bit1: $0=$ Manual reset fire mode; 1 = Auto reset fire mode
0 : Open loop control and manual reset fire mode
1: Close loop control and manual reset fire mode
2: Open loop control and auto reset fire mode
3: Close loop control and auto reset fire mode
(1) The sequence of Fire mode operation is as the diagram below. Choose the operation mode [open-loop control or close-loop control (PID control)] according to the setting for Pr.06-86.

[a] The Fire mode operating procedure:

- Pr.06-86 bit0 $=0$:

When setting Pr.06-80 $=1$ or 2 , and the multi-functional input terminals $\mathrm{MIX}=58$ is ON , the drive enables the fire mode operation. The drive accelerates to the setting frequency for Pr.06-81, and the keypad KPC-CC01 displays a "Fire" warning. The drive outputs a RUN command for the fire mode when the multi-function output terminal MOx is set to 53 . If you set Pr.06-82=1 to enable the Bypass function and the condition is established, the MOx $=54$ Bypass fire mode indicates action and switches the motor power to the mains power, then the drive stops.

- Pr.06-86 bit0 = 1.

When setting the Pr.06-80 = 1 or 2, and the multi-functional input terminals MIx $=58$ is ON , the drive enables the fire mode operation. The drive runs PID control with Pr.06-87 as PID set point, and the keypad KPC-CC01 displays a Fire warning. The drive outputs a RUN command for the fire mode when the multi-function output terminal MOx is set to 53 . If you set Pr.06-82 = 1 to enable the Bypass function and the condition is established, the $\mathrm{MOx}=$ 54 Bypass fire mode indicates action and switches the motor power to the mains power, then the drive stops.

- If an error occurs to the PID feedback signal, the drive switches to the open-loop control and runs according to the setting frequency for Pr.06-81.

06-87 Fire Mode PID Set Point

Default: 0.00

Settings 0.00-100.00\%

凹】 Sets the PID target value in Fire mode.
The Fire mode reset procedure:
When the terminal MIX $=58$ changes from ON to OFF, the drive starts to run "fire mode reset procedure", and determines whether to "Manual reset" or "Auto reset" fire mode according to the selection of Pr.06-86 bit1.

Wiring Diagram:

1. When $A C$ power is $O N, R B 1$ and $R C 1$ are $O N$, and $R A 1$ and $R C 1$ are OFF.
2. When operating in fire mode and bypass indication function is disabled, RB1 and RC1 are ON, and the motor is driven by the drive.
3. When operating in fire mode and bypass indication function is enabled, RA1 and RC1 are ON, and the motor runs under mains electricity.

[1] When in fire mode, the running direction of the drive is based on Pr.06-80 = 1 (Forward / Counter clockwise operation) or Pr.06-80 = 2 (Reverse / Clockwise operation). Other running direction commands are invalid and Pr.00-23 Motor Operating Direction is not available when in fire mode.
[a] When in fire mode, all keypad command are ignored, including RUN, STOP, JOG and direction commands.
[a] When in fire mode, all RS-485 communication commands are ignored, including RUN, STOP, JOG and direction commands.
[al When in fire mode, B.B. and EF are not activated, including external terminal B.B, communication B.B, external terminal EF, communication EF and external terminal EF1). Any activated B.B. is automatically invalid, including external terminal B.B. and communication B.B., and the drive executes speed tracking.
[1] When in fire mode, activated EF and EF1 are automatically invalid, including external terminals EF \& EF1 and communication EF).
[a] When in fire mode, the JOG command is not available (JOG command source: keypad, external terminals and communications). Any operating JOG command is automatically invalid. When in fire mode, the Acceleration / Deceleration Speed Inhibit function is not available. Any activated acceleration / deceleration speed inhibition is automatically invalid.
[a] When in fire mode, If you set Pr.06-86 to bit0 $=0$ (open-loop control), the drive does not execute parameter group 08 PID function. Any operating PID function is automatically invalid.
[a] When in fire mode, the Hand-Off-Auto function is not available, including multi-function output terminals.

When in fire mode, the drive does not execute the circulative control function, and all circulating control function parameters are cleared. The circulative control function is automatically invalid when in fire mode.

When in fire mode, the drive does not execute the sleep function.
When in fire mode, the drive does not execute the DC brake function. Any operating DC brake is automatically invalid when in fire mode.

When in fire mode, the drive does not execute over-current stall prevention function. Any operating over-current stall prevention is automatically invalid when in fire mode. When in fire mode, over-torque detection function is not available.

When in fire mode, oL1 / oL2 detection function is not available.
When in fire mode, abnormal communication (CE10, CE1, CE2, CE3 and CE4) detection is not available.The cd1, cd2, cd3 and Hd0, Hd1, Hd2, Hd3 are boot check and cannot be cleared. The above errors cannot be cleared when in fire mode. The drive does not operate when in fire mode. Lv protection is not activated when in fire mode, so the drive keeps running or runs until the power is lost. If the Lv error occurs before the fire mode warning, clear the Lv error to operate the drive.

1 If bypass fire mode indication ($\mathrm{MOx}=54$) is activated, reboot the drive and deactivate the fire mode to turn off this terminal output.

When in fire mode, the output stop function is not available.
When in fire mode, the skip frequency function is not available.
When in fire mode, the operating frequency for Pr.06-81 cannot be larger than Pr.01-00 Maximum Output Frequency. If Pr.06-81 > Pr.01-00, the maximum frequency is automatically set to Pr.01-00.

07 Special Parameters

The following are abbreviations for different types of motors:

- IM: Induction motor
- PM: Permanent magnet synchronous AC motor
- IPM: Interior permanent magnet synchronous AC motor
- SPM: Surface permanent magnet synchronous AC motor
- SynRM: Synchronous reluctance motor
\wedge You can set this parameter during operation.

07-00 Software Brake Chopper Action Level

Default:

Settings	230 V models: $350.0-450.0 \mathrm{~V}$ DC	370.0
	460 V models: $700.0-900.0 \mathrm{VDC}$	740.0
	575 V models: $850.0-1116.0 \mathrm{~V}$ DC	895.0

[1] Sets the DC bus voltage at which the brake chopper is activated. Choose a suitable brake resistor to achieve the best deceleration. Refer to Chapter 7 Optional Accessories for information about brake resistors.
[1] This parameter is only valid for the models below 22 kW of 230 V models and 30 kW of 460 V series.

07-01 DC Brake Current Level

Default: 0
Settings 0-100\%
[10] 100\% corresponds to the rated current of the drive (Pr.00-01).
[1] Sets the level of the DC brake current output to the motor at start-up and stop. It is recommended that you start with a low DC brake current level and then increase until you reach the proper holding torque. However, the DC brake current cannot exceed the motor's rated current to prevent the motor from burnout. Do NOT use the DC brake for mechanical retention, otherwise, injury or accident may occur.
[1] The PM has the magnetic field itself, using the DC brake may possibly cause the motor run in a reverse direction, therefore, it is not recommended to use DC brake for PM.

07-02 DC Brake Time at Start-up

Default: 0.0
Settings $0.0-60.0 \mathrm{sec}$.
[1] The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. If you use the drive with the motor rotating, it may cause motor damage or trigger drive protection due to over-current. This parameter outputs DC current, generating torque to force the motor to stop to get a stable start before more operation. This parameter determines the duration of the DC brake current output to the motor when the drive starts up. Setting this parameter to 0.0 disables the DC brake at start-up.
1 The PM has the magnetic field itself, using the DC brake may possibly cause the motor run in a reverse direction, therefore, it is not recommended to use DC brake for PM. Use Pr.10-49 zero voltage command to force the motor decelerate or to stop.

07-03 DC Brake Time at STOP

Default: 0.0
Settings $0.0-60.0 \mathrm{sec}$.
The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. This parameter outputs DC current, generating torque to force the drive stop after the drive stops output to make sure that the motor stops.
This parameter determines the duration of the DC brake current output to the motor when braking. To enable DC brake at STOP, you must set Pr.00-22 (Stop Method) to 0 (ramp to stop). Set this parameter to 0.0 to disable the DC brake at stop.
凹 Related parameters: Pr.00-22 Stop Method, Pr.07-04 DC Brake Frequency at STOP.

07-04 DC Brake Frequency at STOP

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[】 Determines the start frequency of the DC brake before the drive ramps to stop. When this setting is less than Pr.01-09 (Start-up Frequency), the start frequency for the DC brake begins at the minimum frequency.

[ad Use the DC brake before running the motor when the load is movable at stop, such as with fans and pumps. The motor is in free running status and in unknown rotation direction before the drive starts up. Execute the DC brake before you start the motor.
$\mathbb{1}$ Use the DC brake at STOP when you need to brake the motor quickly or to control the positioning, such as with cranes or cutting machines.

07-05 Voltage Increasing Gain

Default: 100
Settings 1-200\%
\llbracket When using speed tracking, adjust Pr.07-05 to slow down the increasing voltage gain if there are errors such as oL or oc; however, the speed tracking time will be longer.

07-06 Restart after Momentary Power Loss

Default: 0
Settings 0: Stop operation
1: Speed tracking by the speed before the power loss
2: Speed tracking by the minimum output frequency
[a] Determines the operation mode when the drive restarts from a momentary power loss.
The power system connected to the drive may power off momentarily due to many reasons. This function allows the drive to keep outputting after the drive is repowered and does not cause the drive to stop.
[a] 1: Frequency tracking begins before momentary power loss and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is a lot of inertia with little resistance on the motor load. For example, in equipment with a large inertia flywheel, there is NO need to wait until the flywheel stops completely after a restart to execute the operation command; therefore, it saves time.

1. 2: Frequency tracking starts from the minimum output frequency and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is little inertia and large resistance.
[a] This function is only valid when the RUN command is enabled.

07-07 Allowed Power Loss Duration

Default: 2.0
Settings $0.0-20.0 \mathrm{sec}$.
Determines the maximum time of allowable power loss. If the duration of a power loss exceeds this parameter setting, the AC motor drive stops output after the power recovers.
[1] Pr.07-06 is valid when the maximum allowable power loss time is ≤ 20 seconds and the AC motor drive displays Lv. If the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤ 20 seconds, Pr.07-06 is invalid after the power recovers.

07-08 Base Block Time

Default: Depending on the model power

Settings $\quad 0.0-5.0 \mathrm{sec}$. (Depending on the model power)

[1] When momentary power loss is detected, the AC motor drive blocks its output and then waits for a specified period of time (determined by Pr.07-08, called Base Block Time) before resuming operation. Set this parameter to the time that allows the residual voltage at the output side to decrease to 0 V before activating the drive again.
$[$ This parameter is not only for the B.B. time, but also is the re-start delay time after free run.
The RUN command during a free run operation is memorized, and runs or stops with the last frequency command after the delay time.
[1] This delay time is only applicable in "Re-start after coast to stop" status, and does not limit ramp to stop. The coast to stop can be caused by various control command source, or by errors.
1 Following table is the recommended setting for re-start delay time of each model power. You must set Pr. 07-08 according to this table (the default of each model power is based on this table as well).

kW	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11.0	15.0
HP	1	2	3	5	5.5	7.5	10	15	20
Delay time (sec.)	0.3	0.4	0.5	0.6	0.7	0.7	0.8	0.9	1

kW	18.5	22.0	30.0	37.0	45.0	55.0	75.0	90.0
HP	25	30	40	50	60	75	100	125
Delay time (sec.)	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8

B.B. Search with last output frequency downward timing chart

B.B. Search with minimum output frequency upward timing chart

B.B. Search with minimum output frequency upward timing chart

07-09 Current Limit of Speed Tracking

Default: 100
Settings 20-200\% (100\% corresponds to the light-duty rated current of the drive)
[1] The AC motor drive executes speed tracking only when the output current is greater than the value set in Pr.07-09.
(1) The maximum current for speed tracking affects the synchronous time. The larger the parameter setting is, the faster the synchronization occurs. However, if the parameter setting is too large, the overload protection function may be activated.

07-10 Restart after Fault Action

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Stop operation } \\
& \text { 1: Speed tracking by current speed } \\
& \text { 2: Speed tracking by the minimum output frequency }
\end{array}
$$

Faults include bb, oc, ov, and occ. To restart after oc, ov and occ, you cannot set Pr.07-11 to 0 .

07-11 Number of Times of Restart after Fault

Default: 0

Settings 0-10

After fault (oc, ov, and occ) occurs, the AC motor drive can reset and restart automatically up to 10 times. When Pr.07-11 is set to 0 , the drive resets or restarts automatically after faults occur. The drive starts according to the Pr.07-10 setting after restarting after fault.
[1] If the number of faults exceeds the Pr.07-11 setting, the drive does not restart and reset until you press RESET manually and execute the operation command again.

07-12 Speed Tracking during Start-up

Default: 0
Settings 0: Disable
1: Speed tracking by the maximum output frequency
2: Speed tracking by the motor frequency start-up
3: Speed tracking by the minimum output frequency
1 Speed tracking is suitable for punch, fans and other large inertia loads. For example, a mechanical punch usually has a large inertia flywheel, and the general stop method is coast to stop. If it needs to be restarted again, the flywheel may take 2-5 minutes or longer to stop. This parameter setting allows you to start the flywheel operating again without waiting until the flywheel stops completely.
1 When using PM, Pr.07-12 $\neq 0$, the speed tracking function is enabled. When Pr.07-12 $=1,2$ or 3, the output frequency converts to the actual rotor speed from zero-speed.When using SynRM control mode, only Pr.07-12 = 3 (speed tracking by the minimum output frequency) is enabled.

07-13 dEb Function Selection

Default: 0
Settings
0: Disable
1: dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored.
2: dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored
dEb (Deceleration Energy Backup) lets the motor decelerates to stop when momentary power loss occurs. When the power loss is instantaneous, use this function to let the motor decelerate to zero speed. If the power recovers at this time, the drive restarts the motor after the dEb return time.
Lv return level: Default value depends on the drive power model
Motors from frame A, B, C, D = Pr.06-00 + 60V / 30V (230V models)
Lv level: Default = Pr.06-00
During dEb operation, other protection such as ryF, ov, oc, occ and EF may interrupt it, and these error codes are recorded.
[l] The STOP (RESET) command does not work during the dEb auto-deceleration, and the drive continues decelerating to stop. To make the drive coast to stop immediately, use another function (EF) instead.
[al The B.B. function does not work when executing dEb. The B.B. function is enabled after the dEb function finishes.
1 Even though the Lv warning does not display during dEb operation, if the DC bus voltage is lower than the Lv level, MOx = 10 (Low voltage warning) still operates.
[1] The following explains the dEb action:
When the DC voltage drops below the dEb setting level, the dEb function starts to work (soft start relay remains closed) and the drive executes auto-deceleration.

- Situation 1: Momentary power loss, or too low and unstable power voltage, or power supply sliding down because of sudden heavy load.
Pr.07-13 = 1, "dEb active, DC bus voltage returns, output frequency does not return" and power recovers. When the power recovers and DC bus voltage exceeds the dEb return level, the drive linearly decelerates to 0 Hz and stops. The keypad displays the dEb warning until you manually reset it, so that you can see the reason for the stop.

- Situation 2: Momentary power loss or too low and unstable power voltage, or power supply sliding down because of sudden heavy load.
Pr. $07-13=2$ "dEb active, DC bus voltage returns, output frequency returns" and power recovers. During the dEb deceleration time (includes 0 Hz run), if the power recovers to a voltage higher than dEb return level, the drive maintains the frequency for the set time of Pr.07-14 (default = 3 sec.) and then accelerates again. The dEb warning on the keypad is automatically cleared.

- Situation 3: Unexpected power shut down or power loss

Pr.07-13 = 1 "dEb active, DC bus voltage returns, the output frequency does not return" and the power does not recover. The keypad displays the dEb warning and stops after decelerating to the lowest operating frequency. When the DC bus voltage is lower than the Lv level, the drive disconnects the soft start relay until the power completely runs out.

- \quad Situation 4:

Pr.07-13 = 2 "dEb active, DC bus voltage returns, the output frequency returns" and power does not recover. The drive decelerates to 0 Hz . The DC bus voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft-start relay. The keypad displays dEb warning until the drive completely runs out of power.

07-15 Dwell Time at Acceleration

Default: 0.00
Settings 0.00-600.00 sec.

07-16 Dwell Frequency at Acceleration

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

07-17 Dwell Time at Deceleration

Default: 0.00
Settings $0.00-600.00 \mathrm{sec}$.

07-18 Dwell Frequency at Deceleration

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
In the heavy load situation, Dwell can make stable output frequency temporarily.
[a] When the load is heavier, use Pr.07-15-Pr.07-18 to avoid ov or oc protection.

07-19 Fan Cooling Control

Default: 0

Settings 0: Fan is always ON

1: Fan is OFF after the AC motor drive stops for one minute
2: Fan is ON when the AC motor drive runs; fan is OFF when the AC motor drive stops

3: Fan turns ON when temperature (IGBT) reaches around $60^{\circ} \mathrm{C}$
4: Fan is always OFF
凹】 Use this parameter to control the fan.
[al Fan runs immediately when the drive power is turned ON.
[1] 1: Fan runs when the AC motor drive runs. One minute after the AC motor drives stops, the fan is OFF.

2: Fan runs when the $A C$ motor drive runs and stops immediately when $A C$ motor drive stops.
(1) Fan is ON when IGBT or capacitance temperature is $>60^{\circ} \mathrm{C}$

Fan is OFF when IGBT and capacitance temperature are both $<40^{\circ} \mathrm{C}$, and the drive stops running.
(1) Setting 4: Fan is always OFF
[1] Pr.07-19 only controls the external fan (heat sink fan) on CFP2000. The internal fan (capacitor fan) is ON whenever the drive is power on, and cannot be closed by this parameter.

07-20 Emergency Stop (EF) \& Force to Stop Selection

Default: 0
Settings 0: Coast to stop
1: Stop by the first deceleration time
2: Stop by the second deceleration time
3: Stop by the third deceleration time
4: Stop by the fourth deceleration time
5: System deceleration
6: Automatic deceleration
[1] When the multi-function input terminal setting is set to 10 (EF input) or 18 (force to stop) and the terminal contact is ON, the drive stops according to the setting of this parameter.

07-21 Automatic Energy-saving (AES) Selection

Default: 0
Settings 0: Disable
1: Power factor energy-saving improvement (for VF and SVC control modes)
2: Automatic energy-saving optimization (for VF and SVC control modes)
[a] Different control modes for Pr.07-21:

Settings / Control mode	Induction Motor (IM)		Permanent Magnet Synchronous Motor (PM)		Synchronous Reluctance Motor (SynRM)
	VF	SVC	PMSVC	PMFOC	FOC
1: Power factor energy-saving improvement	\checkmark	\checkmark			
2: Automatic energy-saving optimization	\checkmark	\checkmark			

[1] Power factor energy-saving improvement (Pr.07-21 = 1):

- When the automatic energy-saving function is enabled, the drive runs with full-voltage during acceleration and deceleration, and runs with the optimal voltage that is automatically calculated by the load power during constant operation. It is not recommended to use this function for applications that require frequent load changes or when the load is close to full-load during operation.
- The prerequisites for valid power factor energy-saving improvement (Pr.07-21 = 1) are:
A. Power factor angle is larger than Pr.07-43 (Targeted Power Factor Angle for AES)
B. Output frequency is larger than Pr.07-41 (Minimum Frequency for AES)
C. The drive is in a steady-state output frequency status
D. Time for steady-state output frequency is larger than Pr.07-42 (Delay Time for AES)
E. Output current is smaller than or equal to 90% of the drive's rated current
- The prerequisites for invalid power factor energy-saving improvement $(\operatorname{Pr} .07-21=1)$ are:

1. A changing output frequency
2. Output current is larger than 90% of the drive's rated current

\llbracket Automatic energy-saving optimization (Pr.07-21 = 2):

- Controls the output voltage to minimize the motor's losses for optimal energy-saving. The motor's losses are calculated by motor parameter auto-tuning and energy-saving coefficient.
- Automatic energy-saving optimization control is according to the block diagram below:

Pr.07-21 Auto Energy-saving (AES) Selection
Pr.07-41 Minimum Frequency for AES
Pr.07-42 Delay Time for AES

- The prerequisites for valid automatic energy-saving optimization (Pr.07-21 = 2) are:
A. Output frequency is larger than Pr.07-41 (Minimum Frequency for AES)
B. The drive is in a steady-state output frequency status
C. Time for steady-state output frequency is larger than Pr.07-42 (Delay Time for AES)
- The prerequisites for invalid automatic energy-saving optimization (Pr.07-21 $=2$) are:

1. A changing output frequency
2. The loss model automatically determines the voltage drops when the drive is in normal and heavy duty. If there is no more voltage that can be adjusted, that is, the voltage drop is already optimized, AES is invalid.

[a] The energy-saving function is invalid during the drive's acceleration and deceleration. To make it valid, the prerequisites need to be verified again.

07-22 Energy-saving Gain

Default: 100

Settings 10-1000\%

When Pr.07-21 is set to 1 , use this parameter to adjust the energy-saving gain. The default is 100%. If the result is not satisfactory, adjust it by decreasing the setting value. If the motor oscillates, then increase the setting value.
[1] In certain applications such as high-speed spindles, the temperature rise in the motor is a major concern. When the motor is not in working state, reduce the motor current to a lower level. Reduce this parameter setting to meet this requirement.

07-23 Automatic Voltage Regulation (AVR) Function

Default: 0

Settings 0: Enable AVR
1: Disable AVR
2: Disable AVR during deceleration

[1] The rated voltage of the motor is usually $200-240 \mathrm{~V}_{\mathrm{AC}}\left(380-480 \mathrm{~V}_{\mathrm{AC}}\right), 60 \mathrm{~Hz} / 50 \mathrm{~Hz}$ and the input voltage of the $A C$ motor drive may vary between $170-264 \mathrm{~V}_{\mathrm{AC}}\left(323-528 \mathrm{~V}_{\mathrm{AC}}\right), 50 \mathrm{~Hz} / 60$ Hz . Therefore, when the AC motor drive is used without AVR function, the output voltage is the same as the input voltage. When the motor runs at the voltage exceeding $12-20 \%$ of the rated voltage, it causes higher temperature, damaged insulation, and unstable torque output, which result in losses due to shorter motor lifetime.
[1] The AVR function automatically regulates the output voltage of the AC motor drive to the motor's rated voltage when the input voltage exceeds the motor's rated voltage. For example, if the V/F curve is set at $200 \mathrm{~V}_{\mathrm{AC}} / 50 \mathrm{~Hz}$ and the input voltage is at $200-264 \mathrm{~V}_{\mathrm{Ac}}$, then the drive automatically reduces the output voltage to the motor to a maximum of $200 \mathrm{~V}_{\mathrm{AC}} / 50 \mathrm{~Hz}$. If the input voltage is at $170-200 \mathrm{~V}_{\mathrm{AC}}$, the output voltage to motor is in direct proportion to the input voltage.
1 0: when the AVR function is enabled, the drive calculates the output voltage according to the actual DC bus voltage. The output voltage does NOT change when the DC bus voltage changes.
(1) 1: when the AVR function is disabled, the drive calculates the output voltage according to the actual DC bus voltage. The output voltage changes with the DC bus voltage, and may cause insufficient current, over-current or shock.
[1] 2: the drive disables the AVR function only during deceleration to stop, and at this time, you can accelerate the braking to achieve the same result.
When the motor ramps to stop, disable the AVR function to shorten the deceleration time. Then, use with the auto-acceleration and auto-deceleration functions to make the motor's deceleration more stable and quicker.

07-24 Torque Command Filter Time (V/F and SVC Control Mode)

Default: 0.500
Settings $0.001-10.000 \mathrm{sec}$.
(1) When the time constant setting is too large, the control is stable but the control response is slow.

When the time constant setting is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting based on the control stability or the control response.

07-25 Slip Compensation Filter Time (V/F and SVC Control Mode)

Default: 0.100
Settings $0.001-10.000 \mathrm{sec}$.
[1] Change the compensation response time with Pr.07-24 and Pr.07-25.
[1] If you set Pr.07-24 and Pr.07-25 to 10 seconds, the compensation response time is the slowest; however, the system may be unstable if you set the time too short.

07-26 Torque Compensation Gain

$$
\text { Default: } 0
$$

$$
\begin{array}{ll}
\text { Settings } & \text { IM: } 0-10(\text { when Pr. } 05-33=0) \\
& \text { PM: } 0-5000(\text { when Pr. } 05-33=1 \text { or } 2)
\end{array}
$$

Only applicable in IMVF and PMSVC control modes.
[1] With a large motor load, a part of drive output voltage is absorbed by the stator-winding resistor; therefore, the air gap magnetic field is insufficient. This causes insufficient voltage at motor induction and results in excessive output current but insufficient output torque. Auto-torque compensation can automatically adjust the output voltage according to the load and keep the air gap magnetic fields stable to get the optimal operation.
[l] In the V/F control, the voltage decreases in direct proportion when decreasing frequency. The torque decrease at low speed because of a decreasing AC resistor and an unchanged DC resistor. The auto-torque compensation function increases the output voltage at low frequency to get a higher start torque.
When the compensation gain is set too large, it may cause motor over-flux and result in a too large output current of the drive, motor overheating or trigger the drive's protection function.

07-27 Slip Compensation Gain

Default: 0.00
(Default value is 1.00 in SVC mode)
Settings 0.00-10.00
@ Only applicable in IMVF and IMSVC control modes.
[1] The induction motor needs constant slip to produce electromagnetic torque. It can be ignored at a higher motor speed, such as rated speed or $2-3 \%$ of slip.
$[$ However, during the drive operation, the slip and the synchronous frequency are in reverse proportion to produce the same electromagnetic torque. The slip is larger with the reduction of synchronous frequency. Moreover, the motor may stop when the synchronous frequency decreases to a specific value. Therefore, the slip seriously affects the motor speed accuracy at low speed.
[1 In another situation, when you use an induction motor with the drive, the slip increases when the load increases. It also affects the motor speed accuracy.
[1] Use this parameter to set the compensation frequency, and reduce the slip to maintain the synchronous speed when the motor runs at the rated current in order to improve the accuracy of the drive. When the drive output current is higher than Pr.05-05 (No-load Current of Induction Motor 1 (A)), the drive compensates the frequency according to this parameter.
[1] This parameter is set to 1.00 automatically when Pr.00-11 (Speed Control Method) is changed from V/F mode to vector mode. Otherwise, it is automatically set to 0.00 . Apply the slip compensation after load and acceleration. Increase the compensation value from small to large gradually; add the output frequency to the [motor rated slip \times Pr.07-27 (Slip Compensation Gain)] when the motor is at the rated load. If the actual speed ratio is slower than expected, increase the parameter setting value; otherwise, decrease the setting value.

07-29 Slip Deviation Level

Default: 0.0
Settings 0.0-100.0\%
0: No detection

07-30 Over-slip Deviation Detection Time

Default:1.0
Settings $0.0-10.0 \mathrm{sec}$.

07-31 Over-slip Deviation Treatment

Default: 0
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
3: No warning
(1) Pr.07-29 to Pr.07-31 set the allowable slip level / time and the over-slip treatment when the drive is running.

07-32 Motor Oscillation Compensation Factor

Default: 1000

Settings	$0-10000$
	$0:$ Disable

If there are current wave motions that cause severe motor oscillation in some specific area, setting this parameter can effectively improve this situation. (When running with high frequency, set this parameter to 0 . When the current wave motion occurs in low frequency and high power, increase the value for Pr.07-32.)

07-33 Auto-restart Interval of Fault

Default: 60.0
Settings $0.0-6000.0 \mathrm{sec}$.
[1] When a reset / restart occurs after a fault, the drive uses Pr.07-33 as a timer and starts counting the numbers of faults within this time period. Within this period, if the number of faults does not exceed the setting for Pr.07-11, the counting clears and starts from 0 when the next fault occurs.

07-38 PMSVC Voltage Feed Forward Gain

Default: 1.00
Settings $0.00-2.00$
ㄸ. Adjusts the PMSVC voltage feedback forward gain, and to meet the demand of rapid feedback application.
(1) Pr.07-38 = 1.00 means forward feedback $=\mathrm{Ke} \times$ motor rotor speed
[a] Refer to Section 12-2 PMSVC Adjustment for details.

07-41 Minimum Frequency for AES

Default: 10.00
Settings $\quad 0.00-40.00 \mathrm{~Hz}$
[al The drive's output frequency must be larger than Pr.07-41 to make the drive determine whether to run in a steady-state output frequency.
In In general, larger power and voltage can give more energy-savings; lower power and voltage produce less energy-savings. However, too low power and voltage are not suitable for low-speed operation because it needs a larger starting current. Pr.07-41 is the parameter that limits the minimum frequency when AES is enabled (Pr.07-41 to Pr.01-00 is the frequency range - from minimum to maximum - that you can use for the AES function).

07-42 Delay Time for AES

Default: 5
Settings 0-600 sec.
1 When the drive runs in a steady-state output frequency, and exceeds Pr.07-42 setting time, the drive enters the energy-saving mode.

07-43 Targeted Power Factor Angle for AES

Default: 40.00
Settings $0.00-65.00^{\circ}$
凹 Use this function when Pr.07-21 = 1. If the power factor angle is larger than Pr.07-43, the drive continuously adjusts the energy-saving until it is smaller than Pr.07-43.
[1] Pr.07-43 is the angle φ between active power and reactive power. The smaller $\operatorname{COS} \varphi$, the lower the reactive power, and the lower the loss.

07-44 Maximum Voltage Drop for AES

Default: 60.00
Settings 0.00-70.00\%
[ad Defines the maximum allowed voltage drop when the drive is in energy-saving mode.
\mathbb{L} The drive has bigger energy-saving efficiency when running in no-load or light-load. But the output voltage drop is not unlimited. Use Pr.07-44 to limit the maximum ratio (\%) of the output voltage drop.
Example:
(1) If $\operatorname{Pr} .01-01=60 \mathrm{~Hz}, \operatorname{Pr} .01-02=380 \mathrm{~V}_{\mathrm{Ac}}$, the frequency command is 60 Hz and the actual voltage output is $371.2 \mathrm{~V}_{\mathrm{AC}}$, and $\operatorname{Pr} .07-44=60 \%$, then the maximum voltage drop $=380 \mathrm{~V}$ (the voltage command corresponding to the frequency command in the VF table: 60 Hz
corresponds to 380 V) $\times 60 \%=228 \mathrm{~V}_{\mathrm{Ac}}$.
(2) If the frequency command is 30 Hz , the corresponding voltage is $200 \mathrm{~V}_{\mathrm{AC}}$ in the VF table, and Pr.07-44 $=60 \%$, then the maximum voltage drop $=200 \mathrm{~V} \times 60 \%=120 \mathrm{~V}_{\mathrm{AC}}$.

07-45 AES Coefficient

Default: 100

Settings 0-10000\%

10] Defines the motor power loss constant. Default 100\% corresponds to the drive's iron loss constant that is calculated by motor parameter auto-tuning or motor nameplate information.
[a] Pr.07-45 affects the final steady-state output voltage value for the energy-saving control. The larger the Pr.07-45 setting value, the higher the steady-state output voltage (smaller voltage drop). The smaller the Pr.07-45 setting value, the lower the steady-state output voltage (larger voltage drop).See below for the flowchart of AES adjustment with motor parameter auto-tuning (recommended):

ⓓ See below for the flowchart of AES adjustment without motor parameter auto-tuning (not recommended):

07-50 PWM Fan Speed

Default: 60
Settings 60-100\%For different application and environment, adjust the fan speed to expedite the heat dissipation of the drive.Default for 460 V models ($45 \mathrm{~kW}, 55 \mathrm{~kW}, 75 \mathrm{~kW}$ and 90 kW) is 80%; default for other models are 60\%.230V models: 18.5 kW and above models are controlled by PWM fan speed control, and Pr.07-50 is available.460 V models: 22 kW and above models are controlled by PWM fan speed control, and Pr.07-50 is available.575V models is controlled by PWM, and Pr.07-50 is available.

08 High-function PID Parameters

\checkmark You can set this parameter during operation.

08-00 Terminal Selection of PID Feedback

Default: 0
Settings 0: No function
1: Negative PID feedback: by analog input (Pr.03-00-03-02)
4: Positive PID feedback: by analog input (Pr.03-00-03-02)
Pr. 08-00 $=0$ enables the PID function.
[】] Negative feedback:
Error = +Target value (set point) - Feedback. Use negative feedback when the detection value increases if the output frequency increases.
@ Positive feedback:
Error = -Target value (set point) + Feedback. Use positive feedback when the detection value decreases if the output frequency increases.
[a] When $\operatorname{Pr} .08-00 \neq 7$ or $\neq 8$, the input value is disabled. The setting value does not remain when the drive is powered off.
[1] When Pr.08-00 $\neq 0$, the related applicable parameters include:

- Pr.00-20 (Master frequency command source (AUTO) / Source selection of PID target)
- Pr.03-00-03-02 (Analog input selection)

When Pr.00-20 $=2$ (External analog input), set Pr.03-00-03-02 $=4$ (PID target value)
When Pr.08-00 $=2$ or 4 , set Pr.03-00-03-02 $=5$ (PID feedback signal)
Refer to the following description for details.

Master Frequency Command Source (AUTO) / Source Selection of the PID Target

Default: 0
Settings 0: Digital keypad
1: RS-485 communication input
2: External analog input (Refer to Pr.03-00-03-02)
3: External UP / DOWN terminal
6: CANopen communication card
8: Communication card (does not include CANopen card)

03-00 Analog Input Selection (AVI1)

Default: 1

03-01 Analog Input Selection (ACI)

Default: 0

03-02 Analog Input Selection (AVI2)

Default: 0

Settings 4: PID target value
5: PID feedback signal

Common applications for PID control

1. Flow control: Use a flow sensor to feedback the flow data and perform accurate flow control.
2. Pressure control: Use a pressure sensor to feedback the pressure data and perform precise pressure control.
3. Air volume control: Use an air volume sensor to feedback the air volume data to achieve excellent air volume regulation.
4. Temperature control: Use a thermocouple or thermistor to feedback temperature data for comfortable temperature control.
5. Speed control: Use a speed sensor feedback motor shaft speed or input another machine speed as a target value for synchronous control.

PID control loop:
Drive execute PID control

K_{p} : Proportional gain (P) T_{i} : Integral time (I) T_{d} : Derivative control (D) S: Operator

Concept of PID control

[a] Proportional gain (P):
The output is proportional to input. With only proportional gain control, there is always a steady-state error.

Adjustment: Turn off the Ti and Td , or remain Ti and Td in constant value, then adjust the proportional gain (P).

Increase: Faster status feedback, but excessive adjustment increases the overshoot.
Decrease: Smaller overshoot, but excessive adjustment slows down the transient response.
[a] Integral time(I):
The controller output is proportional to the integral of the controller input. When an automatic control system is in a steady state and a steady-state error occurs, the system is called a System with Steady-state Error. To eliminate the steady-state error, add an "integral part" to the controller. The integral time controls the relation between integral part and the error. The integral part increases over time even if the error is small. It gradually increases the controller output to eliminate the error until it is zero. This stabilizes the system without a steady-state error by using proportional gain control and integral time control.

Adjustment: The integral time (I) accumulates from the time difference, if the vibration cycle is longer than the setting for integral time, the integration enhances. Increase the integral time (I) to reduce the vibration.
Increase: Reduce the overshoot, excessive adjustment causes worse transient response. Decrease: Faster transient response, but the transient time will be longer, and takes more time to achieve the steady state. Excessive adjustment causes larger overshoot.
[1] Differential control (D):
The controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. Use the differential control to suppress these effects by acting before the error. That is, when the error is near zero, the differential control should be zero. Use proportional gain (P) and differential control (D) to improve the system state during PID adjustment.

Adjustment: When the vibration cycle is shorter and continuous, it means that the differential time setting is too large, and causes excessive output. Decrease the setting of D gain to reduce the vibration. If the D gain is set to 0 , adjust the PID control again.

Using PID control in a constant pressure pump feedback application:

Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor sends the actual value as the PID feedback value. After comparing the PID set point and PID feedback, an error displays. The PID controller calculates the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to use a different pump speed and achieves constant pressure control by using a 4-20 mA signal corresponding to $0-10$ bar as feedback to the drive.

- Pr.00-04 = 10 (Display PID feedback (b) (\%))
- Pr.01-12 Acceleration Time is set according to actual conditions.
- Pr.01-13 Deceleration Time is set according to actual conditions.
- Pr.00-21 $=0$ to operate through the digital keypad
- Pr.00-20 $=0$, the digital keypad controls the set point.
- Pr.08-00 = 1 (Negative PID feedback from analog input)
- ACI analog input Pr.03-01 = 5, PID feedback signal.
- Pr.08-01-08-03 is set according to actual conditions:

If there is no vibration in the system, increase Pr.08-01 (Proportional Gain (P))
If there is no vibration in the system, reduce Pr.08-02 (Integral Time (I))
If there is no vibration in the system, increase Pr.08-03 (Differential Time (D))

- Refer to Pr.08-00-08-21 for PID parameter settings.

08-01 Proportional Gain (P)

Default: 1.0
Settings 0.0-100.0\%
1.0 : Kp gain is 100%; if the setting is $0.5, \mathrm{Kp}$ gain is 50%.

Sets the proportional gain to determine the deviation response speed. The higher the proportional gain, the faster the response speed. Eliminates the system deviation; usually used to decrease the deviation and get faster response speed, it also reduces the steady-state error. If you set the value too high, overshoot occurs and it may cause system oscillation and instability.
$\mathbb{\square}$ If you set the other two gains (I and D) to zero, proportional control is the only effective parameter.

08－02 Integral Time（I）

Settings $0.00-100.00 \mathrm{sec}$ ．
0．00：No integral
凹u Use the integral controller to eliminate the deviation during stable system operation．The integral control does not stop working until the deviation is zero．The integral is affected by the integral time．The smaller the integral time，the stronger integral action．It is helpful to reduce overshoot and oscillation for a stable system．Accordingly，the speed to lower the steady－state deviation decreases．The integral control is often used with the other two controls for the PI controller or PID controller．
1 Sets the integral time of the I controller．When the integral time is long，there is a small I controller gain，with slower response and slow external control．When the integral time is short， there is a large gain of I controller gain，with faster response and rapid external control．
［1］When the integral time is too short，it may cause overshoot or oscillation for the output frequency and system．
凹】 Set integral time to 0.00 to disable the I controller．

08－03 Differential Time（D）

Default： 0.00
Settings $0.00-1.00 \mathrm{sec}$ ．
［1］Use the differential controller to show the system deviation change，as well as to preview the change in this deviation．You can use the differential controller to eliminate the deviation in order to improve the system state．Using a suitable differential time can reduce overshoot and shorten adjustment time；however，the differential operation increases noise interference．Note that a too large differential causes more noise interference．In addition，the differential shows the change and the output is 0 when there is no change．Note that you cannot use the differential control independently．You must use it with the other two controllers for the PD controller or PID controller．
［1 Sets the D controller gain to determine the deviation change response．Using a suitable differential time reduces the P and I controllers overshoot to decrease the oscillation for a stable system．A differential time that is too long may cause system oscillation．
［a］The differential controller acts on the change in the deviation and cannot reduce the interference． Do not use this function when there is significant interference．

08－04 Upper Limit of Integral Control

Default： 100.0
Settings 0．0－100．0\％
Defines an upper bound for the integral gain（I）and therefore limits the master frequency．The formula is：Integral upper bound $=$ Maximum Output Frequency（Pr．01－00）\times Pr．08－04 \％．
［0］An excessive integral value causes a slow response due to sudden load changes and may cause motor stall or machine damage．If so，decrease it to a proper value．

08-05 PID Output Command Limit

Default: 100.0
Settings 0.0-110.0\%
Defines the percentage of the output command limit during the PID control. The formula is Output Command Limit $=$ Maximum Output Frequency (Pr.01-00 \times Pr.08-05 \%).

08-06 PID Feedback Value Display

Default: Read only
Settings -200.00-200.00\%

08-07 Delay Time

Default: 0.0
Settings $0.0-35.0 \mathrm{sec}$.

08-20 PID Mode Selection

Default: 0

Settings 0: Serial connection

1: Parallel connection
0: Serial connection, use conventional PID control structure.
1: Parallel connection, the proportional gain, integral gain and differential gain are independent. You can customize the P, I and D value to fit your application.
[1] Pr.08-20 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the drive's response speed.
[ad PID control output frequency is filtered with a primary low pass function. This function can filter a mix frequency. A long primary low pass time means the filter degree is high and a short primary low pass time means the filter degree is low.
Inappropriate delay time setting may cause system oscillation.
(1) PI Control:

Controlled only by the P action, so the deviation cannot be entirely eliminated. In general, to eliminate residual deviations, use the $\mathrm{P}+\mathrm{I}$ control. When you use the PI control, it eliminates the deviation caused by the targeted value changes and the constant external interferences.

However, if the I action is too powerful, it delays the response when there is rapid variation. You can use the P action by itself to control the loading system with the integral components.
PD Control:
When deviation occurs, the system immediately generates an operation load that is greater than the load generated only by the D action to restrain the deviation increment. If the deviation is small, the effectiveness of the P action decreases as well. The control objects include applications with integral component loads, which are controlled by the P action only. Sometimes, if the integral component is functioning, the whole system may vibrate. In this case, use the PD control to reduce the P action's vibration and stabilize the system. In other words, this control is useful with no brake function's loading over the processes.
\Perp PID Control:
Use the I action to eliminate the deviation and the D action to reduce oscillation; then combine this with the P action for the PID control. Use the PID method for a control process with no deviations, high accuracies and a stable system.

Serial connection

Parallel connection

08-08 Feedback Signal Detection Time

Default: 0.0
Settings $0.0-3600.0 \mathrm{sec}$.
\square Valid only when the feedback signal is $\mathrm{ACI}(4-20 \mathrm{~mA})$.
[1 This parameter sets the detection time for abnormal PID feedback. You can also use it when the system feedback signal response is extremely slow. (Setting the detection time to 0.0 disables the detection function.)

08-09 Feedback Signal Fault Treatment

Default: 0
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
3: Warn and operate at last frequency
[1] Valid only when the feedback signal is $\mathrm{ACl}(4-20 \mathrm{~mA})$.
! Sets the treatments when the PID feedback signal is abnormal.

08-10 Sleep Level

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$ or $0-200.00 \%$
[1] Determines the sleep level, and if the sleep time and the wake-up level are enabled or disabled. When Pr.08-10 = 0: Disabled; when Pr.08-10 $=0$: Enable.

08-11 Wake-up Level

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$ or $0-200.00 \%$
[1] When Pr. 08-18 = 0, the unit for Pr.08-10 and that for Pr.08-11 switch to frequency. The settings become $0.00-599.00 \mathrm{~Hz}$.
When Pr.08-18 = 1, the unit for Pr.08-10 and that for Pr.08-11 switch to percentage. The settings are between 0-200.00\%.
[a] The percentage is based on the current command value, not the maximum value. For example, if the maximum value is 100 kg , and the current value is 30 kg , then if $\operatorname{Pr} .08-11=40 \%$, the value is 12 kg .
(1) Pr.08-10 uses the same logic for calculation.

08-12 Sleep Delay Time

Default: 0.0
Settings $0.0-6000.0 \mathrm{sec}$.
[1] When the frequency command is smaller than the sleep frequency and less than the sleep time, the frequency command is equal to the sleep frequency. However, the frequency command remains at 0.00 Hz until the frequency command becomes equal to or larger than the wake-up frequency.

08-13 PID Feedback Signal Error Deviation Level

Default: 10.0
Settings 1.0-50.0\%

08-14 PID Feedback Signal Error Deviation Detection Time

Default: 5.0
Settings $0.1-300.0 \mathrm{sec}$.
[1] When the PID control function is normal, it should calculate the value within a period of time that is close to the target value.
[1] Refer to the PID control diagram for details. When executing PID feedback control, if |PID
reference target value - detection value| > Pr.08-13 PID Feedback Signal Error Deviation Level and exceeds Pr.08-14 setting, it is judged as a PID control fault, and the multi-function output terminal setting 15 (PID feedback error) activates.

08-16 PID Compensation Selection

Default: 0

```
Settings 0: Parameter setting (Pr.08-17)
1: Analog input
```

[1] 0: The setting for Pr.08-17 gives the PID compensation value.
[1] 1: Set the analog input (Pr.03-00-Pr.03-02) to 13, then the PID compensation value of analog input is displayed on Pr.08-17. At this time, Pr.08-17 is read only.

08-17 PID Compensation

Default: 0.0
Settings -100.0-100.0\%
(1) The PID compensation value $=$ maximum PID target value \times Pr.08-17. For example, if the maximum operation frequency Pr. $01-00=60.00 \mathrm{~Hz}$, $\operatorname{Pr} .08-17=10.0 \%$, the PID compensation value increases the output frequency $6.00 \mathrm{~Hz} .60 .00 \mathrm{~Hz} \times 100.00 \% \times 10.0 \%=6.00 \mathrm{~Hz}$

08-18 Sleep Mode Function Setting

Default: 0

Settings 0: Refer to PID output command
 1: Refer to PID feedback signal

[0] 0: The unit for Pr.08-10 and that for Pr.08-11 switch to frequency. The settings are between $0.00-599.00 \mathrm{~Hz}$.
[1] 1: The unit for Pr.08-10 and that for Pr.08-11 switch to percentage. The settings are between 0-200.00\%.

08-19 Wake-up Integral Limit

Default: 50.0
Settings 0.0-200.0\%
[a] The wake-up integral limit for the drive prevents suddenly running at high speed when the drive wakes up. Defines the wake-up integral frequency limit $=($ Pr.01-00 \times Pr.08-19\% $)$
[1] Reduces the reaction time from sleep to wake-up.

08-21 Enable PID to Change the Operation Direction

Default: 0
Settings 0: Operation direction cannot be changed 1: Operation direction can be changed

08-22 Wake-up Delay Time

Default: 0.00
Settings $0.00-600.00 \mathrm{sec}$.
[1] Refer to Pr.08-18 for more information.

There are three scenarios for the sleep and wake-up frequency. Refer to following explanations:

1. Frequency Command (PID is not in use, Pr. $08-00=0$. Works only in VF mode)

When the output frequency is \leq the sleep frequency, and the drive reaches the preset sleep time, then the drive is in sleep mode $(0 \mathrm{~Hz})$.

When the frequency command reaches the wake-up frequency, the drive starts to count the wake-up delay time. When the drive reaches the wake-up delay time, it starts to catch up to reach the Frequency command by the acceleration time.

2. Internal PID Calculation Frequency Command (PID is in use, Pr. $08-00 \neq 0$ and $\operatorname{Pr} .08-18=0$)

When the PID calculation Frequency command reaches the sleep frequency, the drive starts to count the sleep time and the output frequency starts to decrease. If the drive exceeds the preset sleep time, then the drive is in sleep mode $(0 \mathrm{~Hz})$. If the drive does not reach the preset sleep time, it remains at the lower frequency limit (if there is a preset of lower limit), or it remains at the minimum output frequency set at Pr.01-07 and waits until it reaches the sleep time before it goes into sleep mode (0 Hz).

When the PID calculated Frequency command reaches the wake-up frequency, the drive starts to count the wake-up delay time. Once it reaches the wake-up delay time, the drive starts to catch up to reach the PID Frequency command value by the acceleration time.

Internal PID Calculation Frequency Command

3. PID Feedback Value Rate Percentage (PID is in use, Pr. $08-00 \neq 0$ and Pr. $08-18=1$)

When the PID feedback value reaches the sleep level percentage, the drive starts to count the sleep time and the output frequency starts to decrease. If the drive exceeds the preset sleep time, then the drive is in sleep mode $(0 \mathrm{~Hz})$. If the drive does not reach the preset sleep time, it remains at the lower frequency limit (if there is a preset of lower limit.), or it remains at the minimum output frequency set for Pr.01-07 and waits until it reaches the sleep time before going into sleep mode (0 Hz).

When the PID feedback value reaches the wake-up percentage, the drive starts to count the wake-up delay time. Once it reaches the wake-up delay time, the drive starts to catch up to reach the PID Frequency command value by the acceleration time.

Example 01: PID negative feedback

- Pr.08-10 must > Pr.08-11
- 30 kg is the reference
- Set the parameter:

Pr.03-00 = 5 (AVI1 is PID feedback)
Pr.08-00 $=1$ (PID negative feedback: AVI1
simulation input function select)
Pr.08-10 = 40\% (Sleep level:

$$
12 \mathrm{~kg}=40 \% \times 30 \mathrm{~kg})
$$

Pr.08-11 = 20\% (Wake-up level:
$6 \mathrm{~kg}=20 \% \times 30 \mathrm{~kg})$
Case 01: If feedback $>12 \mathrm{~kg}$, frequency decreases.
Case 02: If feedback $<6 \mathrm{~kg}$, frequency increases.

Area	PID Physical quantity
Sleep Area	$>12 \mathrm{~kg}$, the drive goes into sleep, the motor goes into sleep
Excessive Area	between 6 kg and 12 kg, the drive remains in current state
Wake-UP Area	<6 kg, the drive wakes-up, the motor wakes-up

Example 02: PID positive feedback

- Pr.08-10 must < Pr.08-11
- 30 kg is the reference
- Set the parameter:

Pr.03-00 = 5 (AVI1 is PID feedback)
Pr.08-00 $=4$ (PID positive feedback: AVI1 simulation input function select)
Pr.08-10 = 110\% (Sleep level:

$$
33 \mathrm{~kg}=110 \% \times 30 \mathrm{~kg})
$$

Pr.08-11 = 120\% (Wake-up level:

$$
36 \mathrm{~kg}=120 \% \times 30 \mathrm{~kg})
$$

Case 01: If feedback $<33 \mathrm{~kg}$, frequency decreases.

Area	PID Physical quantity
Sleep Area	$>36 \mathrm{~kg}$, the drive goes into sleep, the motor goes into sleep
Excessive Area	between 33 kg and 36 kg, the drive remains in the current state
Wake-Up Area	$<33 \mathrm{~kg}$, the drive wakes-up

Case 02: If feedback > 36 kg , frequency increases.

09 Communication Parameters

When using the communication interface, the diagram on the right shows the communication port pin definitions. We recommend that you connect the AC motor drive to your PC by using Delta IFD6530 or IFD6500 as a communication converter.

RS-485

Modbus RS-485
Pin 1~2,7,8: Reserved
Pin 3, 6: GND
Pin 4: SG-
Pin 5: SG+

You can set this parameter during operation.

09-00 COM1 Communication Address

Default: 1
Settings 1-254
[1] Sets the communication address for the drive if the AC motor drive is controlled through RS-485 serial communication. The communication address for each AC motor drive must be unique.

09-01 COM1 Transmission Speed

Default: 9.6
Settings $4.8-115.2 \mathrm{Kbps}$
[1] Sets the transmission speed between the computer and the AC motor drive.
凹】 Options are 4.8 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps and 115.2 Kbps; otherwise, the transmission speed is set to the default 9.6 Kbps .

09-02 COM1 Transmission Fault Treatment

Default: 3
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
3: No warning, no fault and continue operation
[1] Determines the treatment when an error is detected that the host controller does not continuously transmit data to the AC motor drive during Modbus communication. The detection time is based on the Pr.09-03 setting.

09-03 COM1 Time-out Detection

Default: 0.0
Settings $0.0-100.0 \mathrm{sec}$.
[a] Sets the communication transmission time-out value.

09-04 COM1 Communication Protocol

Default: 1
Settings 1:7, N, 2 (ASCII)
2: 7, E, 1 (ASCII)
3: 7, O, 1 (ASCII)
4: 7, E, 2 (ASCII)
5: 7, O, 2 (ASCII)
6: 8, N, 1 (ASCII)

7: 8, N, 2 (ASCII)
8: 8, E, 1 (ASCII)
9: 8, O, 1 (ASCII)
10: 8, E, 2 (ASCII)
11: 8, O, 2 (ASCII)
12: 8, N, 1 (RTU)
13: 8, N, 2 (RTU)
14: 8, E, 1 (RTU)
15: 8, O, 1 (RTU)
16: 8, E, 2 (RTU)
17: 8, O, 2 (RTU)
[ad Control by PC (Computer Link)
When using the RS-485 serial communication interface, you must specify each drive's communication address in Pr.09-00. The computer then implements control using the drives' individual addresses.
@】 Modbus ASCII (American Standard Code for Information Interchange): Each byte of data is the combination of two ASCII characters. For example, one byte of data: 64 Hex, shown as ' 64 ' in ASCII, consists of ' 6 ' (36Hex) and ' 4 ' (34 Hex).

1. Code Description

The communication protocol is in hexadecimal, ASCII: "0"..."9", "A"..."F", every hexadecimal value represents an ASCII code. The following table shows some examples:

Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30 H	31H	32H	33H	34H	35H	36 H	37H

Character	'8'	'9'	'A'	'B'	'C'	'D'	' E '	' F '
ASCII code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

2. Data Format

10-bit character frame (For ASCII):
(7, N, 2)

(7, E, 1)

(7, O, 1)

11-bit character frame (For RTU):
(8, N, 2)

(8, E, 1)

($8, \mathrm{O}, 1$)

3. Communication Protocol
3.1 Communication Data Frame:

ASCII mode

STX	Start character $=$ ' $:$ ' (3AH)
Address High	Communication address:
Address Low	one 8-bit address consists of 2 ASCII codes
Function High	Command code:
Function Low	one 8-bit command consists of 2 ASCII codes
DATA ($\mathrm{n}-1$)	Contents of data:
$\ldots \ldots .$.	$\mathrm{n} \times 8$-bit data consist of 2 n ASCII codes
DATA 0	$\mathrm{n} \leq 16$, maximum of 32 ASCII codes
LRC Check High	LRC checksum:
LRC Check Low	one 8-bit checksum consists of 2 ASCII codes
END High	End characters:
END Low	END1 $=$ CR $(0 D H)$, END0 $=$ LF $(0 A H)$

RTU mode

START	Defined by a silent interval of larger than / equal to 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA $(\mathrm{n}-1)$	Contents of data:
$\ldots \ldots$.	$\mathrm{n} \times 8$-bit data, $\mathrm{n} \leq 16$
DATA 0	CRC checksum:
CRC Check Low	one 16-bit checksum consists of 2 8-bit characters
CRC Check High	Defined by a silent interval of larger than / equal to 10 ms
END	

3.2 Communication Address (Address)

00 H : broadcast to all AC drives
01H: AC motor drive of address 01
OFH: AC motor drive of address 15
10 H : AC motor drive of address 16
:
FEH: AC motor drive of address 254

3.3 Function (Function code) and DATA (data characters)

03H: read data from register
06 H : write single register
10H: write continuous multiple data
Example: Reading two continuous data from register address 2102 H, AMD address is 01 H .
ASCII mode:

Command Message:

STX	! ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'3'
Starting register	'2'
	'1'
	'0'
	'2'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'D'
	'7'
END	CR
	LF

Response Message

STX	':'
Address	'0'
	'1'
Function	'0'
	'3'
Number of register (count by byte)	'0'
	'4'
Content of starting register 2102 H	'1'
	'7'
	'7'
	'0'
Content of register2103 H	'0'
	'0'
	'0'
	'0'
LRC Check	'7'
	'1'
END	CR

RTU mode:

06H: single write, write single data to register.
Example: Writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .
ASCII mode:

Command Message:

STX	':'
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response Message

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:
Command Message:

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
	70 H
CRC Check High	86 H

Response Message

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
	70 H
CRC Check High	86 H

10H: write multiple registers (can write at most 20 sets of data simultaneously).
Example: Set the multi-step speed of an AC motor drive (address is 01H),
Pr. $04-00=50.00(1388 \mathrm{H})$, Pr.04-01 $=40.00$ (0 FAOH).

ASCII Mode

Command Message:

STX	' ${ }^{\prime}$
	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Target register	'0'
	'4'
	'0'
	'0'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
Number of register (count by byte)	'0'
	'4'
The first data content	'1'
	'3'
	'8'
	'8'
The second data content	'0'
	'F'
	'A'
	'0'
LRC Check	'9'
	'B'
END	CR
	LF

Response Message

STX	' ${ }^{\prime}$
	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Target register	'0'
	'4'
	'0'
	'0'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'E'
	'9'
END	CR
	LF

Response Message:

ADR	01 H
CMD 1	10 H
Target register	04 H
	00 H
Number of register	00 H
(Count by word)	02 H
CRC Check Low	40 H
CRC Check High	F 8 H

3.4 Check sum

(1) ASCII mode (LRC Check):

LRC (Longitudinal Redundancy Check) is calculated by summing up the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example,
$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation of 29 H is D 7 H .

(2) RTU mode (CRC Check):

CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFh.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16 -bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right, fill MSB with zero, then repeat step 3. If the LSB of CRC register is 1 , shift the CRC register one bit to the right, fill MSB with zero, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.

Step 5: Repeat step 3 and 4 until you perform eight shifts. This processes a complete 8 -bit byte.
Step 6: Repeat step 2 through 5 for the next 8 -bit byte of the command message. Continue doing this until all bytes are processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, that is, the lower order byte is transmitted first.

The following is an example of CRC generation using C language.
The function takes two arguments:
Unsigned char* data \leftarrow a pointer to the message buffer
Unsigned char length \leftarrow the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)
\{
int j;
unsigned int reg_crc=0xffff;
while(length--)\{ reg_crc ^= *data++; for $(\mathrm{j}=0 ; \mathrm{j}<8 ; \mathrm{j}++)\{$ if(reg_crc \& 0x01)\{ /* LSB(b0)=1 */
reg_crc=(reg_crc>>1) ^ 0xa001;
\}else\{
reg_crc=reg_crc >>1;
\}
\}
\}
return reg_crc; // return register CRC
\}
4. Address list

AC motor drive parameters (GGxx)

Modbus Address	Function
GGnnH	GG is the parameter group, nn is the parameter number; for example, the address of Pr.04-10 is 040AH.

Control command (20xx)

Modbus Address	R/W		Function
			00B: No function
		bit1-0	01B: Stop
			10B: Run
			11B: JOG + RUN
		bit3-2	Reserved
			00B: No function
		bit5-4	01B: FWD
		bit5-4	10B: REV
			11B: Change direction
			00B: $1^{\text {st }}$ acceleration / deceleration
		bit7-6	01B: $2^{\text {nd }}$ acceleration / deceleration
		bit7-6	10B: $3^{\text {rd }}$ acceleration / deceleration
			11B: $4^{\text {th }}$ acceleration / deceleration
			0000B: Master speed
			0001B: $1^{\text {st }}$ Step speed frequency
2000H	RW		0010B: $2^{\text {nd }}$ Step speed frequency
			0011B: $3^{\text {rd }}$ Step speed frequency
			0100B: $4^{\text {th }}$ Step speed frequency
			0101B: $5^{\text {th }}$ Step speed frequency
			0110B: $6^{\text {th }}$ Step speed frequency
		bit11-8	0111B: $7^{\text {th }}$ Step speed frequency
			1000B: $8^{\text {th }}$ Step speed frequency
			1001B: $9^{\text {th }}$ Step speed frequency
			1010B: 10 ${ }^{\text {th }}$ Step speed frequency
			1011B: $11^{\text {th }}$ Step speed frequency
			1100B: $12^{\text {th }}$ Step speed frequency
			1101B: $13^{\text {th }}$ Step speed frequency
			1110B: 14 ${ }^{\text {th }}$ Step speed frequency
			1111B: $15^{\text {th }}$ Step speed frequency
		bit12	1: Enable bit6-11 function
		bit15	Reserved
2001H	RW	Frequency	command (XXX.XX Hz)
2002H	RW	bit0	1: E.F. ON
		bit1	1: Reset
		bit2	1: Base block (B.B) ON
		bit15-3	Reserved

Status monitor read only (21xx)

Modbus Address	R/W	Function
2100 H	R	High byte: Warn Code Low Byte: Error Code
2101H	R	bit1-0 AC motor drive operation status 01B: Drive decelerating 10B: Drive standby 11B: Drive operating
		bit2 1: JOG Command
		Operation Direction 00B: FWD run bit4-3 01B: From REV run to FWD run 10B: From FWD run to REV run 11B: REV run
		bit8 1: Master frequency controlled by communication interface
		bit9 1: Master frequency controlled by analog / external signal
		bit10 1: Operation command controlled by communication interface
		bit11 1: Parameter locked
		bit12 1: Enable to copy parameters from keypad
		bit15-13 Reserved
2102H	R	Frequency command (XXX. XX Hz)
2103H	R	Output frequency (XXX.XX Hz)
2104H	R	Output current (XX.XX A). When current is higher than 655.35, it shifts the decimal as (XXX.XA). The decimal can refer to High byte of 211F.
2105H	R	DC bus voltage (XXX. X V)
2106H	R	Output voltage (XXX. ${ }^{\text {V V }}$)
2107H	R	Current step number of multi-step speed operation
2108H	R	Reserved
2109H	R	Counter value
210AH	R	Power factor angle (XXX. ${ }^{\text {) }}$
210CH	R	Actual motor speed (XXXXX rpm)
210DH	R	Reserved
210EH	R	Reserved
210FH	R	Power output (X.XXX kW)
2116H	R	Multi-function display (Pr.00-04)
211BH	R	Maximum Operation Frequency (Pr.01-00) or Maximum User-defined Value (Pr.00-26) When Pr.00-26 is 0 , this value is equal to Pr.01-00 setting When Pr.00-26 is not 0 , and the command source is keypad, this value $=$ Pr.00-24 \times Pr. 00-26 \div Pr. 01-00 When Pr.00-26 is not 0 , and the command source is 485 , this value $=$ Pr. $09-10 \times$ Pr. $00-26 \div$ Pr. $01-00$
211FH	R	High byte: decimal of current value (display)

Status monitor read only (22xx)

Modbus Address	RW	Function
2200H	R	Display output current (A). When current is higher than 655.35 , it shifts the decimal as (XXX.XA). The decimal can refer to High byte of 211F.
2201H	R	Display counter value (c)
2202 H	R	Actual output frequency (XXXXX Hz)
2203H	R	DC bus voltage ($\mathrm{XXX} \times \mathrm{X} \mathrm{V}$)
2204H	R	Output voltage (XXX . X V)
2205H	R	Power angle (XXX.X)
2206H	R	Display actual motor speed kW of U, V, W (XXXX.X kW)
2207H	R	Display motor speed in rpm estimated by the drive or encoder feedback (XXXXX rpm)
2208H	R	Display positive/negative output torque in \%, estimated by the drive (XXX.X \%)
2209H	R	Reserved
220AH	R	PID feedback value after enabling PID function (XXX. XX \%)
220BH	R	Display signal of AVI1 analog input terminal, $0-10 \mathrm{~V}$ corresponds to $0.00-100.00 \%$ (1.) (see NOTE 2 in Pr.00-04)
220CH	R	Display signal of ACI analog input terminal, 4-20 mA / 0-10 V corresponds to $0.00-100.00 \%$ (2.) (see NOTE 2 in Pr.00-04)
220DH	R	Display signal of AVI2 analog input terminal, -10 V-10 V corresponds to -100.00-100\% (3.) (see NOTE 2 in Pr.00-04)
220EH	R	IGBT temperature of drive power module ($\mathrm{XXX} . \mathrm{X}^{\circ} \mathrm{C}$)
220FH	R	The temperature of capacitance (XXX. $\mathrm{X}^{\circ} \mathrm{C}$)
2210H	R	The status of digital input (ON / OFF), refer to Pr.02-12 (see NOTE 3 in Pr.00-04)
2211H	R	The status of digital output (ON / OFF), refer to Pr.02-18 (see NOTE 4 in Pr.00-04)
2212H	R	The multi-step speed that is executing (S)
2213H	R	The corresponding CPU pin status of digital input (d.) (see NOTE 3 in Pr.00-04)
2214H	R	The corresponding CPU pin status of digital output (O.) (see NOTE 4 in Pr.00-04)
2215H	R	Reserved
2216H	R	Reserved
2217H	R	Reserved
2218H	R	Reserved
2219H	R	Display times of counter overload (XXX. XX \%)
221AH	R	GFF (XXX.XX \%)
221BH	R	DC bus voltage ripples ($\mathrm{XXX} . \mathrm{X} \mathrm{V}$)
221 CH	R	PLC register D1043 data (C)
221DH	R	Reserved
221EH	R	User page displays the value in physical measure
221FH	R	Output Value of Pr.00-05 (XXX.XX Hz)
2220H	R	Number of motor turns when drive operates (saves when drive stops, and resets to zero when operating)
2221H	R	Operating position of the motor (saves when drive stops, and resets to zero when operating)
2222H	R	Fan speed of the drive (XXX \%)
2223H	R	Control mode of the drive 0 : speed mode

Modbus Address	RW	Function
2224H	R	Carrier frequency of the drive (XXXX kHz)
2225H	R	Reserved
2226H	R	Drive 00b: No direction status 01 b : Forward bit1-0 10b: Reverse
		bit3-2 01b: Drive ready 10b: Error
		bit4 0b: Motor drive did not output 1b: Motor drive did output
		bit5 0b: No alarm 1b: Alarm
2228H	R	Reserved
2229H	R	kWh display (XXXX.X)
222AH	R	Reserved
222BH	R	Reserved
222CH	R	Reserved
222DH	R	Reserved
222EH	R	PID reference (XXX. ${ }^{\text {(}}$ \%)
222FH	R	PID offset (XXX.XX \%)
2230H	R	PID output frequency (XXX.XX Hz)
2231H	R	Hardware ID

Remote IO (26xx)

Modbus Address	RW	Function
2600H	R	Each bit corresponds to different terminal input contact
$\begin{gathered} \hline 2601 \mathrm{H} \\ \text { । } \\ 2639 \mathrm{H} \\ \hline \end{gathered}$	R	Reserved
2640H	RW	Each bit corresponds to different terminal output contact
$\begin{gathered} 2641 \mathrm{H} \\ \quad \mid \\ 2659 \mathrm{H} \end{gathered}$	R	Reserved
2660H	R	AVI1 proportional value
2661H	R	ACI proportional value
2662H	R	AVI2 proportional value
$\begin{gathered} 2663 \mathrm{H} \\ \quad \mid \\ 2664 \mathrm{H} \end{gathered}$	R	Reserved
266AH	R	Extension card Al10, 0.0-100.0\% (EMC-A22A)
266BH	R	Extension card Al11, 0.0-100.0\% (EMC-A22A)
$\begin{gathered} 266 \mathrm{CH} \\ \text { । } \\ 269 \mathrm{FH} \\ \hline \end{gathered}$	R	Reserved
26A0H	RW	AFM1 output proportional value
26A1H	RW	AFM2 output proportional value
26A3H	R	Reserved
26AAH	RW	Extension card AO10, 0.0-100.0\% (EMC-A22A)
26ABH	RW	Extension card AO11, 0.0-100.0\% (EMC-A22A)

5. Exception response:

When the drive is using the communication connection, if an error occurs, the drive responds to the error code and sets the highest bit (bit7) of code to 1 (function code AND 80H), then responds to the control system to signal that an error occurred.

If the keypad displays "CE-XX" as a warning message, "XX" is the error code at that time. Refer to the table of error codes for communication error for reference.

Example:

ASCII mode:

STX	'
Address	'0'
	'1'
Function	'8'
	'6'
Exception code	'0'
	'2'
LRC Check	'7'
	'7'
END	CR
	LF

RTU mode:

Address	01 H
Function	86 H
Exception code	02 H
CRC Check Low	C 3 H
CRC Check High	A1H

The explanation of exception codes:

Exception code	Explanation
1	Function code is not supported or unrecognized.
2	Address is not supported or unrecognized.
3	Data is not correct or unrecognized.
4	Fail to execute this function code
10	Transformation for over-time duration

09-09 Communication Response Delay Time

Default: 2.0
Settings $\quad 0.0-200.0 \mathrm{~ms}$
[l] If the host controller does not finish the transmitting / receiving process, you can use this parameter to set the response delay time after the AC motor drive receives communication command as shown in the following picture.

09-10 Communication Main Frequency

Default: 60.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[al When you set Pr.00-20 to 1 (RS-485 serial communication), the AC motor drive saves the last frequency command into Pr.09-10 when there is abnormal power off or momentary power loss. When power is restored, the AC motor drive operates with the frequency in Pr.09-10 if no new Frequency command input. When a Frequency command of RS-485 changes (the frequency command source must be set as Modbus), this parameter also changes.

09-11	Block Transfer 1
09-12	Block Transfer 2
09-13	Block Transfer 3
09-14	Block Transfer 4
09-15	Block Transfer 5
09-16	Block Transfer 6
09-17	Block Transfer 7
09-18	Block Transfer 8
09-19	Block Transfer 9
09-20	Block Transfer 10
09-21	Block Transfer 11
09-22	Block Transfer 12
09-23	Block Transfer 13
09-24	Block Transfer 14
09-25	Block Transfer 15
09-26	Block Transfer

Default: 0000h
Settings 0000-FFFFh
[1]
There is a group of block transfer parameters available in the AC motor drive (Pr.09-11 to Pr.09-26). Using communication code 03H, you can store the parameters (Pr.09-11-Pr.09-26) that you want to read.
\lfloor For example: according to the Address List (as shown in the table below), Pr.01-42 is shown as 012A. Set Pr.09-11 to 012Ah (the minimum voltage of Pr.01-42 M2 is 2.0 V), and use Pr.09-11 (communication address 090B) to read the communication parameter, the read value is 2.0.

AC motor drive parameters	GGnnH	GG is the parameter group, nn is the parameter number; for example, the address of Pr.04-10 is 040AH.

[】】 Mind if the transfer parameters are read only. If the data is written to read-only parameters from the upper unit, a communication error may occur.

09-30 Communication Decoding Method

Default: 1

> | Settings | $0:$ Decoding Method $1(20 \mathrm{xx})$ |
| :--- | :--- |
| | 1: Decoding Method $2(60 \mathrm{xx})$ |

		Decoding Method 1	Decoding Method 2
Source of Operation Control	Digital Keypad	Digital keypad controls the drive action regardless of decoding method 1 or 2.	
	External Terminal	External terminal controls the drive action regardless of decoding method 1 or 2.	
	RS-485	Refer to address: 2000h-20FFh	Refer to address: 6000h-60FFh
	CANopen	Refer to index: 2020-01h-2020-FFh	Refer to index: 2060-01h-2060-FFh
	Communication Card	Refer to address: 2000h-20FFh	Refer to address: 6000h-60FFh
	PLC	PLC commands controls the drive action regardless of decoding method 1 or 2.	

09-31 Internal Communication Protocol

Default: 0
Settings 1: BACnet
0: Modbus 485
-1: Internal Communication Slave 1
-2: Internal Communication Slave 2
-3: Internal Communication Slave 3
-4: Internal Communication Slave 4
-5: Internal Communication Slave 5
-6: Internal Communication Slave 6
-7: Internal Communication Slave 7
-8: Internal Communication Slave 8
-10: Internal Communication Master
-12: Internal PLC Control
[1] When it is defined as internal communication, refer to Section 16-10 for Main Control Terminal of Internal Communication.
[a] When it is defined as internal PLC control, refer to Section 16-12 for Remote IO Control Application (using MODRW).

09-33 PLC Command Force to 0

Default: 0
Setting bit0: Before PLC scan, set the PLC target frequency $=0$
$1 \square$ Defines whether the Frequency command or the Speed command must be cleared to zero or not before the PLC starts the next scan.

09-35 PLC Address

Default: 2
Settings 1-254

09-36 CANopen Slave Address

Default: 0
Settings 0: Disable 0-127

09-37 CANopen Speed

Default 0
Settings 0: 1 Mbps
1: 500 Kbps
2: 250 Kbps
3: 125 Kbps
4: 100 Kbps (Delta only)
5: 50 Kbps

09-39 CANopen Warning Record

Default: Ready only
Settings bit0: CANopen guarding time-out
bit1: CANopen heartbeat time-out
bit2: CANopen SYNC time-out
bit3: CANopen SDO time-out
bit4: CANopen SDO buffer overflow
bit5: CANopen hardware disconnection warning (Can Bus Off)
bit6: Error protocol of CANopen
bit8: The setting values of CANopen indexes are fail bit9: The setting value of CANopen address is fail bit10: The checksum value of CANopen indexes is fail

09-40 CANopen Decoding Method

Default: 1
Settings 0: Disable (Delta-defined decoding method)
1: Enable (CANopen DS402 Standard protocol)

09-41 CANopen Communication Status

Default: Read only
Settings 0: Node reset state
1: Com reset state
2: Boot up state
3: Pre-operation state
4: Operation state
5: Stop state

09-42 CANopen Control Status

Default: Read only
Settings 0: Not ready for use state
1: Inhibit start state
2: Ready to switch on state
3: Switched on state
4: Enable operation state
7: Quick stop active state
13: Error reaction activation state
14: Error state

09-45 CANopen Master Function

Default: 0
Settings 0: Disable
1: Enable
09-46 CANopen Master Address
Default: 100
Settings 0-127

09-49 CANopen Extension Setting

Default: 0002h
Settings bit0: Update Index 604F and 6050 to Acceleration / Deceleration time 1
bit0 $=0$: Enabled (default)
bit0 = 1: Disabled
bit1: Distinguish the CANopen identity code by models or by series bit1 $=0$: Distinguish the CANopen identity code by models bit1 = 1 : Distinguish the CANopen identity code by series
bit0 $=0$, the drive directly controls Acceleration time 1 (Pr.01-12) and Deceleration time 1 (Pr.01-13).
bit1 $=0$: each model of different series of drives has its own EDS file, this setting is more complicated to use.
bit1 $=1$: distinguish the CANopen identity code by the drive's series, which requires only one EDS file.

09-50 BACnet MS / TP Node Address

Default: 10
Settings 0-127
09-51 BACnet Baud Rate
Default: 38.4
Settings $9.6-76.8 \mathrm{Kbps}$
09-52 BACnet Device Index L
Default: 10
Settings 0-65535
09-53 BACnet Device Index H
Default: 0
Settings 0-63
09-55 BACnet Max Address
Default: 127
Settings 0-127
09-56 BACnet Password
Default: 0
Settings 0-65535

09-60 Communication Card Identifications

Default: Read only
Settings 0: No communication card
1: DeviceNet Slave
2: Profibus-DP Slave
3: CANopen Slave / Master
5: EtherNet / IP Slave
8: BACnet IP
12: PROFINET

09-61 Firmware Version of Communication Card

Default: Read only
Settings Read only

09-62 Product Code

Default: Read only
Settings Read only

09-63 Error Code

Default: Read only
Settings Read only
09-70 Communication Card Address (for DeviceNet or PROFIBUS)
Default: 1
Settings DeviceNet: 0-63
Profibus-DP: 1-125

09-71 Communication Card Speed Setting (for DeviceNet)

Default: 2
Settings Standard DeviceNet:
0: 125 Kbps
1: 250 Kbps
2: 500 Kbps
3: 1 Mbps (Delta only)
Non standard DeviceNet: (Delta only)
0: 10 Kbps
1: 20 Kbps
2: 50 Kbps
3: 100 Kbps
4: 125 Kbps
5: 250 Kbps
6: 500 Kbps
7: 800 Kbps
8: 1 Mbps

09-72 Additional Settings for Communication Card Speed (for DeviceNet)

Default: 0
Settings 0: Standard DeviceNet
In this mode, the baud rate can only be $125 \mathrm{Kbps}, 250 \mathrm{Kbps}$, and 500
Kbps in standard DeviceNet speed.
1: Non-standard DeviceNet
In this mode, the baud rate of DeviceNet can be the same as that for
CANopen (0-8).
Use this parameter with Pr.09-71.
0: The baud rate can only be set to $125 \mathrm{Kbps}, 250 \mathrm{Kbps}$ and 500 Kbps as a standard DeviceNet speed.
10] The DeviceNet communication rate can be the same as that for CANopen (setting 0-8).

09-75 Communication Card IP Configuration (for EtherNet)

Default: 0
Settings 0: Static IP
1: Dynamic IP (DHCP)
$\mathbb{\square l}$: Set the IP address manually.
[1] 1: IP address is automatically set by the host controller.

09-76	Communication Card IP Address 1 (for EtherNet)
09-77	Communication Card IP Address 2 (for EtherNet)
09-78	Communication Card IP Address 3 (for EtherNet)
09-79	Communication Card IP Address 4 (for EtherNet)
	Settings 0-65535 Defaul: 0
[1] Use Pr.09-76-09-79 with a communication card.	
09-80	Communication Card Address Mask 1 (for EtherNet)
09-81	Communication Card Address Mask 2 (for EtherNet)
09-82	Communication Card Address Mask 3 (for EtherNet)
09-83	Communication Card Address Mask 4 (for EtherNet)
Default: 0	
	Settings 0-65535

09-88 \quad Communication Card Password (Low word) (for EtherNet)
Default: 0
Settings 0-99

09-90 Reset Communication Card (for EtherNet)

Default: 0
Settings 0: Disable
1: Reset, return to default

09-91 Additional Settings for the Communication Card (for EtherNet)

Default: 1

$$
\begin{array}{ll}
\text { Settings } & \text { bit0: Enable IP Filter } \\
\text { bit1: Enable internet parameters (1bit) } \\
\text { When IP address is set, this bit is enabled. After updating the } \\
\text { communication card parameters, this bit changes to disabled. } \\
\text { bit2: Enable login password (1bit) } \\
\text { When you enter the login password, this bit is enabled. After updating } \\
\text { the communication card parameters, this bit changes to disable. }
\end{array}
$$

09-92 Communication Card Status (for EtherNet)

Default: 0
Settings bit0: Enable password
When the communication card is set with a password, this bit is enabled. When the password is cleared, this bit is disabled.

10 Sensorless Motor Control Parameters

\mathcal{N} You can set this parameter during operation.
10-08
Treatment for Speed Observer Feedback Fault (applied to 230V / 460V models)

Default: 2

Settings 0 : Warn and continue operation
 1: Fault and ramp to stop
 2: Fault and coast to stop
 Detection Time of Speed Observer Feedback Fault (applied to 230V / 460V models)

10-09

Default: 1.0
Settings $0.0-10.0 \mathrm{sec}$.
0 : Disable
[1] When speed observer outputs an abnormal signal, or the rotation direction is different with the detected direction from speed observer, and the fault time exceeds the detection time of speed observer feedback fault (Pr.10-09), a reverse direction of the speed feedback (SdRv) fault occurs. Refer to Chapter 14 for solutions.

10-10 Speed Observer Stall Level (applied to 230V / 460V models)

Default: 115

$$
\begin{array}{ll}
\text { Settings } & 0-120 \% \\
& 0 \text { : Disable }
\end{array}
$$

Determines the fault level of feedback signal. The maximum operation frequency for Pr.01-00 = 100\%

10-11 Detection Time of Speed Observer Stall (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 0.1
Settings 0.0-2.0 sec.

10-12 Speed Observer Stall Action (applied to 230V / 460V models)

Default: 2

Settings 0 : Warn and continue operation
 1: Fault and ramp to stop
 2: Fault and coast to stop

When the drive output frequency exceeds the speed observer stall level (Pr.10-10), the drive starts to count the time. When the error time exceeds the speed observer stall detection time (Pr.10-11), an over speed rotation feedback (SdOr) fault occurs. Refer to Chapter 14 for solutions.

10-13 Speed Observer Slip Range (applied to 230V / 460V models)

Default: 50

$$
\begin{array}{ll}
\text { Settings } & 0-50 \% \\
& 0: \text { Disable }
\end{array}
$$

10-14 Detection Time of Speed Observer Slip (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 0.5
Settings $0.0-10.0 \mathrm{sec}$.

10-15 Speed Observer Stall and Slip Error Action (applied to 230V / 460V models)

Default: 2

Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop

When the value of (rotation speed - motor frequency) exceeds the Pr.10-13 setting, and the detection time exceeds Pr.10-14; the drive starts to count the time. If the detection time exceeds Pr.10-14, a large deviation of speed feedback (SdDe) fault occurs. Refer to Chapter 14 for solutions.

10-31 I/F Mode, Current Command

Default: 40
Settings 0-150\% of motor rated current
10. Sets the current command for the drive in low speed area (low speed area: frequency command < Pr.10-39). When the motor stalls on heavy-duty start-up or forward / reverse with load, increase the parameter value. If the inrush current is too high and causes oc stall, then decrease the parameter value.
[1] When Pr.00-11 is set to 8 (SynRM Sensorless), the maximum setting value for I/F mode Current command is 15%. The application for this parameter extends to high-speed zone and flux-weakening zone.
(1) When Pr.00-11 is set to 8 (SynRM Sensorless) and the drive operates in flux-weakening zone, if the speed is restricted and cannot accelerate, even causes the observer lost control, adjust the setting for Pr.10-31.

10-32 PM FOC Sensorless Speed Estimator Bandwidth (High Speed)

Default: 5.00
Settings $\quad 0.00-600.00 \mathrm{~Hz}$
[a] Sets the speed estimator bandwidth. Adjust the parameter to change the stability and the accuracy of the motor speed.
[1] If there is low frequency vibration (the waveform is similar to the sine wave) during the process, then increase the bandwidth. If there is high frequency vibration (the waveform shows extreme vibration and is like a spur), then decrease the bandwidth.

10-33

PM FOC Sensorless Speed Estimator Bandwidth (Low Speed) (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 1.00
Settings $\quad 0.00-600.00 \mathrm{~Hz}$
W. Works only when Speed mode is set as IPM sensorless / SRM sensorless (Pr.00-11 = 8).
[1] Increase this parameter to enhance the loading performance during start-up and low-speed operation.

When the motor speed during start-up or operation is lower than the frequency to switch from I/F mode to PM sensorless mode (Pr.10-39), and the motor speed oscillates, adjust the setting for this parameter.
(1) When Pr.05-33 is set to 3 (SynRM), the unit changes to Pu, the setting upper and lower limit for Pr.10-33 change to 3.00-0.01 and the default is 1.0 .

10-34 PM Sensorless Speed Estimator Low-pass Filter Gain

Default: 1.00

Settings 0.00-655.35

[1] Changes the response speed of the speed estimator.
[】 If there is low frequency vibration (the waveform is similar to the sine wave) during the process, then increase the gain. If there is high frequency vibration (the waveform shows extreme vibration and is like a spur), then decrease the gain.
When Pr.05-33 is set to 3 (SynRM), the setting upper limit is 10.00 .

10-35 AMR (Kp) Gain (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 1.00

Settings 0.00-3.00

When Pr.00-11 is set to 8 (SynRM), the default for this parameter is 0.40 .

10-36 AMR (Ki) Gain (applied to 230V / 460V models)

Default: 0.20

Settings $0.00-3.00$

[10] When Pr.00-11 is set to 8 (SynRM), the default for this parameter is 2.00 .
[1] AMR is the abbreviation for Active Magnetic Regulator ($\mathrm{Kp} / \mathrm{Ki}$), it affects the response of magnetic regulation in flux-weakening zone.
If the input voltage or DC bus plummets in the flux-weakening zone (for example, a sudden insufficient voltage due to unstable power net, or DC bus plummets because of a sudden loading), causes the ACR diverges and oc fault occurs, then increase the gain. If the Id value of a spur generates large noise in high frequency output current, decrease the gain to reduce the noise. But decreasing the gain will slow down the response speed.

10-39 Frequency to Switch from I/F Mode to PM Sensorless Mode

Default: 20.00

Settings $\quad 0.00-599.00 \mathrm{~Hz}$

(1) The setting upper limit is the same as that for Pr.01-00 (Maximum operation frequency).
[1] Sets the frequency for switching from low frequency to high frequency, and sets the switch point for high and low frequencies of the speed observer.
If It the switch frequency is too low, the motor does not generate enough back-EMF to let the speed observer measure the right position and speed of the rotor, causing stall and oc when running at the switch frequency.

1 If the switch point is too high, the active range of I/F is too wide, which generates a larger current without energy saving. (If the current value for Pr.10-31 is too high, the high switch frequency makes the drive continue to output with Pr.10-31 setting value.)
[1] When Pr.00-11 is set to 8 (SynRM), the default for this parameter is 10.00 Hz .

10-40 Frequency to Switch from PM Sensorless Mode to I/F Mode

Default: 20.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
10 The setting upper limit is the same as that for Pr.01-00 (Maximum operation frequency).
[1] Sets the frequency for switching from high frequency to low frequency, and sets the switch point for high and low frequencies of the speed observer.
[1] If the switch frequency is too low, the motor does not generate enough back-EMF to let the speed observer measure the right position and speed of the rotor when running at the switch frequency.
[10] If the switch frequency is too high, the active range of I/F is too wide, which generates a larger current without energy saving. (If the current value for Pr.10-31 is too high, the high switch frequency makes the drive continue to output with Pr.10-31 setting value.)

10-41 I/F Mode, Id Current Low-Pass Filter Time

Default: 0.2
Settings $0.0-6.0 \mathrm{sec}$.
[1] Sets the filter time for Pr.10-31. Smoothly increases the magnetic field to the current command setting value under the I/F mode.
1 If you want to slowly increase the size of Id, increase the filter time to avoid a Step phenomenon occurs when starting current output. When decrease the filter time (minimum value is 0), the current rises faster, then a Step phenomenon occurs.

10-42 Initial Angle Detection Pulse Value

Default: 1.0
Settings $0.0-3.0$ times of motor's rated current
[1] The angle detection is fixed to Pr.10-53 = 2 (High frequency injection) or 3 (Pulse injection).
ㄸ. The parameter influences the value of the pulse during the angle detection. The larger the pulse, the higher the accuracy of rotator's position. A larger pulse might cause oc.
1 Increase the parameter when the running direction and the command are opposite during start-up. If oc occurs at start-up, then decrease the parameter.
[a] Refer to Section 12-2 Adjustment \& Application for detailed motor adjustment procedure.

10-49 Zero Voltage Time during Start-up

Default: 0.000
Settings $0.000-60.000 \mathrm{sec}$.
$\mathbb{\square}$ This parameter is valid only when the setting for Pr.07-12 (Speed Tracking during Start-up) $=0$.
[1]
When the motor is in static status at start-up, this increases the accuracy when estimating angles. In order to put the motor in static status, set the three-phase drive output to 0 V to the motor. The Pr. 10-49 setting time is the length of time when three-phase output at 0 V .
$\mathbb{I t}$ It possible that even when you apply this parameter, the motor cannot go into the static state because of inertia or some external force. If the motor does not go into the static status in the setting time, increase the setting value appropriately.

If Pr.10-49 is too high, the start-up time is longer. If it is too low, the braking performance is weak.

10-51 Injection Frequency

Default: 500
Settings $0-1200 \mathrm{~Hz}$This parameter is a high frequency injection command in IPM sensorless control mode and usually you do not need to adjust it. If a motor's rated frequency (for example, 400 Hz) is too close to the frequency setting for this parameter (that is, the default of 500 Hz), it affects the accuracy of the angle detection. Refer to the setting for Pr.01-01 before you adjust this parameter.
[1] If the setting value for Pr.00-17 is lower than Pr.10-51 $\times 10$, then increase the frequency of the carrier wave.
(1) Pr.10-51 is valid only when Pr. 10-53 = 2 .

When Pr.00-11 is set to 8 (SynRM), the default for this parameter is 400 .

10-52 Injection Magnitude

Default:

Settings	$0.0-200.0 \mathrm{~V}$	
	230 V models: $0.0-100.0 \mathrm{~V}$	15.0
	460 V models: $0.0-200.0 \mathrm{~V}$	30.0
	575 V models: $0.0-200.0 \mathrm{~V}$	30.0

[1] The parameter is the magnitude command for the high frequency injection signal in PM Sensorless control mode.

1 Increasing the parameter can increase the accuracy of the angle estimation, but the electromagnetic noise might be louder if the setting value is too high.
The system uses this parameter when the motor's parameter is "Auto". This parameter influences the angle estimation accuracy.
\square When the ratio of the salient pole (Lq/Ld) is lower, increase Pr.10-52 to make the angle detection more accurate.
\square Pr.10-52 is valid only when Pr.10-53 $=2$.
When Pr.05-33 is set to 3 (SynRM), the unit is percentage (\%); the setting lower limit and upper limit is $10-50 \%$, and the default is 30%.

10-53 PM Initial Rotor Position Detection Method

Default: 0

Settings 0: Disable
1: Using I/F current command (Pr.10-31) to attract the rotor to zero degrees
2: High frequency injection
3: Pulse injection
When the Speed mode is set to PMSVC (Pr.00-11 = 2) or PM Sensorless (Pr.00-11 = 6):

- For IPM application, set Pr.10-53 $=2$.
- For SPM application, set Pr.10-53 $=3$.
- If the above settings cause problems, then set this parameter to 1 .

1 When the Speed mode is set to SynRM Sensorless (Pr.00-11 = 8), you do not need to set this parameter.

10-54

Magnetic Flux Linkage Estimate Low-speed Gain (applied to 230V / 460Vmodels)

Default: 100
Settings 10-1000\%
(1) This parameter is valid only when the speed mode is set to PM Sensorlss control mode (Pr.00-11 = 6).
[1] Increase this parameter to enhance the loading capacity during start-up.
[al Low-speed zone means motor speed under $1 / 5$ of motor's rated speed; high-speed zone means speed beyond $1 / 5$ of motor's rated speed.

10-55

Magnetic Flux Linkage Estimate High-speed Gain (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 100
Settings 10-1000\%
[1] This parameter is valid only when the speed mode is set to PM Sensorless (Pr.00-11 = 6) / SynRM Sensorless control modes (Pr.00-11 = 8).
[1] Increase this parameter to enhance the loading performance in high-speed zone and improve the response.
1 Decrease this parameter when there is a speed oscillation in the flux-weakening zone.
(1) When Pr.05-33 is set to 3 (SynRM), the unit is Pu; the setting lower and upper limits are 0.1-3.0 and the default is 1.0 .

10-56 Kp of Phase-locked Loop (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 100

Settings 10-1000\%

[1] Increase this parameter to enhance the loading performance in high-speed zone and improve the response.
Decrease this parameter when there is a high frequency vibration in the speed output frequency.
When Pr.05-33 is set to 3 (SynRM), the unit is Hz ; the setting lower and upper limits are 5-50 and the default is 30 .

10-57 Ki of Phase-locked Loop (applied to 230V / 460V models)

Default: 100
Settings 10-1000\%
[1] Increase this parameter to increase the speed response during acceleration and deceleration.

10-58 Mutual Inductance Gain Compensation (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

Default: 100
Settings $0.00-655.35$
[1] This parameter is valid only when the speed mode is set to SynRM sensorlss control mode (Pr.00-11 = 8).
[a] If the motor's loading performance during start-up is poor or the speed is lower than the frequency switch from I/F mode to PM sensorless mode (Pr.10-39), adjust this parameter to improve the loading performance.

11 Advanced Parameters (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)

In this parameter group, ASR stands for Adjust Speed Regulator
\wedge You can set this parameter during operation.

11-00 System Control

Default: 0000h
Settings bit0: Auto-tuning for ASR and APR
bit6: 0 Hz linear-cross
bit7: Save or not saving the frequency
[1] bit0 $=0$: Manual adjustment for ASR gain, Pr.11-06-Pr.11-11 are valid and Pr.11-03-Pr.11-05 are invalid.
bit0 $=1$: Auto-adjustment for ASR gain, the system automatically generates an ASR setting,
Pr.11-06-Pr.11-11 are invalid and Pr.11-03-Pr.11-05 are valid.

(1) When the drive needs to keep a certain torque at zero-speed, or it needs a steady frequency output at extreme low speed, increase Pr.11-05 zero-speed bandwidth appropriately. If there is serious output current vibration that cause the drive vibrates in high-speed area, then decrease the high-speed bandwidth.

For example:

| Manual gain | Response:
 $[$ Pr.11-10, Pr.11-11 $]>$ [Pr.11-06, Pr.11-07] $>[$ Pr.11-08, Pr.11-09 $]$ |
| :---: | :--- |$|$| Auto gain |
| :---: |

ASR adjustment- manual gain

ASR adjustment- auto gain
[a] bit6 0 Hz linear-cross function: keeps the S-Curve in linear-cross the 0 Hz point when the S-curves for acceleration / deceleration time (Pr.01-24-Pr.01-27) are set, and the forward / reverse run cross 0 Hz .
bit6 = 1: The S-curves for acceleration / deceleration time (Pr.01-24-Pr.01-27) do NOT affect the drive starts and stops. Forward / reverse rotation crosses the zero point in linear. bit6 = 0: The S-curves for acceleration / deceleration time (Pr.01-24-Pr.01-27) affect the drive starts and stops. Forward / reverse rotation crosses the zero point after the S-Curve.

(1) bit $7=0$: Save the frequency before power is OFF. The keypad displays the saved frequency after cycle the power.
bit7 = 1: Do not save the frequency before power is OFF. The keypad displays 0.00 Hz after cycle the power.

11-01 Per-Unit of System Inertia

Default: 256
Settings $\quad 1-65535(256=1 \mathrm{PU})$
When Pr.11-01 = 256, it is 1 PU . So if you use a 2 HP motor, the 2 HP motor inertia is $6.6{\mathrm{~kg}-\mathrm{cm}^{2}}^{2}$ according to the rotor inertia table in Pr.05-38. If Pr.11-01 = 10000 after tuning, the system inertia is $(10000 \div 256) \times 6.6{\mathrm{~kg}-\mathrm{cm}^{2}}^{2}$.

If the Iq current command from ASR has high-frequency glitch, then decrease the setting. If the response time of sudden loading is too slow, then increase the setting.

11-02 ASR1 / ASR2 Switch Frequency

Default: 7.00
Settings $\quad 5.00-599.00 \mathrm{~Hz}$
$\mathbb{\square}$) Sets the low-speed and high-speed ASR switching point in the FOC area. Provides flexibility to meet two needs: in the high-speed region of the estimator switch point it has a high response, and in the low-speed region of the estimator switch point it has a lower response. The recommended switching point is higher than Pr.10-39.
A low setting does not cover Pr.10-39. If the setting is too high, the high-speed range is too narrow.When Pr.00-11 is set to 8 (SynRM), the default for this parameter is 10.00 Hz .

11-03 ASR1 Low-speed Bandwidth

Default: 10
Settings $\quad 1-40 \mathrm{~Hz}$ (IM) / 1-100 Hz (PM) / 1-30 Hz (SynRM)

11-04 ASR2 High-speed Bandwidth

Default: 10
Settings $\quad 1-40 \mathrm{~Hz}$ (IM) / $1-100 \mathrm{~Hz}$ (PM) / 1-30 Hz (SynRM)

11-05 Zero-speed Bandwidth

Default: 10
Settings $\quad 1-40 \mathrm{~Hz}(\mathrm{IM}) / 1-100 \mathrm{~Hz}$ (PM) / 1-30 Hz (SynRM)After estimating inertia and setting Pr.11-00 bit0 = 1 (auto-tuning), you can adjust Pr.11-03, Pr.11-04 and Pr.11-05 separately by speed response. The larger the setting value, the faster the response. Pr.11-02 is the switch frequency between the low-speed / high-speed bandwidth.When Pr.00-11 = 8 (SynRM), the setting upper limit is 30 , and the default is 5 .

11-06 ASR 1 Gain

Default: 10
Settings $0-40 \mathrm{~Hz}(\mathrm{IM}) / 1-100 \mathrm{~Hz}$ (PM) / 1-30 Hz (SynRM)

11-07 ASR 1 Integral Time

Default: 0.100
Settings $0.000-10.000 \mathrm{sec}$.

11-08 ASR 2 Gain

Default: 10
Settings $\quad 0-40 \mathrm{~Hz}(\mathrm{IM}) / 0-100 \mathrm{~Hz}$ (PM) / 1-30 Hz (SynRM)

11-09 ASR 2 Integral Time

Default: 0.100
Settings $0.000-10.000 \mathrm{sec}$.

11-10 ASR Gain of Zero Speed

Default: 10

Settings $\quad 0-40 \mathrm{~Hz}(\mathrm{IM}) / 0-100 \mathrm{~Hz}(\mathrm{PM}) / 1-30 \mathrm{~Hz}$ (SynRM)

11-11 ASR Integral Time of Zero Speed

Default: 0.100
Settings $0.000-10.000 \mathrm{sec}$.

11-12 ASR Speed Feed Forward Gain

Default: 0
Settings 0-200\%
[1] This function enables when Pr. 11-00 bit0 $=1$.
\square Increase the setting for Pr.11-12 to reduce the command tracking difference, and improve the speed response. Use this function for speed tracking applications.
\pm
Set Pr.11-01 correctly to get excellent improvement of the speed response.

11-13 PDFF Gain Value

Default: 30

$$
\text { Settings } 0-200 \%
$$

[1] This parameter is invalid when Pr.05-24 $=1$.This parameter is valid only when $\operatorname{Pr} .11-00$ bit0 $=1$.After you estimate and set Pr.11-00 bit0 $=1$ (auto-tuning), use Pr.11-13 to reduce overshoot. However, a shift of the curve may occur earlier. In this case, you can set Pr.11-13 = 0 first, and then increase the setting value to "a condition with best acceleration and without overshoot" when the acceleration time meets your application but overshoot occurs.Increasing Pr.11-13 improves the overshoot of speed tracking, but an excessive value may reduce the transient response.
Ind Increasing Pr.11-13 enhances the system stiffness in high-speed steady state, and reduce the speed transient fluctuation at a sudden loading.Ensure that you set Pr.11-01 system inertia correctly to get excellent improvement of the speed response.

11-14 ASR Output Low Pass Filter Time

Default: 0.008
Settings $0.000-0.350 \mathrm{sec}$.
Sets the ASR command filter time.

11-15 Notch Filter Depth

Default: 0
Settings 0-100 dB

11-16 Notch Filter Frequency

Default: 0.00
Settings $0.0-6000.0 \mathrm{~Hz}$
[1] A notch filter is a filter that attenuates a signal in a specific frequency band.The notch filter also slows down the response speed in the frequency band to avoid mechanical resonance.
\square The higher the setting value for Pr.11-15, the better the mechanical resonance is suppressed.
[ad The notch filter frequency should be equal to the mechanical frequency resonance.
Forward Motor Torque Limit Quadrant I
Forward Regenerative Torque Limit Quadrant II
11-19 Reverse Motor Torque Limit Quadrant III
11-20 Reverse Regenerative Torque Limit Quadrant IV
Default: 500
Settings 0-500\%VF and SVC mode:
Pr.11-17-Pr.11-20 limit the output current, the percentage base value is the drive's rated current (not the motor's rated current). The minimum value between Pr.11-17-11-20 and Pr.06-12 becomes the current output limit. In acceleration and steady state operation, when the output current reaches the limit, the ocA (over-current during acceleration) protection or over-current stall prevention under steady-state operation acts. The output frequency drops, and recovers when the output current is lower than the limit value.
1 Calculation equation for the motor rated torque:
Motor rated torque $=T(N . M)=\frac{P(W)}{\omega(r a d / s)} ; \mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02(\operatorname{Pr} .05-14) ;$
$\omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03(\operatorname{Pr} .05-15) ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$
All control mode is based on 100% of the motor rated current except for these four modes: IM: VF, SVC and PM: PMSVC modes.When Pr.00-11 = 8 (SynRM), the default for Pr.11-17-Pr.11-20 is 200.

11-21 Flux Weakening Curve for Motor 1 Gain Value

Default: 90
Settings 0-200\%

11-22 Flux Weakening Curve for Motor 2 Gain Value

Default: 90

Settings 0-200\%

Adjusts the output voltage for the flux-weakening curve.For the spindle application, use this adjustment method:1. Run the motor to the highest frequency.
2. Observe the output voltage.
3. Adjust the Pr.11-21 (motor 1) or Pr.11-22 (motor 2) setting to make the output voltage reach the motor rated voltage.
4. The larger the setting value, the greater the output voltage.

11-23 Flux Weakening Area Speed Response

Default: 65
Settings 0: Disable
$0-150 \%$
凹. Controls the speed in the flux weakening area. The larger the value, the faster the acceleration/ deceleration. In normal condition, you do not need to adjust this parameter.

12 Pump Parameters

12-00 Circulation Control

You can set this parameter during operation.

Default: 0

Settings 0: No operation
1: Fixed Time Circulation (by time)
2: Fixed Quantity Circulation
3: Fixed Quantity Control
4: Fixed Time Circulation + Fixed Quantity Circulation
5: Fixed Time Circulation + Fixed Quantity Control

[1 In this mode, the CFP2000 can control up to eight motors at a time. The total number of motors is determined by Pr.12-01. In accordance with the Fixed Time Circulation (Pr.12-02), you can adjust the switching time between Start and Stop for each motor. When an operating motor reaches the time setting for Pr.12-02, the CFP2000 stops that motor according to the setting for Pr.00-22 (Stop method). After the delay time setting for Pr.12-03, next motor starts operating. See diagram below.

Diagram 12-1: Sequential Diagram of Fixed Time Free Runs Circulation (by time)

[1] Disable Motors' Output

Setting the multi-function input commands as Disable Motors' Output can stop the corresponding motors. The following table lists the settings:

Pr.02-01-Pr.02-06 $=$	60	61	62	63	64	65	66	67	68
Disable Motors' Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor coasts to stop.
[1] Wiring: Fixed Time Circulation (by time) can control up to eight motors. Diagram 12-2 shows an example of controlling four motors at the same time.

Diagram 12-2: Wiring

12-01 Number of Motors to be Connected

Default: 1

Settings 1-8
© Number of Motors: maximum of eight motors. After setting the number of connected motors, the multi-function output terminals automatically follow the setting as shown in the table below.

Pr.12-01	01	02	03	04	05	06	07	08
Pr.02-13	55	55	55	55	55	55	55	55
Pr.02-14		56	56	56	56	56	56	56
Pr.02-15			57	57	57	57	57	57
Pr.02-36				58	58	58	58	58
Pr.02-37					59	59	59	59
Pr.02-38						60	60	60
Pr.02-39							61	61
Pr.02-40								62

Table 1: Setting of Multi-function Output Terminal for Circulating Motors

12-02 Operating Time for Each Motor (minutes)

Default: 0
Settings 0-65500 minutes
1 Sets the fixed time for circulation. If Pr.12-02 $=0$, stop the timing. The currently running motors continue operating until a Stop command is given.

12-03

Delay Time due to the Acceleration (or the Increment) at Motor Switching (seconds)

Default: 1.0
Settings $0.0-3600.0$ secondsSets the delay time when switching motors. When the currently running motors reach the time setting for Pr.12-02, the CFP2000 uses the delay time setting for Pr.12-03 and then switches to run the next motors.

12-04

Delay Time due to the Deceleration (or the Decrement) at Motor Switching (seconds)

Default: 1.0
Settings $0.0-3600.0$ seconds
1 Sets the delay time of motor switching during the acceleration, the unit is second.

12-05 Delay time due to Fixed Quantity Circulation at Motor Switching (seconds)

$$
\text { Default: } 10.0
$$

Settings $0.0-3600.0$ secondsSets the fixed quantity circulation with PID

Sequential Diagram

In this mode, the CFP2000 can control up to four motors to increase flow quantity and pressure range control. When controlling the flow quantity, the motors are in parallel connection. When controlling the pressure range, the motors are in series connection.
To increase the flow quantity or pressure range, the CFP2000 increases the first motor's pressure from 0 Hz to the largest operating frequency. If the output frequency reaches the frequency setting for Pr.12-06 and delay time for Pr.12-05, the CFP2000 delays the time setting for Pr.12-03. CFP2000 then switches to the next motor to use mains electricity and delays the time setting for Pr.12-03 to run the next motor. If necessary, other motors are activated in sequence. See sequential diagram of 12-3 and 12-4.

Diagram 12-3: Sequence of Fixed quantity circulation with PID - Increasing Demand

Diagram 12-4: Sequence of switching motors at Fixed Quantity Circulation with PID - Increasing Demands

However, if the decreasing demands for flow quantity and pressure are too big, the CFP2000 stops the current operating motors and waits for the delay time setting for Pr.12-04. It continues doing this until the last motor stops using mains electricity. See sequential diagram 12-5 and 12-6 below.

Diagram 12-6: Sequence of switching motors at Fixed Quantity Circulation with PID

- Decreasing Demands
[1] Parameter Setting

Parameter setting	Description									
Pr.12-00 $=2$	Choose Fixed Quantity Circulation with PID									
Pr.12-01 $=\mathrm{X}$	Number of Motors: maximum four motors. After you set the number of motors to be connected at the same time, the multi-function output terminals automatically follow the setting as shown in the table below.									
	Pr.12-01	01	01	02	02	03	03	04	04	
	Pr.02-13	55	55	55	55	55	55	55	55	Motor 1 by Drive
	Pr.02-14		56	56	56	56	56	56	56	Motor 1 by Mains
	Pr.02-15			57	57	57	57	57	57	Motor 2 by Drive
	Pr.02-36				58	58	58	58	58	Motor 2 by Mains
	Pr.02-37					59	59	59	59	Motor 3 by Drive
	Pr.02-38						60	60	60	Motor 3 by Mains
	Pr.02-39							61	61	Motor 4 by Drive
	Pr.02-40								62	Motor 4 by Mains
	Table 2: Setting of Multi-function Output Terminal on Circulating Motors									
Pr.12-03 $=\mathrm{X}$	Delay Time due to the Acceleration (or the Increment) at Motor Switching (unit: sec.)									
Pr.12-04 $=\mathrm{X}$	Delay Time due to the Deceleration (or the Decrement) at Motor Switching (unit: sec.)									
Pr.12-05 $=\mathrm{X}$	Delay time while Fixed Quantity Circulation at Motor Switching with PID (unit: sec.)									
Pr.12-06 $=\mathrm{X}$	Frequency when switching motors at Fixed Quantity Circulation (Hz)									
Pr. 12-09 = X	Delay Time for the next motor output when the demand increases.									

$1 \mathbb{1}$ Disable Motor Output
Set the multi-function input commands to Disable Motors' Output can stop corresponding motors.
The settings are:

Pr.02-01-Pr.02-06 $=$	60	61	62	63	64	65	66	67	68
Disable Motor's Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor coasts to stop.
[a] Fixed Quantity Circulation with PID can control up to four motors. Diagram 12-7 below shows an example of controlling 4 motors.

Diagram 12-7

12-06 Frequency when Switching Motors at Fixed Quantity Circulation (Hz)
 Default: 60.00

Settings $\quad 0.0-599.00 \mathrm{~Hz}$
Sets the drive's output frequency at which the system prepares to switch motors.

12-07 Action when Fixed Quantity Circulation Breaks Down

Default: 0
Settings 0: Turn off all output
1: Motors powered by mains electricity continues to operate

12-08 \quad Frequency for Stopping Auxiliary Motor (Hz)

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
1 When the output frequency is smaller than the Pr.12-08 and remains at the time setting for Pr.12-04, the CFP2000 shuts down the motors one by one.Fixed Quantity Control with PID
In this mode, the CFP2000 can control up to eight motors to increase flow quantity and pressure range control.
The CFP2000 connects directly to a main motor while the rest of the motors use mains electricity and are controlled by a relay. When controlling flow quantity, the motors are in parallel connection. When controlling pressure range, the motors are in series connection.
To increase the flow quantity or pressure range, the CFP2000 increases the main motor's pressure from 0 Hz to the largest operating frequency. If necessary, the CFP2000 switches the motors to use mains electricity in sequence. See sequential diagram 12-8 and 12-9.

Diagram 12-8: Sequence of Fixed Quantity Control with PID - Increasing Demand

Diagram 12-9: Sequence of switching motors at Fixed Quantity Control with PID - Increasing Demand

However, if the flow quantity or pressure is too large, the CFP2000 stops, one by one, the motors use mains electricity until the CFP2000 decreases the main motor's frequency to 0 Hz . See Diagram 12-10 and Diagram 12-11.

Diagram 12-10: Sequence of Fixed Quantity Control with PID - Decreasing Demand

Diagram 12-11: Sequence of switching motors at Fixed Quantity Control with PID

- Decreasing Demand
\square Parameter setting:

\square Disable Motor's Output
Set the multi-function input commands to Disable Motors' Output can stop the corresponding motors.

The settings are:

Pr.02-01-Pr. $02-06=$	60	61	62	63	64	65	66	67	68
Disable Motor's Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor coasts to stop.
1 Wiring: Fixed Quantity Control can control up to eight motors. Diagram 12-12 is an example of controlling four motors at the same time.

Diagram 12-12

1 Fixed Time circulation and Fixed quantity circulation with PID
This mode combines Fixed Time Circulation and Fixed Quantity Circulation with PID. This is to prevent motors from becoming rusty if they are not in use for a long period of time. If some motors are not activated, set the fixed time circulation to run the motors one by one to make sure each of them is running.
If all the motors are running and the water pressure is sufficient, the fixed time circulation is not enabled. If motor 1 and motor 2 run to reach a balance in water pressure and the time reaches the setting for Pr.12-02, motor 1 runs without using mains electricity (runs by the motor drive) and motor 2 decelerates to stop.
When the motor 2 reaches the frequency setting at Pr.12-06 and the time setting for Pr.12-05, it separates from the motor drive (runs on mains electricity). When time reaches the setting for Pr.12-03, motor 2 runs using the mains electricity. Then when the time exceeds the setting for Pr.12-03, motor 3 is enabled by the motor drive. The time sequence Diagram 12-13 is shown as below.

Diagram 12-13 Fixed Time Circulation and Fixed Quantity Control with PID
[10] Fixed Time Circulation and Fixed Quantity Control with PID
This mode combines Fixed Time Circulation and Fixed Quantity Control with PID. This is to prevent motors from becoming rusty if they are not in use for a long period of time. If some motors are not activated, set the fixed time circulation to run the motors one by one to make sure each of them is running.

When all the motors are running and water pressure is sufficient, the fixed time circulation is not enabled. If motor 1 and motor 2 reach a balance in water pressure and when the time reaches the setting for Pr.12-02, motor 1 operates without mains electricity (run by the motor drive). When the time reaches the setting for Pr.12-03, motor 3 operates with mains electricity, and the operating time of each motor resets. Once it reaches the time setting for Pr.12-02 again, motor 2 runs without mains electricity. When the time reaches the setting for Pr.12-03, motor 4 runs with mains electricity. The time sequence Diagram 12-14 is as shown below

Diagram 12-14: Fixed Time Circulation under Fixed Amount Control Balance

12-09 Fixed Quantity Circulation Output Delay

Default: 1.0
Settings $1.0-3600.0 \mathrm{sec}$.
$10]$ Under Fixed Quantity Circulation (Increment) mode, the first motor of the drive switches to the supply mains through the setting time for Pr.12-03, then switches to the second motor through the setting delay time for Pr.12-09.

Diagram 12-15 Sequence of Output Delay for Fixed Quantity Circulation

> 12-10 Motor 1 Operation Record (min. /sec.)
> 12-12 Motor 2 Operation Record (min. /sec.)
> 12-14 Motor 3 Operation Record (min. /sec.)
> 12-16 Motor 4 Operation Record (min. /sec.)
> 12-18 Motor 5 Operation Record (min. /sec.)
> 12-20 Motor 6 Operation Record (min. /sec.)
> 12-22 Motor 7 Operation Record (min. /sec.)
> 12-24 Motor 8 Operation Record (min. /sec.)

Default: Read only
Settings Read only
12-11 Motor 1 Operation Record (hour)
12-13 Motor 2 Operation Record (hour)
12-15 Motor 3 Operation Record (hour)
12-17 Motor 4 Operation Record (hour)
12-19 Motor 5 Operation Record (hour)
12-21 Motor 6 Operation Record (hour)
12-23 Motor 7 Operation Record (hour)
12-25 Motor 8 Operation Record (hour)
Default: Read only
Settings Read only
凹】 These parameters record the operation time for Motor 1 to Motor 8. For examples, Pr.12-10 and Pr.12-11 both record the operation time for Motor 1. Pr.12-10 records the operation time in
minutes and seconds, whereas Pr.12-11 records the operation time in hours. When Pr.12-10 displays 5959, it means the motor has operated for 59 minutes and 59 seconds. When the motor operates for an hour, Pr.12-11 displays 1 and Pr.12-10 displays 0.
[1] When circulation control Pr.12-00 $=1-5$, the output frequency is $>0 \mathrm{~Hz}$ and output current is >0 A, the motor operation time is recorded.
[1] When the record reaches the upper limit 65535 hours 59 minutes and 59 seconds, clear the motor operation time manually to keep tracking the operation status of each motor, and the service life of the motor.

Motor No. / Motor Operation Time	Hour	Min./Sec.	Clear Motor Operation Time
Motor 1	Pr.12-11 $=65535$ \downarrow 65535 hour	Pr.12-10 $=5959$ \downarrow 59 min.: 59 sec.	Pr.12-26=1
Motor 2	Pr.12-13	Pr.12-12	Pr.12-26=2
Motor 3	Pr.12-15	Pr.12-14	Pr.12-26=3
Motor 4	Pr.12-17	Pr.12-16	Pr.12-26=4
Motor 5	Pr.12-19	Pr.12-18	Pr.12-26=5
Motor 6	Pr.12-21	Pr.12-20	Pr.12-26=6
Motor 7	Pr.12-23	Pr.12-22	Pr.12-26=7
Motor 8	Pr.12-25	Pr.12-24	Pr.12-26=8
All motors	N/A	N/A	Pr.12-26=10

12-26 Clear Motor's Operation Time

Default: 0
Settings 0: No function
1: Clear operation time for motor 1
2: Clear operation time for motor 2
3: Clear operation time for motor 3
4: Clear operation time for motor 4
5: Clear operation time for motor 5
6: Clear operation time for motor 6
7: Clear operation time for motor 7
8: Clear operation time for motor 8
10: Clear operation time for all motors
(1) Clear the operation time for single motor or all motors as needed.

1: The operation time for Motor 1 returns to zero, including operation records in Pr.12-11 (hour) and Pr.12-10 (min. /sec.).
[a] 10: The operation time for Motor 1-8 (Pr.12-10-Pr.12-25) all return to zero.

12-27 Priority for Circulated Operation

Default: 0

Settings	$0:$ Terminal order
	$1:$ Minimum operation time

Terminal order: the multi-function output terminals corresponded to each circulation control mode (Pr.12-00 = 1-5).
(1) Minimum operation time: starts in the order from the motor with the minimum operating hours among all running motors.
[D] The minimum operation time is only applicable for operation time record under fixed time circulation mode (Pr.12-00 = 1), as listed in the circulation mode comparison table below.
[d] A comparison for each circulation mode

Function / Circulation Control Mode	Pr.12-00 $=1$	Pr.12-00 $=2-5$
Motor operation time record	v	v
Terminal order	v	v
Minimum operation time	$\mathrm{v}^{* 1}$	x

*1: When the drive resumes and starts running after stopping (or turning off) after operating for a period of time, the motor operates according to the minimum operation time. However, the first operating motor after resuming is the previous running motor before stop or turn-off. If you need to start the motors according to the minimum operation time in sequence immediately after resuming, close the minimum operation time (Pr.12-27 = 0) first and start (Pr. 12-27 = 1) again.
[1] When Pr.12-00 $=1-5$, the terminal order $(\operatorname{Pr} .12-27=0)$ is applicable for the operation time record under all the circulated control modes.
[1] When Pr. 12-00 $=2-5$, the terminal order (Pr. 12-27 $=0$) is the only available selection, and the minimum operation time ($\operatorname{Pr} .12-27=1$) is invalid.
[1] When the minimum operation time (Pr.12-27 = 1) is enabled, the drive sorts the operation hours according to the amount of running motors at the moment, and then choose the motor that has the minimum operation hour to start after RUN command.
As Example 1 below shows, the drive starts Motor 2, which having a minimum operation time among all eight motors.
As Example 2 below shows, Motor 8 does not start though it has the minimum operation time, because only Motor 1 to Motor 5 are started. Moreover, if more than one motors have the same minimum operation hour, the number of the motor takes the priority. Therefore, Motor 3 starts rather than Motor 5.

Motor operation time-Example 1

Motor No. / Motor Status	Status	Operating Hour	Operating Min./ Sec.
Motor 1	ON	0	5959
Motor 2	ON	0	1212
Motor 3	ON	2	0000
Motor 4	ON	0	4311
Motor 5	ON	1	3300
Motor 6	ON	3	5005
Motor 7	ON	1	0522
Motor 8	ON	10	2021

Motor operation time-Example 2

Motor No. / Motor status	Status	Operating Hour	Operating Min./ Sec.
Motor 1	ON	0	5959
Motor 2	ON	5	1212
Motor 3	ON	0	3300
Motor 4	ON	0	4311
Motor 5	ON	0	3300
Motor 6	OFF	3	5005
Motor 7	OFF	1	0522
Motor 8	OFF	0	0001

13 Application Parameters by Industry

\mathbb{N} You can set this parameter during operation.

13-00 Industry-specific Parameter Application

Default: 0
Settings 0: Disabled
1: User-defined Parameter
2: Compressor IM
3: Fan
4: Pump
10: Air Handling Unit, AHU
[ld After you select the macro, some of the default values adjust automatically according to the application selection.
\square Each setting varies with different application selection, and its value is different as well.
[1 Refer to Section 10-2 for more operation details.
[a] Group settings: 2: Compressor IM
The following table lists the relevant compressor application parameters.

Pr.	Explanation	Settings
00-11	Speed control mode	0: VF (IM V/F control)
00-16	Load selection	0: Light load
00-17	Carrier frequency	Default setting
00-20	Master frequency command source (AUTO) / Source selection of the PID target	2: External analog input
00-21	Operation command source (AUTO)	1: External terminals.
00-22	Stop method	0: Ramp to stop
00-23	Control of motor direction	1: Disable reverse
01-00	Maximum operation frequency	Default setting
01-01	Output frequency of motor 1	Default setting
01-02	Output voltage of motor 1	Default setting
01-03	Mid-point frequency 1 of motor 1	Default setting
01-04	Mid-point voltage 1 of motor 1	Default setting
01-05	Mid-point frequency 2 of motor 1	Default setting
01-06	Mid-point voltage 2 of motor 1	Default setting
01-07	Minimum output frequency of motor 1	Default setting
01-08	Minimum output voltage of motor 1	Default setting
01-11	Output frequency lower limit	20 (Hz)
01-12	Acceleration time 1	20 (s)
01-13	Deceleration time 1	20 (s)
03-00	Analog input selection (AVI1)	0 : No function
03-01	Analog input selection (ACI)	1: Frequency command
05-01	Full-load current for induction motor 1 (A)	Default setting
05-03	Rated speed for induction motor 1 (rpm)	Default setting

Pr.	Explanation	Settings
$05-04$	Number of poles for induction motor 1	Default setting

(1) Group setting 03: Fan

The following table lists the relevant fan setting application parameters.

Pr.	Explanation	Settings
00-11	Speed control mode	0 (V/F control)
00-16	Load selection	0 : Light load
00-17	Carrier frequency	Default setting
00-20	Master frequency command source (AUTO) / Source selection of the PID target	2: External analog input
00-21	Operation command source (AUTO)	1: External terminals.
00-22	Stop method	1: Coast to stop
00-23	Control of Motor Direction	1: Disable reverse
00-30	Master frequency command (HAND) source	0: Digital keypad
00-31	Operation command (HAND) source	0: Digital keypad
01-00	Maximum operation frequency	Default setting
01-01	Output frequency of motor 1	Default setting
01-02	Output voltage of motor 1	Default setting
01-03	Mid-point frequency 1 of motor 1	Default setting
01-04	Mid-point voltage 1 of motor 1	Default setting
01-05	Mid-point frequency 2 of motor 1	Default setting
01-06	Mid-point voltage 2 of motor 1	Default setting
01-07	Minimum output frequency of motor 1	Default setting
01-08	Minimum output voltage of motor 1	Default setting
01-10	Output frequency upper limit	50 (Hz)
01-11	Output frequency lower limit	35 (Hz
01-12	Acceleration time 1	15 (s)
01-13	Deceleration time 1	15 (s)
01-43	V/F curve selection	2: $2^{\text {nd }}$ V/F curve
02-05	Multi-function input command 5 (M15)	16: Rotating speed command from ACl
03-00	Analog input selection (AVI1)	1: Frequency command
03-01	Analog input selection (ACI)	1: Frequency command
03-28	AVI1 terminal input selection	0 (0-10 V)
03-29	ACI terminal input selection	1 (0-10 V)
03-31	AFM output selection	0 (0-10 V)
03-50	Analog input curve selection	1: three-point curve of AVI1
07-06	Restart after momentary power loss	2: Speed tracking by minimum output frequency
07-11	Number of times of restart after fault	5 (times)
07-33	Auto-restart interval of fault	60 (s)

[1] Group setting 04: Pump
The following table lists the relevant pump setting application parameters.

Pr.	Explanation	Settings
00-11	Speed control mode	0 (V/F mode)
00-16	Load selection	0: Light load
00-20	Master frequency command source (AUTO) / Source selection of the PID target	2: External analog input
00-21	Operation command source (AUTO)	1: External terminals.
00-23	Control of motor direction	1: Disable reverse
01-00	Maximum operation frequency	Default setting
01-01	Output frequency of motor 1	Default setting
01-02	Output voltage of motor 1	Default setting
01-03	Mid-point frequency 1 of motor 1	Default setting
01-04	Mid-point voltage 1 of motor 1	Default setting
01-05	Mid-point frequency 2 of motor 1	Default setting
01-06	Mid-point voltage 2 of motor 1	Default setting
01-07	Minimum output frequency of motor 1	Default setting
01-08	Minimum output voltage of motor 1	Default setting
01-10	Output frequency upper limit	50 (Hz)
01-11	Output frequency lower limit	35 (Hz)
01-12	Acceleration time 1	15 (s)
01-13	Deceleration time 1	15 (s)
01-43	V/F curve selection	2: $2^{\text {nd }} \mathrm{V} / \mathrm{F}$ curve
07-06	Restart after momentary power loss	2: Speed tracking by minimum output frequency
07-11	Number of times of restart after fault	5 (times)
07-33	Auto-restart interval of fault	60 (s)

[1] Group setting 10: Air Handling Unit, AHU
The following table lists the relevant AHU setting application parameters.

Pr.	Explanation	Settings
$00-04$	Content of multi-function display	2
$00-11$	Speed control mode	0 (V/F control)
$00-16$	Load selection	0 : Light load
$00-20$	Master frequency command source (AUTO) / Source selection of the PID target	2 or 0 (External analog input)
$00-21$	Operation command source (AUTO)	1 or 0 (External terminals)
$00-22$	Stop method	1 : Coast to stop
$00-23$	Control of motor direction	1 : Disable reverse
$00-30$	Master frequency command (HAND) source	0 : Digital keypad
$00-31$	Operation command (HAND) source	$0:$ Digital keypad

Chapter 12 Description of Parameter Settings | CFP2000

Pr.	Explanation	Settings
01-00	Maximum operation frequency	Default setting
01-01	Output frequency of motor 1	Default setting
01-02	Output voltage of motor 1	Default setting
01-07	Minimum output frequency of motor 1	Default setting
01-10	Output frequency upper limit	50 (Hz)
01-11	Output frequency lower limit	35 (Hz)
01-34	Zero-speed mode	2
01-43	V/F curve selection	2: $2^{\text {nd }} \mathrm{V} / \mathrm{F}$ curve
02-05	Multi-function input command 5 (MI5)	16 or 17
02-13	Multi-function output 1 RLY1	11
02-14	Multi-function output 2 RLY2	1
03-00	Analog input selection (AVI1)	1
03-01	Analog input selection (ACI)	1: Frequency command
03-02	Analog input selection (AVI2)	1: Frequency command
03-28	AVI1 terminal input selection	$0(0-10 \mathrm{~V})$
03-29	ACI terminal input selection	1 (0-10 V)
03-20	Multi-function output 1 (AFM1)	0
03-23	Multi-function output 2 (AFM2)	0
03-31	AFM1 current selection	0 or 1
03-34	AFM2 current selection	0 or 1
03-50	Analog input curve selection	4
07-06	Restart after momentary power loss	2 (Speed tracking by minimum output frequency)
07-11	Number of times of restart after fault	5 (times)
07-33	Auto-restart interval of fault	60 (s)

13-01
 Application Parameter 1-99
 13-99

Default: 0.00
Settings 0.00-655.35

14 Extension Card Parameters

\wedge You can set this parameter during operation.

14-00 Extension Card Input Terminal Selection (AI10)
 14-01 Extension Card Input Terminal Selection (Al11)

Default: 0

Settings 0: Disable
 1: Frequency command
 4: PID target value
 5: PID feedback signal
 6: Thermistor (PTC) input value
 11: PT100 thermistor input value
 13: PID compensation amount
 14-08 Analog Input Filter Time (AI10)
 14-09 Analog Input Filter Time (AI11)

[a] When the setting for Pr.14-00 and Pr.14-01 are the same, the Al10 is selected first.

Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.
[1] The input analog signal of terminal AI1 and AI2 often includes interferences, which affect the stability of the control. Use these input delays to filter a noisy analog signal.
11 When the setting for the time constant is too large, the control is stable but the control response is slow. When the setting for time constant is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting according to the control stability or the control response.

14-10 Analog Input 4-20 mA Signal Loss Selection (AI10)
 14-11 Analog Input 4-20 mA Signal Loss Selection (Al11)

Default: 0
Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to 0 Hz
3: Stop immediately and display ACE
1 This parameter determines the treatment when the $4-20 \mathrm{~mA}$ signal is lost, when Pr. 14-18 $=2$, Pr.14-19 = 2 .
1 When the setting for Pr.14-18 or Pr.14-19 are 0 or 1, the voltage input to AVI and ACI terminal is $0-10$ V or $4-20 \mathrm{~mA}$. At this moment, Pr. 14-10 and Pr. 14-11 are invalid.Setting 1 or 2: Displays the warning code ANL on the keypad. It continues blinking until the lost ACI signal is recovered.When the motor drive stops, the warning condition does not continue to exist, so the warning disappears.

14-12 Extension Card Output Terminal Selection (AO10) 14-13 Extension Card Output Terminal Selection (AO11)

Default: 0
Settings 0-23
[1] Refer to the function chart below for details setting.
Function Chart

Settings	Functions		Descriptions
0	Output frequency (Hz)	Maximum frequency Pr.01-00 is processed as 100\%.	
1	Frequency command (Hz)	Maximum frequency Pr.01-00 is processed as 100\%.	
2	Motor speed (Hz)	Maximum frequency Pr.01-00 is processed as 100%.	
3	Output current (rms)	($2.5 \times$ rated current) is processed as 100%	
4	Output voltage	($2 \times$ rated voltage) is processed as 100%	
5	DC bus voltage	$450 \mathrm{~V}(900 \mathrm{~V})=100 \%$	
6	Power factor	-1.000-1.000=100\%	
7	Power	($2 \times$ rated power) is processed as 100%	
9	AVI1 proportional	$0-10 \mathrm{~V}=0-100 \%$	
10	ACI proportional	$4-20 \mathrm{~mA}=0-100 \%$	
11	AVI2 proportional	0-10 V = 0-100\%	
20	CANopen analog output	For CANopen communication analog output	
		Terminal	Corresponding Address
		AFM1	2026-A1
		AFM2	2026-A2
		AO10	2026-AB
		AO11	2026-AC
21	RS-485 analog output	For RS-485 (InnerCOM / Modbus) analog output	
		Terminal	Corresponding Address
		AFM1	26A0H
		AFM2	26A1H
		AO10	26AAH
		AO11	26ABH
22	Communication card analog output	For communication analog output (CMC-EIP01, CMC-PN01, CMC-DN01)	
		Terminal	Corresponding Address
		AFM1	26A0H
		AFM2	26A1H
		AO10	26AAH
		AO11	26ABH
23	Constant voltage output	Pr. 14-20 and Pr.14-21 control voltage output level $0-100 \%$ of Pr. 14-20 corresponds to $0-10 \mathrm{~V}$ of AO10. $0-100 \%$ of Pr. 14-21 corresponds to $0-10 \mathrm{~V}$ of AO11.	

14-14 Analog Output 1 Gain (AO10)
14-15 Analog Output 1 Gain (AO11)
Default: 100.0
Settings 0.0-500.0\%
®ad Adjusts the voltage level outputted to the analog meter from the analog signal (Pr.14-12, Pr.14-13) output terminal AFM of the drive.

14-16 Analog Output 1 in REV Direction (AO10)

14-17 Analog Output 1 in REV Direction (AO11)
Default: 0
Settings 0: Absolute output voltage value
1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$
2: Reverse output 5-0 V; forward output 5-10 V
[1] Determines the voltage reverse output when AO10 and AO11 are set as $0-10 \mathrm{~V}(\operatorname{Pr} .14-36=0$, Pr.14-37 = 0).

14-18 Extension Card Input Selection (AI10)

Default: 0
Settings $\quad 0: 0-10 \mathrm{~V}$ (AVI10)
1: $0-20 \mathrm{~mA}(\mathrm{ACl} 10)$
2: 4-20 mA (ACI10)

14-19 Extension Card Input Selection (AI11)

Default: 0
Settings $\quad 0: 0-10 \mathrm{~V}$ (AVI11)
1: $0-20 \mathrm{~mA}(\mathrm{ACl} 11)$
2: $4-20 \mathrm{~mA}$ (ACl11)
[10 When you change the input mode, verify that the switch position of external terminal (Al10, Al11) is correct.

N	14-20	AO10 DC Output Setting Level
N	14-21	AO11 DC Output Setting Level

Default: 0.00
Settings 0.00-100.00\%

14-22 AO10 Filter Output Time
 N 14-23 AO11 Filter Output Time

Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.

14-36 AO10 Output Selection
 14-37 AO11 Output Selection

Default: 0

Settings	$0: 0-10 \mathrm{~V}$
	$1: 0-20 \mathrm{~mA}$
	$2: 4-20 \mathrm{~mA}$

12-2 Adjustment \& Application

The followings are abbreviations for different types of motors:

- IM: Induction motor
- PM: Permanent magnet synchronous AC motor
- IPM: Interior permanent magnet synchronous AC motor
- SPM: Surface permanent magnet synchronous AC motor
- SynRM: Synchronous reluctance motor

12-2-1 Permanent Magnet Motor Space Vector Control (PM SVC) Pr.00-11 = 2

1. Control Diagram: PM SVC control diagram

Chapter 12 Description of Parameter Settings | CFP2000

2. PM SVC Adjustment Procedure

(1) PM SVC motor parameters adjustment

NOTE: the number marked on the procedure corresponds to the number of following adjustment explanations)

- Motor Parameters Adjustment

1. Parameter reset:

Reset Pr.00-02 = $10(60 \mathrm{~Hz})$ to the default value.
2. Select PM motor type:

Pr.05-33 = 1 (SPM) or 2 (IPM)
3. Motor nameplate parameter setting:

Parameter	Description
Pr.01-01	Rated frequency (Hz)
Pr.01-02	Rated voltage $\left(\mathrm{V}_{\mathrm{AC}}\right)$
Pr.05-34	Rated current (A)
Pr.05-35	Rated power (kW)
Pr.05-36	Rated rotor speed (rpm)
Pr.05-37	Number of poles for the motor (poles)

4. PM parameter auto-tuning:
5. Set Pr.05-00 = 5 (Rolling auto-tuning for PM) or 13 (Static auto-tuning for PM) and press "RUN" key to finish motor auto-tuning, then you will get the following parameters:

Parameter	Description
Pr.05-39	Stator resistance for a permanent magnet motor (Ω)
Pr.05-40	Permanent magnet motor Ld (mH)
Pr.05-41	Permanent magnet motor Lq (mH)
Pr.05-43	Ke parameter of a permanent magnet motor $\left(\mathrm{V}_{\text {phase }}, \mathrm{rms} / \mathrm{krpm}\right)$ (When Pr.05-00 $=5$, the Ke parameter is measured based on the actual motor rotation. $)$ (When Pr.05-00 $=13$, the Ke parameter is automatically calculated based on the motor power, current and rotor speed.)

If an auto-tuning error (AUE) occurs, refer to Section 14 "Fault Codes and Descriptions" for further treatment.

AUE Error (code)	Description
AUE (40)	Auto-tuning error
AUE1 (142)	Auto-tuning error 1 (No feedback current error)
AUE2 (143)	Auto-tuning error 2 (Motor phase loss error)

6. Set control mode

Control mode for the motor: Pr.00-11 = 2: PM SVC mode
7. Measure the initial magnetic pole angle of PM

Set Pr.10-53 PM initial rotor position detection method
0 : Disable
1: Using I/F current command (Pr.10-31) to attract the rotor to zero degrees
2: High frequency injection
3: Pulse injection
(Set to 2 for IPM; set to 3 for SPM. If these settings cause problems, then set the parameter to 1.)
(2) PMSVC Adjustment for Operation without Load / with Light-Ioad

- Adjustment for Operation with Light-load

8. Start the motor with no-load / light-load, and operates to $1 / 2$ of the rated rotor speed

A1. Start operation direction:
a. If the start operation direction is wrong

SPM: increase the current proportion for Pr.10-42 (Initial angle detection pulse value) to improve the accuracy of the angle detection.

IPM: Increase the voltage for Pr.10-52 (Injection magnitude) to improve the accuracy of the angle detection.
b. If an ocA error occurs when pressing RUN to start the motor, decrease the current proportion for Pr.10-42 (Initial angle detection pulse value). An excessive pulse current may cause ocA error easily.
A2. Operates the motor in $1 / 2$ of the rated rotor speed, adjust the no-load operating current If the no-load operating current exceeds 20% of the rated current, increase Pr.07-26 (Torque compensation gain) and observe the no-load operating current.

A3. Accelerate to rated frequency and observe if the motor operates stably.
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr.10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr. 10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high frequency vibration, decrease Pr.10-34 or decrease Pr.10-32.

A4. Accelerate the motor to the maximum rotor speed, and observe if it operates stably. If the motor stalls when accelerating to the maximum rotor speed, then increase Pr.10-34 PM Sensorless Speed Estimator Low-pass Filter Gain, or increase Pr.00-17 Carrier Frequency (you must set the carrier frequency larger than 10 times of the maximum output frequency)
(3) PM SVC Carrier Start-up Adjustment

- Heavy Load Operation Adjustment

9. Load operating test

B1. Low-frequency loading performance is below $1 / 10$ of rated frequency:
a. If the low-frequency loading performance is insufficient, or the rotor speed is not smooth, increase Pr.10-31 (Current command of I/F mode).
b. If the low-frequency current is large, decrease Pr.10-31 (Current command of I/F mode).
B2. Test the with-load accelerating performance:
When the motor operates in $1 / 10$ of rotor speed and above, if the speed cannot follow the acceleration time during accelerating, or the current stalls, increase Pr.07-38 (PMSVC voltage feedback forward gain).
10. Stability test at constant speed operation: if the motor operates stably at constant speed
a. If the motor output rotor speed presents periodic low-frequency wave, increase

Pr.10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr.10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high frequency vibration, decrease Pr.10-34 or decrease Pr.10-32.

12-2-1-1 PMSVC Related Parameters

Refer to Section 12-1 Description of Parameter Settings for more details.

Parameter	Description	Unit	Default	Setting Range	
Pr.07-24	Torque command filter time	sec.	0.5	$0.001-10$	
Pr.07-26	Torque compensation gain	N / A	0	$0-5000$	
Pr.07-38	PMSVC voltage feedback forward gain	N / A	1.0	$0.5-2.0$	
Pr.10-31	I/F mode, current command	$\%$	40	$0-150$	
Pr.10-32	PM FOC sensorless speed estimator bandwidth	Hz	5.00	$0.00-600.00$	
Pr.10-34	PM sensorless speed estimator low-pass filter gain	N / A	1.00	$0.00-655.35$	
Pr.10-39	Frequency point to switch from I/F mode to PM sensorless mode	Hz	20.00	$0.00-599.00$	
Pr.10-40	Frequency point to switch from PM sensorless mode to V/F mode	Hz	20.00	$0.00-599.00$	
Initial Angle Estimating Parameters					
Pr.10-42	Initial angle detection pulse value				
Pr.10-51	Injection frequency	N / A	1.0	$0.0-3.0$	
Pr.10-52	Injection magnitude	Hz	500	$0-1200$	
Pr.10-53	PM initial rotor position detection method 0: Disable 1: Using I/F current command (Pr.10-31) to attract the rotor to zero degrees	V	$15.0 /$ 30.0	$0.0-200.0$	
	2: High frequency injection 3: Pulse injection	0	$0-3$		

12-2-2 PM Sensorless Adjustment (Pr.00-11 = 6)

1. Control Diagram
(1) PM Sensorless FOC mode (applicable for CFP2000 V1.07 and above)

NOTE: PM Sensorless FOC control is the control method dedicated for PM; it uses the high salient pole characteristic of PM to detect positions of NS magnetic poles. By doing this, it calculates the motor's rotor position at low-speed frequency.
2. PM Sensorless FOC Control Adjustment (* the number marked on the procedure corresponds the number of following explanations)
(1) Adjustment for PM Sensorless FOC Mode Motor Parameters

- Motor Parameters Adjustment

1. Parameter reset:

Pr.00-02 = 10, reset parameter to the default value.
2. Select motor type:

Pr.05-33 = 1 or 2 (SPM or IPM)
3. Motor nameplate parameter setting:

Parameter	Description
Pr.01-01	Rated frequency (Hz)
Pr.01-02	Rated voltage (VAC)
Pr.05-34	Rated current (A)
Pr.05-35	Rated power (kW)
Pr.05-36	Rated rotor speed (rpm)
Pr.05-37	Number of motor poles (poles)
Pr.05-38	System inertia for PM $\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$

4. PM parameter auto-tuning:

Set Pr.05-00 = 5 [Rolling auto-tuning for PM (without load)] or 13 (Static auto-tuning for PM), and press "RUN" key to finish motor auto-tuning, then you get the following parameters:

Parameter	Description
Pr.05-39	Stator resistance for a permanent magnet motor (Ω)
Pr.05-40	Permanent magnet motor Ld (mH)
Pr.05-41	Permanent magnet motor $\mathrm{Lq}(\mathrm{mH})$
	Ke parameter of a permanent magnet motor $\left(\mathrm{V}_{\text {phase }} \cdot \mathrm{ms} / \mathrm{krpm}\right)$ (When Pr.05-00 $=5$, the Ke parameter is measured based on the actual motor rotation.) (When Pr.05-00 $=13$, the Ke parameter is automatically calculated based on the motor power, current and rotor speed.)

If an auto-tuning error (AUE) occurs, refer to Section 14 "Error Codes and Descriptions" for further treatment.

AUE Fault code	Description
AUE (40)	Auto-tuning error
AUE 1 (142)	Auto-tuning error 1 (no feedback current error)
AUE 2 (143)	Auto-tuning error 2 (motor phase loss error)

5. Set control mode

Set Pr.00-11 = 6 PM Sensorless FOC control mode
6. After auto-tuning, cycle the power.
7. Measure the initial magnetic pole angle of $P M$

Set Pr.10-53 PM initial rotor position detection method:
0 : Disable
1: Using I/F current command (Pr.10-31) to attract the rotor to zero degrees
2: High frequency injection
3: Pulse injection
(Set " 2 " for IPM; set " 3 " for SPM; set " 1 " when setting " 2 " and " 3 " are not enough)

(2) PM Sensorless FOC Mode - No load / Light-load Adjustment

- No-load / Light-load Operation Adjustment

8. Start the motor without load
(a) Set Pr.11-00 $=1$ Auto-tuning for ASR and APR
(b) Start the motor without load, and operates the motor to $1 / 2$ of rated rotor speed

A1. If the start direction is wrong or starting rotation is not smooth (ocA), adjust system inertia (Pr.11-01). When the Ke parameter (Pr.05-43) is $<25 \mathrm{~V}$, increase the current command of I/F mode (Pr.10-31) or switch the frequency from I/F mode to PM Sensorless mode (Pr.10-39, Pr.10-40).
A2. If the motor starts up with a reverse direction, but operates with a correct direction, adjust injection magnitude (Pr.10-52) when using High frequency injection to detect the PM initial rotor position (Pr.10-53 = 2); increase initial angle detection pulse value (Pr. 10-42) to improve the accuracy of angle detection when using Pulse injection to detect the PM initial rotor position (Pr. 10-53 = 3).
9. Acceleration test with no-load / light-load

A3. Accelerate the motor to the rated frequency, and check if it operates stably.
a. If the motor output frequency presents steady state speed wave, increase ASR2 high-speed bandwidth (Pr.11-04) or Per-unit of system inertia (Pr.11-01).
b. If the motor output frequency presents large fluctuations or diverges, increase the magnetic flux linkage estimate high-speed gain (Pr.10-55) or decrease the Kp of phase-locked loop (Pr.10-56).
A4. Accelerate the motor to the maximum frequency, and check if it operates stably.
If the motor stalls at the maximum operation speed, increase the magnetic flux linkage estimate high-speed gain (Pr.10-55) and the carrier frequency (Pr.00-17), or decrease the Kp of phase-locked loop (Pr.10-56).
※ Setting curve for speed regulator (ASR) and related parameters:

Parameter	Description	Default
Pr.11-00	System control	0
Pr.11-01	Per-unit of system inertia	256
Pr.11-02	ASR1 / ASR2 switch frequency (set the switch frequency > Pr.10-39)	7 Hz
Pr.11-03	ASR1 low-speed bandwidth	10 Hz
Pr.11-04	ASR2 high-speed bandwidth	10 Hz
Pr.11-05	Zero-speed bandwidth	10 Hz

(3) PM Sensorless FOC Mode - Load Starting Adjustment

- Load Operation Adjustment and Steady State Adjustment at Constant Speed

11. Load operation test

B1. Low-frequency carrier capacity test (the output frequency is $<20 \%$ of rated speed):
a. If the frequency switch from I/F mode to PM Sensorless is zero (Pr. 10-39 = 0 Hz), increase the magnetic flux linkage estimate low-speed gain (Pr.10-54).
b. If the output frequency is less than the frequency switch from I/F mode to PM Sensorless (Pr.10-39), increase the current command of I/F mode (Pr.10-31).
B2. Carrier capacity test during acceleration
In heavy load operation, accelerate the motor to rated speed according to the acceleration time:
a. If the motor responds too slowly or an over current occurs during the acceleration, increase Ki phase-locked loop (Pr.10-57).
12. Steady state test at constant speed, check if the motor operates stably at constant speed.
a. If the motor's output frequency presents periodic low-frequency wave, increase PM sensorless speed estimator low-pass filter gain (Pr.10-34), or adjust the ASR parameters.
b. If the motor's output frequency presents extreme vibration, decrease PM sensorless speed estimator low-pass filter gain (Pr.10-34) or Kp phase-locked loop (Pr. 10-56).

12-2-2-1 PM Sensorless FOC Mode Adjustment Parameters

Refer to Section 12-1 Description of Parameter Settings for more details.

Parameter	Description	Unit	Default	Settings
Pr.10-31	I/F mode, current command	\%	40	150
Pr.10-34	PM sensorless speed estimator low-pass filter gain	NA	1.00	0.00-655.35
Pr. 10-39	Frequency to switch from I/F mode to PM sensorless mode	Hz	20.0	0.0-599.0
Pr. 10-40	Frequency to switch from PM sensorless mode to I/F mode	Hz	20.0	0.0-599.0
Pr.10-54	Magnetic flux linkage estimate low-speed gain (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	\%	100	10-1000
Pr.10-55	Magnetic flux linkage estimate high-speed gain (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	\%	100	10-1000
Pr.10-56	Kp of phase-locked loop (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	\%	100	10-1000
Pr.10-57	Ki of phase-locked loop (applied to $230 \mathrm{~V} / 460 \mathrm{~V}$ models)	\%	100	10-1000
Initial Angle Estimating Parameters				
Pr. 10-42	Initial angle detection pulse value	NA	0.5	0.0-3.0
Pr.10-51	Injection frequency (applicable when Pr. 10-53 = 2)	Hz	500	0-1200
Pr.10-52	Injection magnitude (applicable when Pr. 10-53 = 2)	V	15.0/30.0	0.0-200.0
Pr.10-53	PM initial rotor position detection method 0: Disable 1: Force attracting the rotor to zero degrees 2: High frequency injection 3: Pulse injection	NA	0	0-3
Motor Performance Control Parameters				
Pr.11-00	System control	bit	0	0-8

Parameter	Description	Unit	Default	Settings
Pr.11-02	ASR1 / ASR2 switch frequency	Hz	7.0	$5.0-599.0$
Pr.11-03	ASR1 low-speed bandwidth	Hz	10	$1-100(\mathrm{PM})$ $1-40(\mathrm{IM})$
Pr.11-04	ASR2 high-speed bandwidth	Hz	10	$1-100(\mathrm{PM})$ $1-40(\mathrm{IM})$
Pr.11-05	Zero-speed bandwidth	Hz	10	$1-100(\mathrm{PM})$ $1-40(\mathrm{IM})$

12-2-3 SynRM FOC Sensorless Vector Control Mode (SynRM Sensorless) Pr.00-11 = 8

1. Control diagram: SynRM Sensorless (applied to CFP2000 V1.07 and above)

2. SynRM Sensorless Adjustment Procedure
(1) Adjustment for SynRM Sensorless Parameters

NOTE: The number marked on the procedure corresponds the number of following explanations

- Motor Parameters Adjustment

1. Parameter reset:

Pr.00-02 $=9(50 \mathrm{~Hz})$ or $10(60 \mathrm{~Hz})$, reset parameter to the default value
2. Select motor type:

Pr.05-33 = 3 (SynRM)
3. Motor nameplate parameter setting:

Parameter	Description
Pr.01-01	Rated frequency (Hz)
Pr.01-02	Rated voltage (V AC$)$
Pr.05-34	Rated current (A)
Pr.05-35	Rated power (kW)
Pr.05-36	Rated rotor speed (rpm)
Pr.05-37	Number of motor poles (poles)

4. Motor parameter auto-tuning:

Set Pr.05-00 = 11 [SynRM parameter auto-tuning (without load)] and press "RUN" key to finish motor auto-tuning, then you get the following parameters:

Parameter	Description
Pr.05-39	Stator resistance for a permanent magnet motor (Ω)
Pr.05-40	Permanent magnet motor $\mathrm{Ld}(\mathrm{mH})$
Pr.05-41	Permanent magnet motor $\mathrm{Lq}(\mathrm{mH})$

5. Set control mode:

Set Pr.00-11 = 8 (SynRM Sensorless)
6. After auto-tuning, cycle the power.

(2) SynRM Sensorless No-load Adjustment Procedure

- No-load Operation Adjustment

7. Start the motor without load

A1. Start the motor without load, refer to the following adjustment before the operation frequency reaches $1 / 5$ or motor's rated frequency:
a. If the motor starts in a wrong direction, the starting rotation is not smooth (ocA) or there is motor shaft lock, adjust Pr.10-31 (I/F current command) and Pr.10-33 (PM FOC sensorless low-speed estimator bandwidth).
b. When there is an extreme vibration of the motor speed, adjust Pr.11-01 (Per-unit of system inertia) and Pr.11-03 (ASR1 low-speed bandwidth) depending on whether the motor departs from the load.
※ Setting curve for speed regulator (ASR) and related parameters:

ASR adjustment- auto gain

Parameter	Description	Default
Pr.11-00	System control	201 h
Pr.11-01	Per-unit of system inertia	256
Pr.11-02	ASR1 / ASR2 switch frequency (set the switch frequency > 1/5 of motor's rated frequency)	10 Hz
Pr.11-03	ASR1 low-speed bandwidth	5 Hz
Pr.11-04	ASR2 high-speed bandwidth	5 Hz
Pr.11-05	Zero-speed bandwidth	5 Hz

A2. The operation frequency exceeds the switch frequency for Pr.10-39
a. If there is an extreme vibration of speed and current when switching frequency, or a fault occurs during the switching process, adjust Pr.10-56 (Kp of phase-locked loop).
b. Both of adjustments for Pr.10-55 (Magnetic flux linkage estimate high-speed gain) and Pr.10-56 (Kp of phase-locked loop) affect the performance of the speed estimator. Adjust only Pr.10-56 in no-load operation.
c. When there is a low-frequency vibration of speed during motor's operation, adjust Pr.11-01 (Per-unit of system inertia) and Pr.11-04 (ASR2 high-speed bandwidth) depending on whether the motor departs from the load.
A3. Observe whether the motor operates stably when accelerates to the maximum frequency If the motor stalls at the maximum operation speed, decrease Pr.10-56 (Kp phase-locked loop)

(3) SynRM Sensorless Start-up with Load Adjustment

- Load Operation Adjustment

8. Operation test with load

B1. Low-frequency loading capacity test
a. If the low-frequency loading performance is low, increase Pr.10-31 (I/F mode current command) and Pr.10-58 (mutual inductance compensation gain).
b. If the low-frequency loading speed presents large plummet, or the output frequency presents low-frequency vibration, adjust Pr.11-03 (ASR1 low-speed bandwidth) and Pr.10-33 (PM FOC sensorless speed estimator bandwidth). Increase the setting to improve the response when the speed drops too much at transient load. Decrease the setting if the frequency presents an extreme vibration at stable load.

B2. High frequency loading capacity test
a. If the high frequency loading performance is insufficient, increase Pr.10-55 (Magnetic flux linkage estimate high-speed gain) and Pr.10-56 (Kp of phase-locked loop).
b. If there is large plummet of loading speed, or the output frequency vibrates, adjust Pr.11-04 (ASR2 high-speed bandwidth), Pr.10-55 (Magnetic flux linkage estimate high-speed gain) and Pr. 10-56 (Kp of phase-locked loop). Increase the setting to improve the response when the speed drops too much at transient load. Decrease the setting if the frequency presents an extreme vibration at stable load.

B3. Operation frequency exceeds the rated frequency
a. When there is a waveform of speed and current in the flux-weakening zone, and an oc or ov fault occurs during the deceleration, adjust Pr.01-51 (Flux-weakening overload stall prevention time) and Pr.10-31 (I/F mode current command).

SynRM Sensorless Mode Adjustment Parameters

Refer to Section 12-1 Description of Parameter Settings for more details.

Parameter	Description	Unit	Default	Settings
$00-11$	Speed control mode		0	$0-8$
$00-17$	Carrier frequency	kHz	4	$4-8$
$01-51$	Flux-weakening overload stall prevention time	sec.	1.00	$0.00-600.00$
$05-00$	Motor parameter auto-tuning		0	$0-13$
$05-33$	Induction motor or permanent magnet synchronous AC motor selection		3	$0-3$
$05-34$	Full-load current for a permanent magnet synchronous AC motor / reluctance motor	Amps	NA	NA
$05-35$	Rated power for a permanent magnet synchronous AC motor / reluctance motor	kW	NA	$0-655.35$
$05-36$	Rated speed for a permanent magnet synchronous AC motor / reluctance motor	rpm	NA	$0-65535$
$05-37$	Number of poles for a permanent magnet synchronous AC motor / reluctance motor	NA	$0-65535$	
$05-38$	System inertia for a permanent magnet synchronous AC motor / reluctance motor	$\mathrm{kg-cm}{ }^{2}$	NA	$0.0-6553.5$
$05-39$	Stator resistance for a permanent magnet synchronous AC motor / reluctance motor	ohm	0.000	$0.000-65.535$
$05-40$	Permanent magnet synchronous AC motor $/$ reluctance motor Ld	mH	0.00	$0.00-655.35$

Parameter	Description	Unit	Default	Settings
05-41	Permanent magnet synchronous AC motor / reluctance motor Lq	mH	0.00	0.00-655.35
07-12	Speed tracking during start-up		0	0-3
10-08	Treatment for speed observer feedback fault		2	0-2
10-09	Detection time of speed observer feedback fault	sec.	1.0	0.0-10.0
10-10	Speed observer stall level	\%	115	0-120
10-11	Detection time of speed observer stall	sec.	0.1	0.0-2.0
10-12	Speed observer stall action		2	0-2
10-13	Speed observer slip range	\%	50	0-0
10-14	Detection time of speed observer slip	sec.	0.5	0.0-10.0
10-15	Speed observer stall and slip error action		2	0-2
10-31	I/F mode, current command	\%	15	0-150
10-33	PM FOC sensorless speed estimator bandwidth (low speed)		1.00	0.01-3.00
10-34	PM sensorless speed estimator low-pass filter gain		1.00	0.00-10.00
10-35	AMR (Kp) gain		0.4	0.00-3.00
10-36	AMR (Ki) gain		2.00	0.00-3.00
10-39	Frequency to switch from I/F mode to PM sensorless mode	Hz	10.00	0.0-599.00
10-51	Injection frequency	Hz	400	0-1200
10-52	Injection magnitude	\%	30	10-50
10-55	PM initial rotor position detection method		1.0	0.1-3.0
10-56	Kp of phase-locked loop	Hz	10	5-50
10-58	Mutual inductance gain compensation		1.00	0.00-655.35
11-00	System control		0x201h	0-65535
11-01	Per-unit of system inertia	pu	256	0-65535
11-02	ASR1 / ASR2 switch frequency	Hz	10.00	5.00-599.00
11-03	ASR1 low-speed bandwidth	Hz	5	1-30
11-04	ASR2 high-speed bandwidth	Hz	5	1-30
11-05	Zero-speed bandwidth	Hz	5	1-30
11-17	Forward motor torque limit Quadrant I	\%	200	0-500
11-18	Forward regenerative torque limit Quadrant II	\%	200	0-500
11-19	Reverse motor torque limit Quadrant III	\%	200	0-500
11-20	Reverse regenerative torque limit Quadrant IV	\%	200	0-500

[This page intentionally left blank]

Chapter 13 Warning Codes

Summary of Warning Codes

ID No.	Warning Name	ID No.	Warning Name
0	No record	49	Keypad RTC time-out (PLrt)
1	Communication error 1 (CE1)	50	PLC opposite defect (PLod)
2	Communication error 2 (CE2)	51	PLC save memory error (PLSv)
3	Communication error 3 (CE3)	52	Data defect (PLdA)
4	Communication error 4 (CE4)	53	Function defect (PLFn)
5	Communication error 10 (CE10)	54	PLC buffer overflow (PLor)
7	Save error 1 (SE1)	55	Function defect (PLFF)
8	Save error 2 (SE2)	56	Checksum error (PLSn)
9	IGBT overheating warning (oH1)	57	No end command (PLEd)
10	Capacitor overheat warning (0H2)	58	PLC MCR error (PLCr)
11	PID feedback error (PID)	59	PLC download fail (PLdF)
12	ACl analog signal loss (AnL)	60	PLC scan time fail (PLSF)
13	Under current (uC)	61	CAN/M guarding error (PCGd)
17	Over speed warning (oSPd)	62	CAN/M BUS off (PCbF)
18	Deviation Warning (dAvE)	63	CAN/M node lack (PCnL)
19	Phase loss (PHL)	64	CAN/M cycle time-out (PCCt)
20	Over-torque 1 (ot1)	65	CAN/M SDO over (PCSF)
21	Over-torque 2 (ot2)	66	CAN/M SDO time-out (PCSd)
22	Motor overheating (oH3) PTC / PT100	67	CAN/M address error (PCAd)
24	Over slip error (oSL)	68	CAN/M time-out (PCTo)
25	Auto tuning (tUn)	70	ExCom ID fail (ECid)
28	Output phase loss (OPHL)	71	ExCom power loss (ECLv)
30	Copy model error 3 (SE3)	72	ExCom test mode (ECtt)
36	CANopen guarding time-out (CGdn)	73	ExCom BUS off (ECbF)
37	CANopen heartbeat error (CHbn)	74	ExCom no power (ECnP)
39	CANopen bus off error (CbFn)	75	ExCom factory defect (ECFF)
40	CANopen index error (Cldn)	76	ExCom inner error (ECiF)
41	CANopen station address error (CAdn)	77	ExCom IO Net break (ECio)
42	CANopen memory error (CFrn)	78	ExCom Parameter data error (ECPP)
43	CANopen SDO time-out (CSdn)	79	ExCom condifuration data error (ECPi)
44	CANopen SDO receives register overflow (CSbn)	80	Ethernet link fail (ECEF)
46	CANopen format error (CPtn)	81	Communication time-out (ECto)
47	RTC adjust (PLrA)	82	Checksum error (ECCS)
48	InnerCOM error (PLiC)	83	Return defect (ECrF)

Chapter 13 Warning Codes | CFP2000

ID No.	Warning Name	ID No.	Warning Name
84	Modbus TCP over (Eco0)	92	Copy PLC: Write mode (CPL1)
85	EtherNet/IP over (ECo1)	93	Copy PLC: version error (CPLv)
86	IP fail (ECiP)	94	Copy PLC: size error (CPLS)
87	Mail fail (EC3F)	95	Copy PLC: PLC function (CPLF)
88	ExCom busy (ECbY)	96	Copy PLC: time-out (CPLt)
89	ExCom card break (ECCb)	101	InrCOM time-out (ictn)
90	Copy PLC: password error (CPLP)	105	Estimated speed reverse (SpdR)
91	Copy PLC: Read mode error (CPL0)	123	Deceleration energy backup (dEb)

AUTO (1) Warning		(1) Display error signal (2) Abbreviate error code (3) Display error description	
ID No.	Display on LCD Keypad	Warning Name	Description
1	Warning CE1 Comm. Error 1	Communication error 1 (CE1)	RS-485 Modbus illegal function code
Action and Reset			
	Action condition	When the function code is not 03, 06, 10 and 63	
	Action time	Immediately act	
War	ing setting parameter	N/A	
	Reset method	"Warning" occurs when Pr.09-02 = 0 and the motor drive keeps running. The drive resets automatically when receiving the correct function code.	
	Reset condition	Immediately reset	
	Record	N/A	
	Cause		Corrective Actions
Incorrect comman	communication d from upper unit	Check if the communication command is correct.	
Malfun	ion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Different from the	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Disconn of the c	ection or bad connection ble	Check the cable and replace it if necessary.	

Display on LCD Keypad	Warning Name	Description
Warning AUTO CK1 Comm Command Er	Communication command error 1 (CK1)	Keypad communication data, illegal function code (Keypad auto-detects this error and displays it.)
Action and Reset		
Action condition	When the function code is not $03,06,10$ and 63	
Action time	Immediately act	
Warning setting parameter	N/A	
Reset method	Remove the keypad and then reconnect it to the motor drive.	
Reset condition	Immediately reset	
Record	N/A	
Cause		Corrective Actions
Incorrect communication command from keypad	Keypad and the motor drive don't communicate properly. It is recommended to remove the keypad and then reconnect it to the motor drive.	
Malfunction caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Different communication setting from keypad	Check if the Baud rate $=19200 \mathrm{bps}$. Format $=$ RTU8, N, 2.	
Disconnection or bad connection of the cable	Check the cable and replace it if necessary.	

ID No.	Display on LCD Keypad	Warning Name	Description
2	Warning AUTO CE2 Comm. Error 2	Communication error 2 (CE2)	RS-485 Modbus illegal data address
Action and Reset			
	Action condition	When the input data address is incorrect	
	Action time	Immediately act	
	ing setting parameter	N/A	
	Reset method	"Warning" occurs when Pr.09-02 = 0 and the motor drive keeps running. The drive resets automatically when receiving the correct data address.	
	Reset condition	Immediately reset	
	Record	N/A	
	Cause	Corrective Actions	
Incorre comma	communication d from upper unit	Check if the communication command is correct.	
Malfunc	on caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differen from the	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Disconn of the	ction or bad connection le	Check the cable and replace it if necessary.	

Display on LCD Keypad	Warning Name	Description
Warning Auto CK2 Comm Address Er	Communication address error (CK2)	Keypad communication data, illegal data address (Keypad auto-detects this error and displays it.)
Action and Reset		
Action condition	When the input data address is incorrect	
Action time	Immediately act	
Warning setting parameter	N/A	
Reset method	Remove the keypad and then reconnect it to the motor drive.	
Reset condition	Immediately reset	
Record	N/A	
Cause		Corrective Actions
Incorrect communication command from keypad	Keypad and the motor drive don't communicate properly. It is recommended to remove the keypad and then reconnect it to the motor drive.	
Malfunction caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Different communication setting from keypad	Check if the Baud rate $=19200 \mathrm{bps}$. Format $=$ RTU8, N, 2.	
Disconnection or bad connection of the cable	Check the cable and replace it if necessary.	

ID No.	Display on LCD Keypad	Warning Name	Description
3	Warning CE3 Comm. Error 3	Communication error 3 (CE3)	RS-485 Modbus illegal data value
Action and Reset			
	Action condition	When the length of communication data is too long	
	Action time	Immediately act	
Wa	ning setting parameter	N/A	
	Reset method	"Warning" occurs when Pr.09-02 = 0 and the motor drive keeps running. The drive resets automatically when receiving the correct communication data value	
	Reset condition	Immediately reset	
	Record	N/A	
	Cause	Corrective Actions	
Incorrec command	communication d from upper unit	Check if the communication command is correct.	
Malfun	ion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Different from the	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Disconn of the c	ection or bad connection ble	Check the cable and replace it if necessary.	

Display on LCD Keypad	Warning Name	Description
Warning CK3 Comm Data Error	Communication data error (CK3)	Keypad communication data, illegal data value (Keypad auto-detects this error and displays it.)
Action and Reset		
Action condition	When the length of communication data is too long	
Action time	Immediately act	
Warning setting parameter	N/A	
Reset method	Remove the keypad and then reconnect it to the motor drive.	
Reset condition	Immediately reset	
Record	N/A	
Cause		Corrective Actions
Incorrect communication command from keypad	Keypad and the motor drive don't communicate properly. It is recommended to remove the keypad and then reconnect it to the motor drive.	
Malfunction caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Different communication setting from keypad	Check if the Baud rate = 19200 bps. Format = RTU8, N, 2.	
Disconnection or bad connection of the cable	Check the cable and replace it if necessary.	

ID No.	Display on LCD Keypad	Warning Name	Description
4	Warning CE4 Comm. Error 4	Communication error 4 (CE4)	RS-485 Modbus data is written to read-only address
Action and Reset			
	Action condition	When the data is written to read-only address	
	Action time	Immediately act	
	ming setting parameter	N/A	
	Reset method	"Warning" occurs when Pr.09-02 = 0 and the motor drive keeps running. The drive resets automatically when receiving the correct written address of communication data.	
	Reset condition	Immediately reset	
	Record	N/A	
	Cause		Corrective Actions
Incorrect comma	communication d from upper unit	Check if the communication command is correct.	
Malfunc	ion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differen from the	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Disconn of the c	ection or bad connection ble	Check the cable and replace it if is necessary.	

Display on LCD Keypad	Warning Name	Description
Warning CK4 Comm Slave Error	Communication slave error (CK4)	Keypad communication data is written to read-only address. (Keypad auto-detects this error and displays it.)
Action and Reset		
Action condition	When the data is written to read-only address	
Action time	Immediately act	
Warning setting parameter	N/A	
Reset method	Remove the keypad and then reconnect it to the motor drive.	
Reset condition	Immediately reset	
Record	N/A	
Cause		Corrective Actions
Incorrect communication command from keypad	Keypad and the motor drive don't communicate properly. It is recommended to remove the keypad and then reconnect it to the motor drive. If the problem persists after reconnecting the keypad, pay attention to the motor drive status. For example: Motor drive might reset to default setting during operation or while enabling PLC function.	
Malfunction caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Different communication setting from keypad	Check if the Baud rate $=19200 \mathrm{bps}$. Format $=$ RTU8, N, 2.	
Disconnection or bad connection of the cable	Check the cable and replace it if is necessary.	

ID No.	Display on LCD Keypad	Warning Name	Description
5	Warning CE10 Comm. Error 10	Communication error 10 (CE10)	RS-485 Modbus transmission time-out
Action and Reset			
	Action condition	When the communication time exceeds the detection time of Pr.09-03 communication time-out	
	Action time	Setting for Pr.09-03	
	ing setting parameter	N/A	
	Reset method	"Warning" occurs when Pr.09-02 $=0$ and the motor drive keeps running. The drive resets automatically when receiving the next communication packet.	
	Reset condition	Immediately reset	
	Record	N/A	
	Cause		Corrective Actions
The up the com within P	er unit does not transmit munication command .09-03 setting time	Check if the upper unit transmits the communication command within the setting time for Pr.09-03.	
Malfunc	ion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differen from th	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Discon of the	ection or bad connection ble	Check the cable and replace it if necessary.	
	play on LCD Keypad	Warning Name	Description
	arning CK10 dComm Time Out	Keypad communication time out (CK10)	Keypad communication data, transmission time-out (Keypad auto-detect this error and display it.)
Action and Reset			
	Action condition	When the communication time exceeds the detection time of Pr.09-03 communication time-out	
	Action time	Setting for Pr.09-03	
	ning setting parameter	N/A	
	Reset method	Remove the keypad and then reconnect it to the motor drive.	
	Reset condition	Immediately reset	
	Record	N/A	
	Cause	Corrective Actions	
Incorre comma	communication d from keypad	Keypad and the motor drive don't communicate properly. It is recommended to remove the keypad and then reconnect it to the motor drive.	
Malfunc	ion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differen from ke	communication setting pad	Check if the Baud rate $=19200 \mathrm{bps}$. Format $=$ RTU8, N, 2.	
Discon of the c	ection or bad connection ble	Check the cable and replace it if necessary.	

ID No.	Display on LCD Keypad	Warning Name	
7	Warning		
	SE1	Save error 1	Keypad COPY error 1: Keypad copy time-out
	(SE1)		

Action and Reset

Action and Reset	
Action condition	"SE1" warning occurs when the keypad does not transmit the COPY command to the drive, and does not transmit any data to the drive again in 10 ms at the time you copy the parameters to the drive.
Action time	10 ms
Warning setting parameter	N/A
Reset method	Manual reset
Reset condition	Immediately reset
Record	N/A
Cause	
Communication connection error	SE1: The causes of error are mostly communication problems between the keypad and control board. Potential causes include communication signal interference and the unacceptable communication command to the Slave. Check if the error occurs randomly, or only occurs when copying certain parameters (the error displays on the upper right corner of the copy page). If you cannot clear the error, contact Delta.
Keypad error	Control board error

ID No.	Display on LCD Keypad	Warning Name	Description
8	Warning SE2 Save Error 2	Save error 2 (SE2)	Keypad COPY error 2: parameter writing error
Action and Reset			
	Action condition	"SE2" warning occurs when writing the parameters incorrectly at the time you copy parameters to the drive. For example, you copy the new firmware version with added parameters to the drive with old firmware version.	
	Action time	N/A	
	ing setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	N/A	
	Cause	Corrective Actions	
Add new firmwar	parameters to the new version.	SE2: In this stage, the copied data has been transmitted to the Slave. The Slave compares and processes the copied data, and then saves the data to the Data ROM. During the process, the data error (should be attribution error) may occur, or the data cannot be saved to EEPROM. At this time, the warning occurs. It is suggested to check the status of Data ROM and remove the error causes first. If you cannot clear the error, contact Delta.	
Malfunc	on caused by interference	Verify the wiring and grounding of the main circuit, control circuit and the encoder for effective anti-interference performance.	

ID No.	Display on LCD Keypad	Warning Name	Description
9	Warning oH1 Over heat 1 warn	IGBT overheating warning (OH 1)	The AC motor drive detects overheating of IGBT, and over the protection level of oH1 warning. (When Pr.06-15 is higher than the IGBT over-heating level, the drive shows oH1 error without displaying oH1 warning.)
Action and Reset			
	Action condition	Pr.06-15	
	Action time	"oH1" warning occurs when IGBT temperature is higher than Pr.06-15 setting value.	
	ing setting parameter	N/A	
	Reset method	Auto-reset	
	Reset condition	The drive auto-resets when IGBT temperature is lower than oH1 warning level minus (-) $5^{\circ} \mathrm{C}$.	
	Record	N/A	
	Cause	Corrective Actions	
Check or temp is too hig in the v cabinet.	the ambient temperature rature inside the cabinet h, or if there is obstruction tilation hole of the control	1. Check the ambient temperature. 2. Regularly inspect the ventilation hole of the control cabinet. 3. Change the installed place if there are heating objects, such as braking resistors, in the surroundings. 4. Install / add cooling fan or air conditioner to lower the temperature inside the cabinet.	
Check i the hea	ere is any obstruction on ink or if the fan is running	Remove the obstruction or replace the cooling fan.	
Insuffici	nt ventilation space	Increase ventilation space of the drive.	
Check i corresp	the drive matches the ded loading	1. Decrease loading. 2. Decrease the carrier. 3. Replace with a drive with larger capacity.	
The driv the rate	has run 100% or more of output for a long time	Replace with a drive with larger capacity.	

ID No.	Display on LCD Keypad	Warning Name	Description
10	Warning $\mathrm{oH} 2$ Over heat 2 warn	Capacitor overheat warning (oH2)	The drive has detected overheat of the capacitor
Action and Reset			
	Action condition	oH2 error level minus (-) $5^{\circ} \mathrm{C}$	
	Action time	The oH 2 warning occurs when the capacitor temperature is higher than oH 2 warning level	
	ning setting parameter	N/A	
	Reset method	Auto-reset	
	Reset condition	The drive auto-resets when the capacitor temperature is lower than oH2 error level minus (-) $10^{\circ} \mathrm{C}$	
	Record	N/A	
	Cause	Corrective Actions	
Check or temp is too high in the v cabinet	the ambient temperature rature inside the cabinet h, or if there is obstruction ntilation hole of the control	1. Check the ambient temperature. 2. Regularly inspect the ventilation hole of the control cabinet. 3. Change the installed place if there are heating objects, such as braking resistors, in the surroundings. 4. Install / add cooling fan or air conditioner to lower the temperature inside the cabinet.	
Check if the hea	there is any obstruction on sink or if the fan is running	Remove the obstruction or replace the cooling fan.	
Insuffici	nt ventilation space	Increase ventilation space of the drive.	
Check corresp	the drive matches the nded loading	1. Decrease loading. 2. Decrease the carrier. 3. Replace with a drive with larger capacity.	
The driv the rate	has run 100% or more of output for a long time	Replace with a drive with larger capacity.	
Unstabl	power	Install reactor(s).	
The loa	changes frequently	Reduce the changes of the load.	

oH1/ oH2 warning level

Model	oH1	oH2	$\begin{gathered} \text { oH warning } \\ \text { oH1 warning }=(\text { Pr. 06-15) } \end{gathered}$
VFD007FP2EA-41/52/52S	110	85	$\begin{aligned} & \mathrm{oH} 1 \text { Warning }=\text { Pr.06-15 } \\ & \mathrm{oH} 2 \text { Warning }=\mathrm{oH} 2-5 \end{aligned}$
VFD015FP2EA-41/52/52S	110		
VFD022FP2EA-41/52/52S	100		
VFD037FP2EA-41/52/52S			
VFD055FP2EA-41/52/52S			
VFD075FP2EA-41/52/52S	105	90	
VFD110FP2EA/41/52/52S			
VFD150FP2EA-41/52/52S	95	97	
VFD185FP2EA-41/52/52S			
VFD220FP2EA-41/52/52S	100	90	
VFD300FP2EA-41/52/52S			
VFD370FP2EA-41/52/52S	95	85	
VFD450FP2EA-41/52/52S			
VFD007FP4EA-41/52/52S	110	85	
VFD015FP4EA-41/52/52S			
VFD022FP4EA-41/52/52S	100		
VFD037FP4EA-41/52/52S			
VFD040FP4EA-41/52/52S			
VFD055FP4EA-41/52/52S			
VFD075FP4EA-41/52/52S			
VFD110FP4EA-41/52/52S	105	90	
VFD150FP4EA-41/52/52S			
VFD185FP4EA-41/52/52S			

Model	oH1	oH 2	$\begin{gathered} \text { oH warning } \\ \text { oH1 warning }=(\text { Pr. 06-15 }) \end{gathered}$
VFD220FP4EA-41/52/52S	105	90	oH1 Warning = Pr.06-15 oH 2 Warning $=\mathrm{oH} 2-5$
VFD300FP4EA-41/52/52S	110	97	
VFD370FP4EA-41/52/52S	110	97	
VFD450FP4EA-41/52/52S	100	90	
VFD550FP4EA-41/52/52S	100	90	
VFD750FP4EA-41/52/52S	95	85	
VFD900FP4EA-41/52/52S	95	85	
VFD015FP5EA-41/52/52S	110		
VFD022FP5EA-41/52/52S			
VFD037FP5EA-41/52/52S	100	85	
VFD055FP5EA-41/52/52S	100		
VFD075FP5EA-41/52/52S			
VFD110FP5EA-41/52/52S			
VFD150FP5EA-41/52/52S	105	90	
VFD185FP5EA-41/52/52S			
VFD220FP5EA-41/52/52S			
VFD300FP5EA-41/52/52S	110	97	
VFD370FP5EA-41/52/52S			
VFD450FP5EA-41/52/52S	100	90	
VFD550FP5EA-41/52/52S	100	90	
VFD750FP5EA-41/52/52S	95	85	
VFD900FP5EA-41/52/52S			

Unit: ${ }^{\circ} \mathrm{C}$

ID No.	Display on LCD Keypad	Warning Name	Description
11	Warning PID PID FBK Error	PID feedback error (PID)	PID feedback loss (warning for analog feedback signal; works only when PID enables)
Action and Reset			
Action condition		When the analog input is lower than 4 mA (only detects analog input of 4-20 mA)	
	Action time	Pr.08-08	
Warning setting parameter		Pr.08-09 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: Warn and operate at last frequency	
Reset method		Auto "Warning" occurs when Pr.08-09 = 0 or 3 . The "Warning" automatically clears when the feedback signal is larger than 4 mA.	
		Manual "Error" occurs when Pr.08-09 = 1 or 2 . You must reset manually.	
	Reset condition	Immediately reset	
	Record	Records when Pr.08-09 = 1 or 2 ("Error"). Does not record when Pr.08-09 = 3 ("Warning").	
	Cause	Corrective Actions	
Loose or wiring	broken PID feedback	Tighten the terminals again. Replace with a new cable.	
Feedback device malfunction		Replace with a new feedback device.	
Hardware error		If the PID error still occurs after checking all the wiring, return to the factory for repair.	

ID No.	Display on LCD Keypad	Warning Name	Description
12	Warning ANL Analog loss	ACl analog signal loss (AnL)	Analog input current loss (including all analog 4-20 mA signals)
Action and Reset			
	Action condition	When the analog input is lower than 4 mA (only detects analog input 4-20 mA)	
	Action time	Immediately act	
	ing setting parameter	Pr.03-19 0: Disable 1: Continue operation at the last frequency (warning, keypad displays ANL) 2: Decelerate to 0 Hz (warning, keypad displays ANL) 3: Stop immediately and display ACE	
Reset method		Auto"Warning" occurs when Pr.03-19 = 1 or 2. The "Warning automatically clears when the analog input signal is larger than 4 mA.	
		Manual "Error" occurs when Pr.03-19 $=3$. You must reset manually.	
	Reset condition	Immediately reset	
	Record	Does not record when Pr.03-19 = 1 or 2 ("Warning").	
	Cause	Corrective Actions	
Loose or broken ACl wiring		Tighten the terminals again. Replace with a new cable.	
External device error		Replace new device.	
Hardware error		If the AnL error still occurs after checking all the wiring, return to the factory for repair.	

ID No.	Display on LCD Keypad	Warning Name	Description
13	Warning uC Under Current	Under current (uC)	Low current
Action and Reset			
Action condition		Pr.06-71	
Action time		Pr.06-72	
Warning setting parameter		Pr.06-73 0: No function 1: Fault and coast to 2: Fault and ramp to 3: Warn and operati	op py the second deceleration time continue
Reset method		Auto "Warning" occurs when Pr.06-73 $=3$. The "Warning" automatically clears when the output current is $>($ Pr. $06-71+0.1 A)$.	
		Manual "Error" occurs when Pr.06-73 = 1 and 2. You must reset manually.	
	Reset condition	Immediately reset	
	Record	Does not record when Pr.06-73 = 3 and uC displays "Warning".	
	Cause	Corrective Actions	
Broken	motor cable	Exclude the connection issue of the motor and its load.	
Improper setting for the low current protection		Set the proper settings for Pr.06-71, Pr.06-72 and Pr.06-73.	
Low load		Check the loading status. Make sure the loading matches the motor capacity.	

ID No.	Display on LCD Keypad	Warning Name	Description
17	Warning oSPD Over Speed Warn	Over speed warning (oSPd)	Over speed warning
Action and Reset			
Action condition		The encoder feedback speed > Pr.10-10	
	Action time	Pr. 10-11	
Warning setting parameter		Pr.10-12 = 0 0 : Warn and keep operation	
	Reset method	"Warning" automatically clears when the drive stops	
	Reset condition	"Warning" automatically clears when the drive stops	
	Record	N/A	
	Cause	Corrective Actions	
Improper bandwid	setting for Pr.10-25 FOC th of speed observer	Decrease setting value for Pr.10-25.	
$\begin{aligned} & \text { Imprope } \\ & \text { ASR spe } \end{aligned}$	bandwidth setting for ed controller	Increase the bandwidth setting for ASR speed controller.	
Incorrec	motor parameter setting	Reset motor parameter and run parameter tuning.	
Malfunc	ion caused by interference	Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference.	

ID No.	Display on LCD Keypad	Warning Name	Description
18	Warning dAvE Deviation Warn	Deviation Warning (dAvE)	Over speed deviation warning
Action and Reset			
	Action condition	Pr.10-13	
	Action time	Pr.10-14	
	ning setting parameter	$\text { Pr. 10-15 = } 0$ 0 : Warn and keep operation	
	Reset method	"Warning" automatically clears when the drive stops	
	Reset condition	After the drive stops	
	Record	N/A	
	Cause		Corrective Actions
Improp slip erro	parameter setting for the	Reset proper value for Pr.10-13 and Pr.10-14.	
Improp parame deceler	r setting for ASR er and acceleration/ tion	Reset ASR parameters. Set proper accel./ decel. time.	
Accel./	Decel. time is too short	Reset proper accel./ decel. time.	
Motor Io	cked	Remove the causes of motor locked.	
Mechan	cal brake is not released	Check the active timing of the system.	
Incorre torque (Pr.06-	parameter setting of mit 2, Pr.11-17-20)	Adjust to proper setting value.	
Malfun	ion caused by interference	Verify wiring of the control circuit, and wiring / grounding of the main circuit to prevent interference.	

ID No.	Display on LCD Keypad	Warning Name	Description
19	Warning PHL Phase Loss	Phase loss (PHL)	Input phase loss warning
Action and Reset			
	Action condition	One of the phases outputs less than Pr.06-47	
	Action time	Pr.06-46	
	ing setting parameter	Pr.06-45 = 0 0 : Warn and keep operation	
	Reset method	"Warning" automatically clears when the drive stops	
	Reset condition	After the drive stops	
	Record	N/A	
	Cause	Corrective Actions	
Phase los	ss of the input power	Verify wiring of the main circuit.	
Single p three-ph	hase power input on a ase model	Use the model with voltage that matches the power.	
The pow	er voltage has changed	If the power of main circuit works well, check if the MC of the main circuit is broken. Cycle the power after verifying the power is normal. If PHL still occurs, return to the factory for repair.	
Loose w power	ring terminal of input	Tighten the terminal screws with the torque listed in the user manual.	
Check i power is	the input cable of 3-phase broken	Make sure the wiring is correct. Replace the broken part of the cable.	
The volt changed	ge of input power has	Check setting for Pr.06-50 (Time for Input Phase Loss Detection) and Pr.06-52 (Ripple of Input Phase Loss).	
Unbalan input pow	ce three-phase of the ver	Check the status of three-phase power.	

ID No.	Display on LCD Keypad	Warning Name	Description
20	Warning ot1 Over Torque 1	Over-torque 1 (ot1)	Over-torque 1 warning
Action and Reset			
	Action condition	Pr.06-07	
	Action time	Pr.06-08	
	ming setting parameter	Pr.06-06 = 1 or 3 0 : No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation 3: Continue operation after over-torque detection during RUN 4: Stop after over-torque detection during RUN	
	Reset method	When input current < (Pr.06-07-5\%), the Ot1 warning automatically clears	
	Reset condition	When input current < (Pr.06-07-5\%), the Ot1 warning automatically clears	
	Record	N/A	
	Cause		Corrective Actions
Incorrec	parameter setting	Configure the settings for Pr.06-07 and Pr.06-08 again.	
Mechan lock du	cal error (e.g. mechanical to over-torque)	Remove the causes of malfunction.	
The load	is too large	Decrease the loading. Replace with a motor with larger capacity.	
Accel./ cycle is	Decel. time and working oo short	Increase the setting values for Pr.01-12-01-19 (accel./ decel. time)	
V/F volt	ge is too high	Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed).	
The mo	or capacity is too small	Replace with a motor with larger capacity.	
Over-lo operation	during low-speed	Decrease the loading during low-speed operation. Increase the motor capacity.	
The tor large	ue compensation is too	Adjust the torque compensation value (Pr.07-26 torque compensation gain) until the output current decreases and the motor does not stall.	
Improp the spe (includi power	parameter settings for d tracking function g restart after momentary ss and restart after fault)	Correct the parameter settings for speed tracking. Start the speed tracking function. Adjust the maximum current for Pr.07-09 speed tracking.	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
21	Warning ot2 Over Torque 2	Over-torque (ot2)	Over-torque 2 warning
Action and Reset			
Action condition		Pr.06-10	
	Action time	Pr.06-11	
	ing setting parameter	Pr.06-09 = 1 or 3 0 : No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation 3: Continue operation after over-torque detection during RUN 4: Stop after over-torque detection during RUN	
	Reset method	When output current < (Pr.06-10-5\%), the Ot2 warning automatically clears	
	Reset condition	When output current < (Pr.06-10-5\%), the Ot2 warning automatically clears	
	Record	N/A	
	Cause	Corrective Actions	
Incorrec	parameter setting	Configure the settings for Pr.06-10 and Pr.06-11	
Mechani lock due	cal error (e.g. mechanical to over-torque)	Remove the causes of malfunction.	
The load	is too large	Decrease the loading. Replace with a motor with larger capacity.	
Accel./ cycle is	ecel. time and working oo short	Increase the setting values for Pr.01-12-01-19 (accel./ decel. time)	
V/F volta	ge is too high	Adjust the V/F curve (Motor 2, Pr.01-35-01-42), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed).	
The motor	r capacity is too small	Replace with a motor with larger capacity.	
Over-load operatio	d during low-speed	Decrease the loading during low-speed operation. Increase the motor capacity.	
The torq large	ue compensation is too	Adjust the torque compensation value (Pr.07-26 torque compensation gain) until the output current decreases and the motor does not stall.	
Imprope the speed (includin power los	parameter settings for d tracking function restart after momentary ss and restart after fault)	Correct the parameter settings for speed tracking. Start speed tracking function. Adjust the maximum current for Pr.07-09 speed tracking.	

ID No.	Display on LCD Keypad	Warning Name	Description
22_1	Warningauto oH3 Motor Over Heat	Motor over-heating (oH3) PTC	Motor over-heating warning. The AC motor drive detects the temperature inside the motor is too high
Action and Reset			
	Action condition	Pr.03-00 = 6 (PTC), PTC input level > Pr.06-30 (default = 50\%)	
	Action time	Immediately act	
	ing setting parameter	Error treatment: Pr.06-29 0: Warn and keep operating 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning When Pr.06-29 = 0 and when the temperature is \leq Pr.06-30 level, the oH3 warning automatically clears. When Pr.06-29 = 0 ("Warning"), it automatically resets.	
	Reset method	When Pr.06-29 = 0, oH3 displays "Warning". When the temperature is \leq Pr.06-30 level, the oH3 warning automatically clears.	
	Reset condition	When the temperature is \leq Pr.06-30 level, the oH 3 warning automatically clears.	
	Record	N/A Corrective Actions	
	Cause		
Motor lo	cked	Clear the motor lock status.	
The load	is too large	Decrease the loading. Replace with a motor with larger capacity.	
Ambien	temperature is too high	Change the installed place if there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature.	
Motor co	oling system error	Check the cooling system to make it work normally.	
Motor fa	n error	Replace the fan.	
Operate	s at low-speed too long	Decrease low-speed operation time. Change to dedicated motor for the drive. Increase the motor capacity.	
Accel./ cycle is	Decel. time and working too short	Increase setting values for Pr.01-12-01-19 (accel./ decel. time).	
V/F volt	age is too high	Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed).	
Check if matche	the motor rated current the motor nameplate	Configure the correct rated current value of the motor again.	
Check if and wir	the PTC is properly set d	Check the connection between PTC thermistor resistor and the heat protection.	
Check if prevent	the setting for stall on is correct	Set the stall prevention to the proper value.	
Unbalan impeda	ce three-phase ance of the motor	Replace the motor.	
Harmon	ics is too high	Use remedies to reduce harmonics.	

ID No.	Display on LCD Keypad	Warning Name	Description
22_2	Warning oH3 Motor Over Heat	Motor overheating (oH3) PT100	Motor overheating warning. The AC motor drive detects the temperature inside the motor is too high.
Action and Reset			
Action condition		Pr.03-00 = 11 (PT100), PT100 input level > Pr.06-57 (default = 7 V)	
	Action time	Immediately act	
	ing setting parameter	Error treatment: Pr.06-29 0 : Warn and keep operating 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning When Pr.06-29 = 0 and when the temperature is < Pr.06-56 level, the oH3 warning automatically clears. If the temperature is between Pr.06-56 and Pr.06-57, the frequency outputs according to the operating frequency setting for Pr.06-58.	
	Reset method	When Pr.06-29 = 0, oH3 displays "Warning". When the temperature is < Pr.06-56 level, the oH3 warning automatically clears.	
	Reset condition	When the temperature is < Pr.06-56 level, the oH3 warning automatically clears.	
	Record	N/A	
	Cause	Corrective Actions	
Motor lo	cked	Clear the motor lock status.	
The load	is too large	Decrease loading. Replace with a motor with larger capacity.	
Ambien	emperature is too high	Change the installed place if there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature.	
Motor	oling system error	Check the cooling system to make it work normally.	
Motor fa	error	Replace the fan.	
Operate	at low-speed too long	Decrease low-speed operation time. Change to dedicated motor for the drive. Increase the motor capacity.	
Accel./ cycle is	ecel. time and working oo short	Increase the setting values for Pr.01-12-01-19 (accel./ decel. time).	
V/F volta	ge is too high	Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed).	
Check matche	the motor rated current the motor nameplate	Configure the correct rated current value of the motor again.	
Check i and wir	the PT100 is properly set d	Check the connection between PT100 thermistor resistor and the heat protection.	
Check i prevent	the setting for stall n is correct	Set the stall prevention to the proper value.	
Unbalan impeda	e three-phase ce of the motor	Replace the motor.	
Harmon	ics is too high	Use remedies to reduce harmonics.	

ID No.	Display on LCD Keypad	Warning Name	Description
24	Warning oSL Over Slip Warn	Over slip warning (oSL)	Over slip warning. By using the maximum slip (Pr.10-29) as the base, when the drive outputs at constant speed, and the $\mathrm{F}>\mathrm{H}$ or F<H exceeds Pr.07-29 level and Pr.07-30 setting time, 100\% Pr.07-29 = Pr.10-29.
Action and Reset			
Action condition		When the drive outputs at constant speed, and F > H or F < H exceeds the Pr.07-29 level	
	Action time	Pr.07-30	
Warning setting parameter		Pr.07-31 = 0 Warning 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	
	Reset method	When Pr.07-31 $=0$ and when the drive outputs at constant speed, and $\mathrm{F}>\mathrm{H}$ or $\mathrm{F}<\mathrm{H}$ no longer exceeds the Pr.07-29 level, the oSL warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
Check i correct	the motor parameter is	Check the motor parameter.	
The load is too large		Decrease the loading.	
Check if the settings for Pr.07-29, Pr.07-30 and Pr.10-29 are properly set		Check the parameter settings for oSL protection.	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
25	Warning tUn Auto tuning	Auto tuning (tUn)	Parameter auto-tuning is processing. When running auto-tuning, the keypad displays "tUn".
Action and Reset			
	Action condition	When running Pr.05-00 motor parameter auto-tuning, the keypad displays "tUn".	
	Action time	N/A	
	ing setting parameter	N/A	
	Reset method	When auto-tuning is finished and no error occurs, the warning automatically clears.	
	Reset condition	When auto-tuning is finished and no error occurs.	
	Record	N/A	
	Cause	Corrective Actions	
The mo auto-tun	parameter is running ng	When the auto-tuning is finished, the warning automatically clears.	

ID No.	Display on LCD Keypad	Warning Name	Description
28	Warning OPHL Output PHL Warn	Output phase loss (OPHL)	Output phase loss
Action and Reset			
	Action condition	Pr.06-47	
	Action time	N/A	
War	ming setting parameter	Pr.06-45 0 : Warn and keep operating 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	
	Reset method	If Pr.06-45 is set to 0 , the OPHL warning automatically clears after the drive stops.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
Unbalan impedan	ced three-phase ce of the motor	Replace the motor.	
Check if	the wiring is incorrect	Check the cable. Replace the cable.	
Check if single-p	the motor is a hase motor	Choose a three-phase motor.	
Check if broken	the current sensor is	Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the error still occurs, return to the factory for repair. Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL error still shows on the display, return to the factory for repair.	
If capac than the	ty of the drive is larger motor	Choose the matches capacity of the drive and motor.	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
30	Warning SE3 Copy Model Err 3	Copy model error 3 (SE3)	Keypad COPY error 3: copy model error
Action and Reset			
	Action condition	"SE3" warning occurs when different drive identity codes are found during copying parameters.	
	Action time	Immediately act when the error is detected	
War	ing setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	N/A	
	Record	N/A	
	Cause		Corrective Actions
Keypad power r	copy between different nge drives	It is mainly to prevent parameter copies between different HP/models.	

ID No.	Display on LCD Keypad	Warning Name	
36	Warning CGdn Guarding T-out	CANopen guarding time-out (CGdn)	Description
CANopen guarding time-out 1			

ID No.	Display on LCD Keypad	Warning Name	
37	Warning CHbn Heartbeat T-out	CANopen heartbeat error (CHbn)	Description
CANopen heartbeat error			

ID No.	Display on LCD Keypad	Warning Name	Description
39	Warning CbFn Can Bus Off	CANopen bus off error (CbFn)	CANopen BUS off error
Action and Reset			
		Hardware When CANopen card is not installed, CbFn fault occurs.	
	Action condition	When the master received wrong communication package, CbFn fault occurs. Too much interference on BUS When the CAN_H and CAN_L communication cable is short, the master receives wrong package, and CbFn fault occurs.	
	Action time	Immediately act when the fault is detected	
War	ing setting parameter	N/A	
	Reset method	Manual Reset	
	Reset condition	Cycle the power	
	Record	When Pr.00-21 $=3, \mathrm{CbFn}$ is a "Warning", and the warning is not recorded	
	Cause	Corrective Actions	
Check i installed	the CANopen card is	Make sure the CANopen card is installed.	
Check if correct	he CANopen speed is	Reset CANopen speed (Pr.09-37)	
Malfunc	caused by interference	1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. 2. Make sure the communication circuit is wired in series. 3. Use CANopen cable or add terminating resistance.	
Commu bad con	ication cable is broken or ected	Check or replace the communication cable.	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	
40	Warning CIdn CAN/S Idx exceed	CANopen index error (CIdn)	CANopen Index error
Action and Reset			
Action condition	CANopen communication Index error		
Action time	Immediately act when the fault is detected		
Warning setting parameter	N/A		
Reset method	Manual Reset		
Reset condition	Upper unit sends a reset package to clear this fault		
Record	When Pr.00-21 $=3$, CIdn is a "Warning", and the warning is not recorded		
Cause	Corrective Actions		
Incorrect setting of CANopen index	Reset CANopen Index (Pr.00-02 = 7)		

ID No.	Display on LCD Keypad	Warning Name	Description
41	Warning CAUTO CAN/S Addres set	CANopen station address error (CAdn)	CANopen station address error (only supports 1-127)
Action and Reset			
	Action condition	CANopen station address error	
	Action time	Immediately act when the fault is detected	
War	ing setting parameter	N/A	
	Reset method	Manual Reset	
	Reset condition	Pr.00-02 $=7$	
	Record	When Pr.00-21 $=3$, CAdn is a "Warning", and the warning is not recorded	
	Cause	Corrective Actions	
Incorrec station	setting of CANopen ddress	1. Disable CANopen (Pr.09-36 = 0) 2. Reset CANopen (Pr.00-02 = 7) 3. Reset CANopen station address (Pr.09-36)	

ID No.	Display on LCD Keypad	Warning Name	Description
42	Warning CFrn CAN/S FRAM fail	CANopen memory error (CFrn)	CANopen memory error
Action and Reset			
	Action condition	When the user update firmware version of the control board, the FRAM internal data will not be changed, then CFrn fault occurs.	
	Action time	Immediately act when the fault is detected	
	ing setting parameter	N/A	
	Reset method	Manual Reset	
	Reset condition	Pr.00-02 $=7$	
	Record	When Pr.00-21 $=3$, CFrn is a "Warning", and the warning is not recorded	
	Cause	Corrective Actions	
CANop	internal memory error	1. Disable CANopen (Pr.09-36 = 0) 2. Reset CANopen (Pr.00-20 = 7) 3. Reset CANopen station address (Pr.09-36)	

ID No.	Display on LCD Keypad	Warning Name	Description
43	Warning CSdn SDO T-out	CANopen SDO time-out (CSdn)	SDO transmission time-out (only shows on master station)
Action and Reset			
	Action condition	When the CANopen master transmits SDO command, and the Slave response "time-out", CSdn warning occurs.	
	Action time	Immediately act when the fault is detected	
	ning setting parameter	N/A	
	Reset method	When the master resends a SDO command and receives the response, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
Slave is	not connected	Connect slave and CANopen BUS.	
The syn short	chronize cycle is set too	Increase the synchronization time (Index 1006)	
Malfunc	ion caused by interference	1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. 2. Make sure the communication circuit is wired in series. 3. Use CANopen cable or add terminating resistance.	
Discon of the	ection or bad connection mmunication cable	Check the status of the cable, or replace the cable.	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
44	Warning CSbn Buf Overflow	CANopen SDO receives register overflow (CSbn)	CANopen SDO receives register overflow
Action and Reset			
	Action condition	The upper unit sends too much SDO and causes buffer overflow	
	Action time	Immediately act when the fault is detected	
Wa	ing setting parameter	N/A	
	Reset method	The upper unit sends a reset package to clear the warning.	
	Reset condition	N/A	
	Record	N/A	
	Cause		Corrective Actions
Too mu	SDO from the upper uni	Check if the master sends too much SDO command. Make sure the master sends SDO command according to the command format.	

ID No.	Display on LCD Keypad	Warning Name	Description
46	Warning CPtn Error Protocol	CANopen format error (CPtn)	CANopen protocol format error
Action and Reset			
	Action condition	The slave detects that data from the upper unit cannot be recognized, and then shows CPtn warning	
	Action time	Immediately displays when the fault is detected	
War	ing setting parameter	N/A	
	Reset method	The upper unit sends a reset packet to clear the warning	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
The upp communi	unit sends incorrect cation packet	Make sure the master sends the packet based on CANopen DS301 standard command format.	

ID No.	Display on LCD Keypad	Warning Name	Description
47	Warning PLrA RTC Adjust	RTC adjust (PLrA)	PLC (RTC) is not adjusted
Action and Reset			
	Action condition	When using RTC function for PLC program, and PLC detects unreasonable RTC time, PLrA warning displays.	
	Action time	Immediately displays when the fault is detected	
Wa	ing setting parameter	N/A	
Reset method		Auto Stops the PLC and runs again, the warning automatically clears $^{\text {a }}$	
		Manual Manual reset to clear this warning	
	Reset condition	Cycle the power	
	Record	N/A	
	Cause	Corrective Actions	
When us program over 7 not con time, th the inte re-conn	ing RTC function for PLC and the drive is power off ays or KPC-CC01 does ect to the drive for a long RTC time is different with nal calculated time when ct the keypad to the drive.	1. Stop the PLC program and restart it. 2. Adjust the RTC time and cycle the power.	
KPC-C RTC tim	01 does not adjust the	Adjust the RTC time and cycle the power.	
PLC de time	cts unreasonable RTC	1. Stop the PLC program and restart it. 2. Cycle the power.	
Replace	with a new KPC-CC01	1. Stop the PLC program and restart it. 2. Cycle the power.	

ID No.	Display on LCD Keypad	Warning Name	Description
48	Warning PLiC auto InnerCOM error	InnerCOM error (PLiC)	InnerCOM error
Action and Reset			
	Action condition	N/A	
	Action time	N/A	
War	ning setting parameter	N/A	
	Reset method	N/A	
	Reset condition	When InnerCOM is back to normal condition, the warning automatically clears	
	Record	N/A	
	Cause		Corrective Actions
Commu	nication cable is loose	Check the connection of the communication cable	
Malfunction	ion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. It recommended to install terminal resistor(s) on the first and the last unit of the communication circuit.	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
49	Warning PIrt Keypad RTC T-out	Keypad RTC time-out (PLrt)	PLC (RTC) error
Action and Reset			
Action condition		N/A	
	Action time	N/A	
Wa	ing setting parameter	N/A	
	Reset method	N/A	
	Reset condition	Cycle the power	
	Record	N/A	
	Cause	Corrective Actions	
KPC-C control function	01 is not connected to the oard while using the RTC	Do not remove the KPC-CC01 keypad while using RTC function.	

ID No.	Display on LCD Keypad	Warning Name	
50	Warning PLod Opposite Defect	PLC opposite defect (PLod)	PLC download error warning
Action and Reset			
Action condition	During PLC downloading, the program source code detects incorrect address (e.g. the address exceeds the range), then the PLod warning shows.		
Action time	Immediately displays when the fault is detected		
Warning setting parameter	N/A		
Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.		
Reset condition	N/A		
Record	N/A		
Cause Incorrect component number is found when downloading the PLC program Use the correct component number.			

ID No.	Display on LCD Keypad	Warning Name	Description
51	Warning PLSv Save mem defect	PLC save memory error (PLSv)	Data error during PLC operation
Action and Reset			
	Action condition	The program detects incorrect written address (e.g. the address has exceeds the range) during PLC operation, then the PLSv warning shows.	
	Action time	Immediately displays when the fault is detected	
	ing setting parameter	N/A	
	Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause		Corrective Actions
An inco detected	ect written address is during PLC operation	Make sure the write-in address is correct and re-download the program.	

ID No.	Display on LCD Keypad	Warning Name	Description
52	Warning PLdA Data defect	Data defect (PLdA)	Data error during PLC operation
Action and Reset			
	Action condition	The program detects incorrect write-in address when translating the program source code, then PLdA warning acts.	
	Action time	Immediately displays when the fault is detected	
	ing setting parameter	N/A	
	Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
During Modbus incorre progra	LC operation, the externa has written / read data to internal PLC	Check if the upper unit transmits the correct command	
During Modbus addres (Pr.09-3	LC operation, the drive's has set the same Modbus in the built-in PLC)	Set the drive's Modbus address to a different address from the built-in PLC address.	

ID No.	Display on LCD Keypad	Warning Name	Description
53	Warning PLFn Function defect	Function defect (PLFn)	PLC download function code error

ID No.	Display on LCD Keypad	Warning Name	Description
54	Warning PLor Buf overflow	PLC buffer overflow (PLor)	PLC register overflow
Action and Reset			
	Action condition	When PLC runs the last command and the command exceeds the maximum capacity of the program, the PLor warning shows.	
	Action time	Immediately displays when the fault is detected	
War	ning setting parameter	N/A	
	Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
The pro error du	ram detects source code ing PLC operation	1. Disable PLC 2. Delete PLC program (Pr.00-02 = 6) 3. Enable PLC 4. Re-download PLC program	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
55	Warning PLFF Function defect	Function defect (PLFF)	Function code error during PLC operation
Action and Reset			
	Action condition	The program detects incorrect command (unsupported command) during PLC operation, then PLFF warning shows.	
	Action time	Immediately displays when the fault is detected	
Wa	ing setting parameter	NA	
	Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause		Corrective Actions
The PL command	runs an incorrect during operation	When starting the PLC function and there is no program in the PLC, the PLFF warning shows. This is a normal warning, download the program.	

ID No.	Display on LCD Keypad	Warning Name	
56	Warning PLSn Check sum error	Checksum error (PLSn)	PLC checksum error

ID No.	Display on LCD Keypad	Warning Name	Description
57	Warning PLEd No end command	No end command (PLEd)	PLC end command is missing

ID No.	Display on LCD Keypad	Warning Name	Description
58	Warning PLCr PLC MCR error	PLC MCR error (PLCr)	PLC MCR command error
Action and Reset			
	Action condition	The MC command is detected during PLC operation, but there is no corresponded MCR command, then the PLCr warning shows.	
	Action time	Immediately displays when the fault is detected	
	ing setting parameter	NA	
	Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions The MC command cannot be used continuously for 9 times. Check and reset the program, then re-download the program.	
The MC used for	command is continuously more than 9 times		

ID No.	Display on LCD Keypad	Warning Name	
59	Warning PLdF Download fail	PLC download fail (PLdF)	PLC download fail

Action and Reset

Action condition	PLC download fail due to momentary power loss during the downloading, when power is ON again, PLdF warning shows.
Action time	Immediately displays when the fault is detected
Warning setting parameter	NA
Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.
Reset condition	N/A
Record	N/A
Cause	Corrective Actions
C download is forced to stop program write-in is incompl	Check if there is any error in the program and re-download the PLC program

ID No.	Display on LCD Keypad	Warning Name	Description
60	Warning PLSF Scan time fai	PLC scan time fail (PLSF)	PLC scan time exceeds the maximum allowable time
Action and Reset			
	Action condition	When the PLC scan time exceeds the maximum allowable time (400 ms), PLSF warning shows.	
	Action time	Immediately displays when the fault is detected	
War	ing setting parameter	NA	
	Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
The PL maximu	scan time exceeds the allowable time (400 ms)	Check if the source code is correct and re-download the program	

ID No.	Display on LCD Keypad	Warning Name	Description
61	Warning PCGd CAN/M Guard err	CAN/M guarding error (PCGd)	CANopen Master guarding error
Action and Reset			
	Action condition	When CANopen Master Node Guarding detects that one of the Slaves does not response, the PCGd warning displays	
	Action time	Immediately displays when the fault is detected	
	ing setting parameter	NA	
	Reset method	Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
Slave is CANop connec	not connected or BUS cable is not d	Connect the Slave and CANopen BUS	
Malfunc	on caused by interference	1. Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. 2. Make sure the communication circuit is wired in series. 3. Use CANopen cable or add terminating resistance.	
Commu bad con	ication cable is broken or ected	Check or replace the communication cable.	

ID No.	Display on LCD Keypad	Warning Name	
62	Warning PCbF CAN/M bus off	CAN/M BUS off (PCbF)	CANopen Master BUS off

ID No.	Display on LCD Keypad	Warning Name	
63	Warning PCnL CAN/M Node Lack	CAN/M node lack (PCnL)	CANopen Master node error

ID No.	Display on LCD Keypad	Warning Name	Description
64	Warning PCCt CAN/M Cycle Time	CAN/M cycle time-out (PCCt)	CANopen Master cycle time-out
Action and Reset			
	Action condition	When the transmitted packet from CANopen master exceeds the maximum allowable quantity in a certain time, the PCCt warning displays.	
	Action time	Immediately displays when the fault is detected	
War	ning setting parameter	N/A	
	Reset method	The warning automatically clears when changing the configuration and re-executing the program.	
	Reset condition	N/A	
	Record	N/A	
	Cause		Corrective Actions
When th CANop maximu certain	transmitted packet from master exceeds the allowable quantity in a me	Increase the time setting of D1090 synchronization cycle	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
65	Warning PCSF CANTo M SDO over	CAN/M SDO over (PCSF)	CANopen Master SDO overflow
Action and Reset			
	Action condition	When the CANopen master transmits too much SDO that causes buffer overflow, the PCSF warning displays	
	Action time	Immediately displays when the fault is detected	
Wa	ming setting parameter	N/A	
	Reset method	Cycle the power, or stop the PLC and run the PLC again	
	Reset condition	N/A	
	Record	N/A	
	Cause		Corrective Actions
Internal SDO at	PLC transmits too much once	The PLC program needs to confirm receiving the SDO feedback data before sending another SDO command.	

ID No.	Display on LCD Keypad	Warning Name	Description
66	AUTO Warning PCSd CAN/M Sdo Tout	CAN/M SDO time-out (PCSd)	CANopen Master SDO time-out
Action and Reset			
	Action condition	When the CANopen master sends a SDO command, and the BUS is too busy to transmit the command, PCSd warning displays.	
	Action time	Immediately displays when the fault is detected	
War	ing setting parameter	N/A	
	Reset method	The warning automatically clears when the SDO transmits normally.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
When th transmit does no the Sla	CANopen master a SDO command, and receive feedback from within 1 sec .	Check if the Slave responds within 1 second.	

ID No.	Display on LCD Keypad	Warning Name	Description
67	Warning PCAd CAN/M Addres set	CAN/M address error (PCAd)	CANopen Master station address error
Action and Reset			
	Action condition	When the CANopen master detects an incorrect or repeated station address from the Slave, the PCAd warning displays.	
	Action time	Immediately displays when the fault is detected	
War	ing setting parameter	N/A	
	Reset method	The warning automatically clears when reset the station address and run the program again.	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
When the detects station	e CANopen master an incorrect or repeated ddress from the Slave	Set the correct slave station address.	

ID No.	Display on LCD Keypad	Warning Name	Description
68	Warning PCTo CAN/M T-Out	CAN/M time-out (PCTo)	When the drive receives an incorrect packet, it means that there is interference or the command from the upper unit does not meet the CANopen command format.
Action and Reset			
	Action condition	N/A	
	Action time	Immediately acts when receiving the command	
War	ing setting parameter	N/A	
	Reset method	The warning automatically clears after receives another normal packet	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
Malfunc	ion caused by interference	1. Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. 2. Make sure the communication circuit is wired in series. 3. Use CANopen cable or add terminating resistance.	
The com does no format	mand from the upper unit meet the CANopen	Contact Delta for further confirmation.	

ID No.	Display on LCD Keypad	Warning Name	Description
70	Warning ECid ExCom ID failed	ExCom ID fail (ECid)	Duplicate MAC ID error Node address setting error
Action and Reset			
Action condition		Duplicate setting of MAC ID Node address setting error	
	Action time	N/A	
War	ing setting parameter	N/A	
	Reset method	Correct the setting and cycle the power	
	Reset condition	N/A	
	Record	N/A	
	Cause		Corrective Actions
The set range (0	address exceeds the -63)	Check the address setting of the communication card (Pr.09-70)	
The spe range	setting exceeds the	Standard: 0-2, non-standard: 0-7	
The ad other no	ess is duplicated with des on the BUS	Reset the address	

ID No.	Display on LCD Keypad	Warning Name	
71	Warning ECLv ExCom pwr loss	ExCom power loss (ECLv)	Low voltage of communication card

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	
72	Warning ECtt ExCom Test Mode	ExCom test mode (ECtt)	Communication card is in the test mode
Action and Reset			
Action condition	Communication card is in the test mode		
Action time	Immediately acts		
Warning setting parameter	N/A		
Reset method	Cycle the power and enter the normal mode		
Reset condition	N/A		
Record	N/A		
Cause	Cycle the power		
Communication command error	Corrective Actions		

ID No.	Display on LCD Keypad	Warning Name	
73	Warning ECbF ExCom Bus off	ExCom Bus off (ECbF)	
Action and Reset			
Action condition	The communication card detects too much errors in the BUS, then enters the BUS-OFF status and stop communicating		
Action time	When the drive detects BUS-off (for DeviceNet)		
Warning setting parameter	N/A		
Reset method	Cycle the power		
Reset condition	N/A		
Record	N/A		
Cause	Re-connect the cable		
Poor connection of the cable	Replace the cable		
Bad quality of the cable			

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	
74	Warning ECnP ExCom No power	ExCom no power (ECnP)	There is no power supply on the DeviceNet

ID No.	Display on LCD Keypad	Warning Name	
75	Warning ECFF ExCom Facty def	ExCom factory defect (ECFF)	Factory default setting error
Action and Reset			
Action condition	Factory default setting error		
Action time	Immediately acts		
Warning setting parameter	N/A		
Reset method	Cycle the power		
Reset condition	N/A		
Record	N/A		
Cause	Use DCISoft to reset to the default value.		
Factory default setting error	Corrective Actions		

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
76	Warning ECiF ExCom Inner err	ExCom inner error (ECiF)	Serious internal error

Action and Reset

Action condition	Internal memory saving error
Action time	Immediately acts
Warning setting parameter	N/A
Reset method	Cycle the power
Reset condition	N/A
Record	N/A
Cause	Verify wiring of the control circuit, and wiring / grounding of the main circuit to prevent interference. Cycle the power.
Noise interference	Reset to the default value and check if the error still exists. If yes, replace the communication card.
The memory is broken	

ID No.	Display on LCD Keypad	Warning Name	
77	Warning ECio ExCom IONet brk	ExCom IO Net break (ECio)	IO connection break off
Action and Reset			
Action condition	IO connection between the communication card and the master is broken off		
Action time	Immediately acts		
Warning setting parameter	N/A		
Reset method	Manual reset		
Reset condition	Immediately reset		
Record	N/A		
Cause	Re-install the cable		
The cable is loose	Check the setting for master communication parameter		
Incorrect parameter setting for master communication			

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	
78	Warning ECPP ExCom Pr data	ExCom Parameter data error (ECPP)	Profibus parameter data error
Action and Reset			
Action condition	N/A		
Action time	N/A		
Warning setting parameter	N/A		
Reset method	Manual reset		
Reset condition	Immediately reset		
Record	N/A		
Cause	Get the correct GSD file from the software		
The GSD file is incorrect			

ID No.	Display on LCD Keypad	Warning Name	
79	Warning auro ECPi ExCom Conf data	ExCom configuration data error (ECPi)	Profibus configuration data error
Action and Reset			
Action condition	N/A		
Action time	N/A		
Warning setting parameter	N/A		
Reset method	Manual reset		
Reset condition	Immediately reset		
Record	N/A		
Cause	Get the correct GSD file from the software		
The GSD file is incorrect			

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name			
80	Warning auto	Description			
	ECEF				
ExCom Link fail				\quad	Ethernet link fail
:---:					
(ECEF)	\quad Ethernet cable is not connected				

Action and Reset	
Action condition	Hardware detection
Action time	Immediately acts
Warning setting parameter	N/A
Reset method	Manual reset
Reset condition	N/A
Record	N/A
Cause	
Ethernet cable is loose	Re-connect the cable
Bad quality of Ethernet cable	Replace the cable

ID No.	Display on LCD Keypad	Warning Name	Description
81	Warning ECto ExCom Inr T-out	Communication time-out (ECto)	Communication time-out for communication card and the upper unit
Action and Reset			
	Action condition	N/A	
	Action time	N/A	
Wa	ing setting parameter	N/A	
	Reset method	N/A	
	Reset condition	CMC-EC01: auto resets when the communication with the upper unit is back to normal	
	Record	N/A	
	Cause		Corrective Actions
Commu connec	ication card is not d with the upper unit	Check if the connection of the communication cable is correct	
Commu unit	ication error of the upper	Check if the communication of the upper unit is normal	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
82	Warning ECCS ExCom Inr CRC	Checksum error (ECCS)	Checksum error for communication card and the drive

Action condition	
Action time	Software detection
N/A	
Warning setting parameter	N/A
Reset method	Manual reset
Reset condition	Immediately resets
Record	N/A
Cause	Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference.
Noise interference	

ID No.	Display on LCD Keypad	Warning Name	Description
83	Warning ECrF ExCom Rtn def	Return defect (ECrF)	Communication card returns to the default setting
Action and Reset			
	Action condition	Communication card returns to the default setting	
	Action time	N/A	
War	ning setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately resets	
	Record	N/A	
	Cause	Corrective Actions	
Commun default s	ication card is returning to etting	No actions.	

ID No.	Display on LCD Keypad	Warning Name	Description
84	Warning ECoO ExCom MTCP over	Modbus TCP over (EcoO)	Modbus TCP exceeds maximum communication value
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately acts	
War	ning setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately resets	
	Record	N/A	
	Cause	Corrective Actions	
The Ma is more of the c	ter communication value than the allowable quantity mmunication card	Reduce Master communication value	
The upp commu break o causes	er unit is online without icating, and does not the Modbus TCP link, occupy connection	Revise program of upper unit, the communication should be break off when it is not used for a long time	
A new built every unit is c commu caused	odbus TCP connection is ry time when the upper onnected to the ication card, which occupy connection	Revise program of upper unit: use the same Modbus TCP connection when connected to the same communication card	

ID No.	Display on LCD Keypad	Warning Name	Description
85	Warning ECo1 ExCom EIP over	EtherNet/IP over (ECo1)	Ethernet/IP exceeds maximum communication value
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately acts	
War	ning setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately resets	
	Record	N/A	
	Cause	Corrective Actions	
The Ma is more of the co	ter communication value han the allowable quantity mmunication card	Reduce Master communication value	
The upp commun break o causes	er unit is online without icating, and does not the Modbus TCP link, occupy connection	Revise program of upper unit, the communication should be break off when it is not used for a long time	
A new built every unit is co commun caused	odbus TCP connection is ry time when the upper nnected to the ication card, which occupy connection	Revise program of upper unit: use the same Modbus TCP connection when connected to the same communication card	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name			
86	Warning				
	ECiP				
ExCom IP fail				\quad Description	
:---					

Action and Reset	
Action condition	Software detection
Action time	Immediately acts
Warning setting parameter	N/A
Reset method	Manual reset
Reset condition	Immediate reset
Record	N/A
Cause	
IP conflict	Reset IP
DHCP IP configuration error	MIS check if DHCP Server works normally

ID No.	Display on LCD Keypad	Warning Name	Description
87	Warning EC3F ExCom Mail fail	Mail fail (EC3F)	Mail warning: Alarm mail will be sent when the communication card establishes alarm conditions
Action and Reset			
	Action condition	Communication card establishes alarm conditions	
	Action time	Immediately acts	
Warn	ing setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately resets	
	Record	N/A	
	Cause	Corrective Actions	
Commu alarm	ication card establishes ditions	No actions	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
88	Warning Ecby ExCom Busy	$\begin{aligned} & \text { ExCom busy } \\ & \text { (ECbY) } \end{aligned}$	Communication card busy: too much packets are received
Action and Reset			
	Action condition	Software detection	
	Action time	N/A	
Wa	ing setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	N/A	
	Record	N/A	
	Cause	Corrective Actions	
Commu much fo to proc	ication packets are too the communication card S	Reduce communication packets	

ID No.	Display on LCD Keypad	Warning Name	Description
89	Warning ECCb ExCom Card break	$\underset{(\text { ECCb) }}{\text { ExCom card break }}$	Communication card break off warning
Action and Reset			
	Action condition	Communication card break off	
	Action time	The time between communication card break off and ECCb displays: 1. EtherNet/IP: 3 sec . 2. Modbus TCP: 3 sec. 3. DeviceNet: 1 sec . 4. PROFIBUS: 1 sec .	
	ing setting parameter	N/A	
	Reset method	Auto resets after communication card is re-installed	
	Reset condition	Immediately resets	
	Record	N/A	
	Cause	Corrective Actions	
Communication card break off		Re-install communication card	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	
90	Warning		
CPLP			
Copy PLC Pass Wd			

error (CPLP)\end{array} \quad $$
\begin{array}{l}\text { Copy PLC password error. } \\
\text { When KPC-CC01 is processing PLC copy and the PLC } \\
\text { password is incorrect, the CPLP warning shows. }\end{array}
$$\right]\)

ID No.	Display on LCD Keypad	Warning Name	Description
91	Warning CPLO Copy PLC Mode Rd	Copy PLC: Read mode error (CPLO)	Copy PLC Read mode error
Action and Reset			
	Action condition	When copy PLC read mode with incorrect process	
	Action time	Immediately acts	
Wa	ning setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Directly resets	
	Record	N/A	
	Cause		Corrective Actions
When c the proc	py PLC read mode and ess is incorrect	Cycle the power and copy PLC read mode again	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
92	Warning CPL1 Copy PLC Mode Wt	Copy PLC: Write mode (CPL1)	Copy PLC write mode error
Action and Reset			
	Action condition	Copy PLC write mode with incorrect process	
	Action time	Immediately acts	
Wa	ning setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Directly resets	
	Record	N/A	
	Cause		Corrective Actions
When copy the proc	py PLC write mode and ess is incorrect	Cycle the power and copy PLC read mode again	

ID No.	Display on LCD Keypad	Warning Name	Description
93	Warning CPLv Copy PLC Version	Copy PLC: version error (CPLv)	Copy PLC version error. When non-CFP2000 built-in PLC is copied to CFP2000 drive, the CPLv warning shows
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately acts	
	ing setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Directly resets	
	Record	N/A	
	Cause		Corrective Actions
Non-CF copied	2000 PLC program is CFP2000	Check if the copied PLC program is for CFP2000. Use the correct CFP2000 PLC program.	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
94	Warning CPLS Copy PLC Size	Copy PLC: size error (CPLS)	Copy PLC Capacity size error
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately acts	
War	ning setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Directly resets	
	Record	N/A	
	Cause		Corrective Actions
The PL exceed	copied to CFP2000 the allowable capacity	Check if the copied PLC program is for CFP2000 Use CFP2000 PLC program with correct capacity	

ID No.	Display on LCD Keypad	Warning Name	
95	Warning CPLF Copy PLC Func	Copy PLC: PLC function (CPLF)	KPC-CC01 Copy PLC function should be executed when PLC is off
Action and Reset			
Action condition	Software detection		
Action time	Immediately acts		
Warning setting parameter	N/A		
Reset method	Manual reset		
Reset condition	Directly resets		
Record	N/A		
Cause	Disable PLC function first, then run the PLC copy function again		
PLC function is enabled when KPC-CC01 is running copy PLC			

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
96	Warning auto CP Lt Copy PLC Time Out	Copy PLC: time-out (CPLt)	Copy PLC time out
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately acts	
Wa	ing setting parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Directly resets	
	Record	N/A	
	Cause		Corrective Actions
KPC-C copying	01 is removed while PLC program	The KPC-CC01 cannot be removed during the PLC copy process	

ID No.	Display on LCD Keypad	Warning Name	
101	Warning ictn InrCoM Time Out	InrCOM time-out (ictn)	

Chapter 13 Warning Codes | CFP2000

ID No.	Display on LCD Keypad	Warning Name	Description
105	Warning SpdR Est-Speed REV	Estimated speed reverse (SpdR)	Estimated speed is in a reverse direction with motor actual running direction
Action and Reset			
	Action condition	Software detection	
	Action time	Pr.10-09	
	ing setting parameter	Pr. 10-08 0 : Warn and keep operation 1: Fault and coast to stop 2: Fault and ramp to stop	
	Reset method	Manual reset	
	Reset condition	Immediately resets	
	Record	N/A	
	Cause		Corrective Actions
The mo at start	r runs in reverse direction	Check if the motor is hold when started, or start the motor with speed source.	
The diff parame value is	ence between motor measured Rr and Rs oo large	Normally the Rr value of IM is $\mathrm{Rs} \times 0.7$. If there is much difference of the measured value (e.g. $\mathrm{Rr}=\mathrm{Rs} \times 0.3$), proceed the motor parameter auto-tuning again.	
Insuffici dragged the load	nt output torque is to the reverse direction by	Increase the current limit of Pr.06-12, so as to increase the output torque.	

ID No.	Display on LCD Keypad	Warning Name	Description
123	Warning dEb Dec. Energy backup	Deceleration energy backup (dEb)	Deceleration energy backup
Action and Reset			
	Action condition	Software detection	
	Action time	N/A	
War	ning setting parameter	0: Disable 1: dEb with auto accel./decel., the output frequency will note return after power reply. 2: dEb with auto accel./decel., the output frequency will return after power reply. 3: dEb low-voltage control, then increase to $350 \mathrm{VDC} / 700 \mathrm{~V} D C$ and decelerate to stop. 4: dEb high-voltage control of $350 \mathrm{~V}_{\mathrm{DC}} / 700 \mathrm{~V}_{\mathrm{DC}}$ and decelerate to stop	
	Reset method	Manual reset	
	Reset condition	Immediately resets	
	Record	N/A	
	Cause	Corrective Actions	
Instanta voltage heavy lo the volt	neous power off or low and unstable/ sudden ad of the power that cause ge drop	Check the power consumption	
Unexpe	ted power off	Check the power consumption	

Chapter 13 Warning Codes | CFP2000
[This page intentionally left blank]

Chapter 14 Fault Codes and Descriptions

Summary of Fault Codes

ID No.	Fault Name	ID No.	Fault Name
0	No fault record	34	V-phase error (cd2)
1	Over-current during acceleration (ocA)	35	W-phase error (cd3)
2	Over-current during deceleration (ocd)	36	cc hardware failure (Hd0)
3	Over-current during steady operation (ocn)	37	oc hardware error (Hd1)
4	Ground fault (GFF)	38	ov hardware error (Hd2)
5	IGBT short circuit between upper bridge and lower bridge (occ)	39	occ hardware error (Hd3)
6	Over-current at stop (ocS)	40	Auto-tuning error (AUE)
7	Over-voltage during acceleration (ovA)	41	PID loss ACI (AFE)
8	Over-voltage during deceleration (ovd)	48	ACI loss (ACE)
9	Over-voltage at constant speed (ovn)	49	External fault (EF)
10	Over-voltage at stop (ovS)	50	Emergency stop (EF1)
11	Low-voltage during acceleration (LvA)	51	External base block (bb)
12	Low-voltage during deceleration (Lvd)	52	Password is locked (Pcod)
13	Low-voltage at constant speed (Lvn)	53	SW Code Error (ccod)
14	Low-voltage at stop (LvS)	54	Illegal command (CE1)
15	Phase loss protection (OrP)	55	lllegal data address (CE2)
16	IGBT overheating (oH1)	56	Illegal data value (CE3)
17	Internal key parts overheating (oH2)	57	Data is written to read-only address (CE4)
18	IGBT temperature detection failure (tH1o)	58	Modbus transmission time-out (CE10)
19	Capacitor hardware error (tH2o)	60	Brake transistor error (bF)
21	Over load (oL)	61	Y-connection / D-connection switch error (ydc)
22	Electronic thermal relay 1 protection (EoL1)	62	Deceleration energy backup error (dEb)
23	Electronic thermal relay 2 protection (EoL2)	63	Over slip error (oSL)
24	Motor overheating (oH3) PTC / PT100	64	Electric valve switch error (ryF)
26	Over torque 1 (ot1)	68	Reverse direction of the speed feedback (SdRv)
27	Over torque 2 (ot2)	69	Over speed rotation feedback (SdOr)
28	Under current (uC)	70	Large deviation of speed feedback (SdDe)
30	EEPROM write error (cF1)	71	Watchdog (WDTT)
31	EEPROM read error (cF2)	72	STO Loss 1 (STL1)
33	U-phase error (cd1)	73	Emergency stop for external safety (S1)

Chapter 14 Fault Codes and Descriptions | CFP2000

ID No.	Fault Name	ID No.	Fault Name
75	External brake error (Brk)	102	CANopen heartbeat error (CHbE)
76	STO (STO)	104	CANopen bus off error (CbFE)
77	STO Loss 2 (STL2)	105	CANopen index error (CidE)
78	STO Loss 3 (STL3)	106	CANopen station address error (CAdE)
82	Output phase loss U phase (OPHL)	107	CANopen memory error (CFrE)
83	Output phase loss V phase (OPHL)	111	lnrCOM time-out error (ictE)
84	Output phase loss W phase (OPHL)	112	PMLess shaft lock (SfLK)
87	Overload protection at low frequency (oL3)	142	Auto-tune error 1 (AUE1)
89	Rotor position detection error (RoPd)	143	Auto-tune error 2 (AUE2)
90	Force to stop (FStp)	144	Auto-tune error 3 (AUE3)
101	CANopen guarding error (CGdE)	148	Auto-tune error 4 (AUE4)

(1) Warning	(1) Display error signal
(2) OCA	(2) Abbreviate error code
(3) Oc at accel	(3) Display error description

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
1	Fault ocA Oc at accel	Over-current during acceleration (ocA)	Output current exceeds 2.4 times of rated current during acceleration. When ocA occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocA error.
Action and Reset			
	Action condition	240\% of rated current	
	Action time	Immediately act	
	t treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset in 5 sec . after the fault is cleared	
	Record	Yes	
	Cause	Corrective Actions	
Accele	tion time is too short	1. Increase the acceleration time 2. Increase the acceleration time of S curve 3. Set auto-acceleration and auto-deceleration parameter (Pr.01-44) 4. Set over-current stall prevention function (Pr.06-03) 5. Replace the drive with a larger capacity model.	
Short poor in	cuit at motor output due to ulation wiring	Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power.	
Check aging in	possible burnout or ulation of the motor	Check the motor insulation value with megger. Replace the motor if the insulation is poor.	
The lo	is too large.	Check if the output current during the whole working process exceeds the AC motor drive's rated current. If yes, replace the AC motor drive with a larger capacity model.	
Impulsiv	change of the load	Reduce the load or increase the capacity of AC motor drive.	
Use sp larger	cial motor or motor with pacity than the drive	Check the motor capacity (the rated current on the motor's nameplate should \leq the rated current of the drive)	
Use ON electro output	OFF controller of an agnetic contactor at the U/V/W) of the drive	Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage.	
V/F cur	e setting error	Adjust V/F curve setting and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage.	
Torque	ompensation is too large	Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall.	
Malfu	ion caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	
The motor	or starts when in free run	Enable the speed tracking during start-up of Pr.07-12.	
Improp the spe (includi power	parameter settings for d tracking function restart after momentary ss and restart after fault)	Correct the parameter settings for speed tracking. 1. Start the speed tracking function. 2. Adjust the maximum current for Pr.07-09 speed tracking.	
Incorre mode	combination of control d used motor	Check the settings for Pr.00-11 control mode: 1. For $\mathrm{IM}, \operatorname{Pr} .00-11=0,1,2,3,5$ 2. For PM, Pr. $00-11=4,6$, or 7	
The len long	th of motor cable is too	Increase AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W).	
Hardw	e failure	The ocA occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuits between terminals with the electric meter: B1 corresponds to U, V and W ; DC- corresponds to U, V and W; ${ }^{-}$ corresponds to U, V and W . If short circuit occur, return to the factory for repair.	
Check preven	the setting for stall on is correct	Set the stall prevention to the proper value.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
2	\qquad auto ocd Oc at decel	Over-current during deceleration (ocd)	Output current exceeds 2.4 times of rated current during deceleration. When ocd occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocd error.
Action and Reset			
	Action condition	240\% of rated current	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset in 5 sec . after the fault is cleared	
	Record	Yes	
	Cause	Corrective Actions	
Decele	tion time too short	1. Increase the deceleration time 2. Increase the deceleration time of S-curve 3. Set auto-acceleration and auto-deceleration parameter (Pr.01-44) 4. Set over-current stall prevention function (Pr.06-03) 5. Replace the drive with a larger capacity model	
Check the mo	the mechanical brake of activates too early	Check the action timing of the mechanical brake	
Short poor i	cuit at motor output due to lation wiring	Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power.	
Check aging	possible burnout or ulation of the motor	Check the motor insulation value with megger. Replace the motor if the insulation is poor.	
The lo	is too large	Check if the output current during the whole working process exceeds the AC motor drive's rated current. If yes, replace the AC motor drive with a larger capacity model.	
Impuls	change of the load	Reduce the load or increase the capacity of AC motor drive.	
Use sp larger	cial motor or motor with pacity than the drive	Check the motor capacity (the rated current on the motor's nameplate should \leq the rated current of the drive)	
Use ON electro	OFF controller of an agnetic contactor at the /V/W) of the drive	Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage.	
V/F cu	setting error	Adjust V/F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage.	
Torque	mpensation is too large	Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall.	
Malfun	on caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	
The le long	th of motor cable is too	Increase AC motor drive's capacity Install AC reactor(s) on the output side (U/V/W)	
Hardw	error	The ocd occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuits between terminals with the electric meter: B1 corresponds to U, V and W ; DC- corresponds to U, V and W ; corresponds to U, V and W . If short circuits occur, return to the factory for repair.	
Check preven	the setting of stall n is correct	Set the stall prevention to the proper value.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
3	Fault ocn Oc at normal SPD	Over-current during steady operation (ocn)	Output current exceeds 2.4 times of the rated current during constant speed. When ocn occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocn error.
Action and Reset			
	Action condition	240\% of rated current	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset in 5 sec . after the fault is cleared	
	Record	Yes	
	Cause		Corrective Actions
Short-c poor in	cuit at motor output due to ulation wiring	Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power.	
Check burnou motor	r possible shaft lock, or aging insulation of the	Troubleshoot the motor shaft lock. Check the motor insulation value with megger. Replace the motor if the insulation is poor.	
Impulsi	change of the load	Reduce the load or increase the capacity of AC motor drive.	
Use sp larger	cial motor or motor with pacity than the drive	Check motor capacity (the rated current on the motor's nameplate should \leq the rated current of the drive)	
Use ON electro output	OFF controller of an agnetic contactor at the (U/V/W) of the drive	Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage.	
V/F cur	e setting error	Adjust V/F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage.	
Over-to	que offset value too high	Adjust over-torque offset value (Refer to Pr.07-26 torque compensation gain), until the output current is reduced and not motor stall.	
Torque	compensation is too large.	Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall.	
Malfun	ion caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	
The len long	th of motor cable is too	Increase the AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W).	
Hardw	failure	The ocn occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuit between terminals with the electric meter: B 1 corresponds to U, V and W ; DC- corresponds to U, V, and W ; corresponds to U, V, and W . If short circuits occur, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
4	AUTO Fault GFF Ground fault	Ground fault (GFF)	When (one of) the output terminal(s) is grounded, short circuit current is larger than Pr.06-60 setting value, and the detection time is longer than Pr.06-61 time setting, GFF occurs. NOTE: the short circuit protection is provided for AC motor drive protection, not to protect the user.
Action and Reset			
	Action condition	Pr.06-60 (Default = 60\%)	
	Action time	Pr.06-61 (Default $=0.10 \mathrm{sec}$.)	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset in 5 sec. after the fault is cleared	
	Record	Yes	
	Cause	Corrective Actions	
Motor occurred	rnout or aging insulation	Check the motor insulation value with megger. Replace the motor if the insulation is poor.	
Short c	cuit due to broken cable	Troubleshoot the short circuit. Replace the cable.	
Larger cable	ray capacitance of the d terminal	If the motor cable length exceeds 100 m , decrease the setting value for carrier frequency. Take remedies to reduce stray capacitance.	
Malfun	on caused by interference	Verify the grounding and wiring of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective sufficient anti-interference performance.	
Hardwa	failure	Cycle the power after checking the status of motor, cable and cable length. If GFF still exists, return to the factory for repair.	

Chapter 14 Fault Codes and Descriptions | CFP2000

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
6	Fault		
OcS			
Oc at stop			

(ocS)\end{array} \quad $$
\begin{array}{l}\text { Over-current or hardware failure in current detection at } \\
\text { stop. } \\
\text { Cycle the power after ocS occurs. If the hardware failure } \\
\text { occurs, the display shows cd1, cd2 or cd3. }\end{array}
$$\right]\)

No	Display on LCD Keypad	Fault Name	Fault Descriptions
7	Fault ovA Ov at accel	Over-voltage during acceleration (ovA)	DC bus over-voltage during acceleration. When ovA occurs, the drive closes the gate of the output, the motor runs freely, and the display shows an ovA error.
Action and Reset			
Action condition 230 V models: 410 V VC 460 V models: 820 VDC 575 V models: 1116 VC 			
	Action time	Immediately act when DC bus voltage is higher than the level	
	llt treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset only when DC bus voltage is lower than 90% of the over-voltage level	
	Record	Yes	
	Cause	Corrective Actions	
Accele load d	ation is too slow (e.g. lifting reases acceleration time)	Decrease the acceleration time Use brake unit or DC bus Replace the drive with a larger capacity model.	
The se level is curren	ng for stall prevention maller than no-load	The setting for stall prevention level should be larger than no-load current	
Power	oltage is too high	Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.	
ON/O capac system	switch action of phase-in r in the same power	If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor.	
Regen inertia	ative voltage of motor	Use over-voltage stall prevention function (Pr.06-01) Use auto-acceleration and auto-deceleration setting (Pr.01-44) Use a brake unit or DC bus	
Accele	tion time is too short	Check if the over-voltage warning occurs after acceleration stops. When the warning occurs, do the following: 1. Increase the acceleration time 2. Set Pr.06-01 over-voltage stall prevention 3. Increase setting value for Pr.01-25 S-curve acceleration arrival time 2	
Motor	ound fault	The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault.	
Incorre brake	wiring of brake resistor or it	Check the wiring of brake resistor and brake unit.	
Malfun	on caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
8	auto Fault ovd Ov at decel	Over-voltage during deceleration (ovd)	DC bus over-voltage during deceleration. When ovd occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ovd error.
Action and Reset			
Action condition 230 V models: 410 VDC 460 V models: 820 VDC 575 V models: $1116 \mathrm{~V} D \mathrm{DC}$			
	Action time	Immediately act when DC bus voltage is higher than the level	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset only when DC bus voltage is lower than 90% of the over-voltage level	
	Record	Yes	
	Cause		Corrective Actions
Decele causin energy	ion time is too short, oo large regenerative the load	1. Increase the setting value of Pr.01-13, Pr.01-15, Pr.01-17 and Pr.01-19 (deceleration time) 2. Connect brake resistor, brake unit or common $D C$ bus on the drive. 3. Reduce the brake frequency. 4. Replace the drive with a larger capacity model. 5. Use S-curve acceleration/deceleration. 6. Use over-voltage stall prevention (Pr.06-01). 7. Use auto-acceleration and auto-deceleration (Pr.01-44). 8. Adjust braking level (Pr.07-01 or the jumper of the brake unit).	
The se level is curren	ng for stall prevention maller than no-load	The setting for stall prevention level should be larger than no-load current	
Power	tage is too high	Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.	
ON/OF capacit system	switch action of phase-in in the same power	If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor.	
Motor	und fault	The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault.	
Incorre brake	wiring of brake resistor or	Check the wiring of brake resistor or brake unit.	
Malfun	n caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
9	AUTO Fault ovn Ov at normal SPD	Over-voltage at constant speed (ovn)	DC bus over-voltage at constant speed. When ovn occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ovn error.
Action and Reset			
Action condition 230 V models: 410 VDC 460 V models: 820 VDC 575 V models: 1116 VDC 			
	Action time	Immediately act when DC bus voltage is higher than the level	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset only when DC bus voltage is lower than 90% of over-voltage level	
	Record	Yes	
	Cause	Corrective Actions	
Impuls	change of the load	1. Connect brake resistor, brake unit or DC bus to the drive. 2. Reduce the load. 3. Replace to drive with a larger capacity model. 4. Adjust braking level (Pr.07-01 or bolt position of the brake unit).	
The se level is curren	g for stall prevention maller than no-load	The setting of stall prevention level should be larger than no-load current	
Regen inertia	ative voltage of motor	Use over-voltage stall prevention function (Pr.06-01) Use a brake unit or DC bus	
Power	oltage is too high	Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.	
ON/OF capaci system	switch action of phase-in in the same power	If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an $A C$ reactor.	
Motor	und fault	The ground short-circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault.	
Incorre brake	wiring of brake resistor or t	Check the wiring of brake resistor or brake unit.	
Malfun	on caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
10	Faultauto OvS at stop	Over-voltage at stop (ovS)	Over-voltage at stop
Action and Reset			
Action condition 230 V models: $410 \mathrm{~V}_{\mathrm{DC}}$ 460 V models: $820 \mathrm{~V}_{D C}$ 575 V models: $1116 \mathrm{~V}_{D C}$			
	Action time	Immediately act when DC bus voltage is higher than the level	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset only when DC bus voltage is lower than 90\% of over-voltage level	
	Record	Yes	
	Cause		Corrective Actions
Power	Itage is too high	Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.	
$\begin{aligned} & \text { ON/OF } \\ & \text { capacit } \\ & \text { system } \end{aligned}$	switch action of phase-in in the same power	If the phase-in capacitor or active power supply unit activates in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor.	
Incorre brake	wiring of brake resistor or it	Check the wiring of brake resistor or brake unit.	
Malfu	on caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	
Hardw detectio	failure in voltage	Check if other error code such as cd1-cd3 occur after cycling the power. If yes, return to the factory for repair.	
Motor	und fault	The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
11	Fault LvA Lvato Lvaccel	Low-voltage during acceleration (LvA)	DC bus voltage is lower than Pr.06-00 setting value during acceleration
Action and Reset			
	Action condition	Pr.06-00 (Default = depending on the model)	
	Action time	Immediately act when DC bus voltage is lower than Pr.06-00	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset when DC bus voltage is higher than Pr.06-00 + 30 V (Frame A-D)	
	Record	Yes	
	Cause		
Power-		Improve power supply condition.	
Power	Itage changes	Adjust voltage to the power range of the drive	
Start up capacity	the motor with large	Check the power system. Increase the capacity of power equipment.	
The loa	is too large	Reduce the load. Increase the drive capacity. Increase the acceleration time.	
DC bus		Install DC reactor(s).	
Check or any betwee	there is short-circuit plate C reactor installed terminal +1 and +2	Connect short circuit plate or DC reactor between terminal +1 and +2 . If the error still exists, return to the factory for repair.	

Chapter 14 Fault Codes and Descriptions | CFP2000

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
12	Fault Auto Lvd Lvat decel	Low-voltage during deceleration (Lvd)	DC bus voltage is lower than Pr.06-00 setting value during deceleration
Action and Reset			
	Action condition	Pr.06-00 (Default = depending on the model)	
	Action time	Immediately act when DC bus voltage is lower than Pr.06-00	
	treatment parameter	NA	
	Reset method	Manual reset	
	Reset condition	Reset when DC bus voltage is higher than Pr.06-00 + 30 V (Frame A-D)	
	Record	Yes	
	Cause	Corrective Actions	
Power-		Improve power supply condition.	
Power	oltage changes	Adjust voltage to the power range of the drive.	
Start up capacit	the motor with large	Check the power system. Increase the capacity of power equipment.	
Sudden load		Reduce the load. Increase the drive capacity.	
DC bus		Install DC reactor(s).	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
13		Low-voltage at constant speed (Lvn)	DC bus voltage is lower than Pr.06-00 setting value at constant speed
Action and Reset			
	Action condition	Pr.06-00 (Default = depending on the model)	
	Action time	Immediately act when DC bus voltage is lower than Pr.06-00	
	treatment parameter	NA	
	Reset method	Manual reset	
	Reset condition	Reset when DC bus voltage is higher than Pr.06-00 + 30 V (Frame A-D)	
	Record	Yes	
	Cause	Corrective Actions	
Power		Improve power supply condition.	
Power	voltage changes	Adjust voltage to the power range of the drive	
$\begin{aligned} & \text { Start u } \\ & \text { capaci } \end{aligned}$	the motor with large	Check the power system. Increase the capacity of power equipment.	
Sudde	load	Reduce the load. Increase the drive capacity.	
DC bus		Install DC reactor(s).	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
14	Fault Auto LvS Lvat stop	Low-voltage at stop (LvS)	1. DC bus voltage is lower than Pr.06-00 setting value at stop 2. Hardware failure in voltage detection
Action and Reset			
	Action condition	Pr.06-00 (Default = depending on the model)	
	Action time	Immediately act when DC bus voltage is lower than Pr.06-00	
	treatment parameter	N/A	
	Reset method	Manual / auto: 230V models: Frame A-D $=$ Lv level $+30 V_{D C}+500 \mathrm{~ms}$ 460V models: Frame A-D = Lv level + 60 VDC +500 ms 575V models: Frame A-D $=$ Pr. $06-00+100.0$ VDC	
	Reset condition	500 ms	
	Record	Yes	
	Cause	Corrective Actions	
Power		Improve power supply condition.	
Incorre	drive models	Check if the power specification matches the drive.	
Power	Itage changes	Adjust voltage to the power range of the drive. Cycle the power after checking the power. If LvS error still exists, return to the factory for repair.	
Start up capac	the motor with large	Check the power system. Increase the capacity of power equipment.	
DC bus		Install DC reactor(s).	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
15	aито Fault OrP Phase lacked	Phase loss protection (OrP)	Phase loss of power input
Action and Reset			
	Action condition	DC bus is lower than Pr.07-00, and DC bus ripple is higher than Pr.06-52	
	Action time	N/A	
	treatment parameter	Pr.06-53	
	Reset method	Manual reset	
	Reset condition	Immediately reset when DC bus is higher than Pr.07-00	
	Record	Yes	
	Cause		Corrective Actions
Phase	ss of input power	Correctly install the wiring of the main circuit power.	
Single three-p	ase power input to ase model	Choose the model whose power matches the voltage.	
Power	Itage changes	If the main circuit power works normally, verify the main circuit. Cycle the power after checking the power, if OrP error still exists, return to the factory for repair.	
$\begin{array}{\|l\|l\|} \hline \text { Loose } \\ \text { power } \\ \hline \end{array}$	ring terminal of input	Tighten the terminal screws according to the torque described in the user manual.	
The inp power	cable of three-phase cut off	Wire correctly. Replace the cut off cable.	
Input p much	ver voltage changes too	Verify the setting value for Pr.06-50 Time for Input Phase Loss Detection and Pr.06-52 Ripple of Input Phase Loss	
Unbala power	ed three-phase of input	Check the power three-phase status.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
16	aито Fault oH1 IGBT over heat	IGBT overheating (oH1)	IGBT temperature exceeds the protection level
Action and Reset			
	Action condition	When Pr.06-15 is higher than the IGBT overheating protection level, oH1 error occurs instead of oH1 warning.	
	Action time	IGBT temperature exceeds the protection level for more than $100 \mathrm{~ms}, \mathrm{oH} 1$ error occurs.	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset only when IGBT temperature is lower than oH1 error level minus (-) $10^{\circ} \mathrm{C}$	
	Record	Yes	
	Cause	Corrective Actions	
Check or temp cabinet obstruc of the	the ambient temperature rature inside the control is too high, or if there is in the ventilation hole trol cabinet.	1. Check ambient temperature. 2. Regularly inspect the ventilation hole of the control cabinet. 3. Change the installed place if there are heating objects, such as braking resistors, in the surroundings. 4. Install/ add cooling fan or air conditioner to lower the temperature inside the cabinet.	
Check the hea running	here is any obstruction on sink or if the fan is	Remove the obstruction or replace the cooling fan.	
Insuffic	nt ventilation space	Increase ventilation space of the drive.	
Check corresp	the drive matches the ding load	1. Reduce the load 2. Reduce the carrier 3. Replace the drive with a larger capacity model.	
The dri than 100 long tim	has run 100\% or more \% of the rated output for a	Replace the drive with a larger capacity model.	

Chapter 14 Fault Codes and Descriptions | CFP2000

Model	oH1	oH 2	$\begin{gathered} \text { oH warning } \\ \text { oH1 warning }=(\text { Pr. 06-15 }) \end{gathered}$
VFD300FP4EA-41/52/52S	110	97	$\begin{gathered} \mathrm{oH} 1 \text { Warning }=\mathrm{Pr} .06-15 \\ \mathrm{oH} 2 \text { Warning }=\mathrm{oH} 2-5 \end{gathered}$
VFD370FP4EA-41/52/52S	110	97	
VFD450FP4EA-41/52/52S	100	90	
VFD550FP4EA-41/52/52S	100	90	
VFD750FP4EA-41/52/52S	95	85	
VFD900FP4EA-41/52/52S	95	85	
VFD015FP5EA-41/52/52S	110		
VFD022FP5EA-41/52/52S			
VFD037FP5EA-41/52/52S	0	85	
VFD055FP5EA-41/52/52S	00		
VFD075FP5EA-41/52/52S			
VFD110FP5EA-41/52/52S			
VFD150FP5EA-41/52/52S	105	90	
VFD185FP5EA-41/52/52S			
VFD220FP5EA-41/52/52S			
VFD300FP5EA-41/52/52S	110	97	
VFD370FP5EA-41/52/52S			
VFD450FP5EA-41/52/52S	100	90	
VFD550FP5EA-41/52/52S	100	90	
VFD750FP5EA-41/52/52S	95	85	
VFD900FP5EA-41/52/52S			

Unit: ${ }^{\circ} \mathrm{C}$

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
18	Fault AUTO tH10 Thermo 1 open	IGBT temperature detection failure (tH1o)	IGBT hardware failure in temperature detection
Action and Reset			
	Action condition	NTC broken or wiring failure	
	Action time	When the IGBT temperature is higher than the protection level, and detection time exceeds 100 ms , the tH 10 protection activates.	
	t treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Hardw	e failure	Wait for 10 minutes, and then cycle the power. Check if tH1o protection still exists. If yes, return to the factory for repair.	

Chapter 14 Fault Codes and Descriptions | CFP2000

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
19	Fault AUTO tH2o Thermo 2 open	Capacitor hardware error (tH2o)	Hardware failure in capacitor temperature detection
Action and Reset			
	Action condition	NTC broken or wiring failure	
	Action time	When the IGBT temperature is higher than the protection level, and detection time exceeds 100 ms , the tH 2 o protection activates.	
	It treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause		Corrective Actions
Hardw	e failure	Wait for 10 minutes, and then cycle the power. Check if tH 2 o protection still exists. If yes, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
21	Fault AUTO oL Over load	Over load (oL)	The AC motor drive detects excessive drive output current. The overload capacity sustains for 1 minute when the drive outputs 150% of the drive's rated output current.
Action and Reset			
	Action condition	Based on over load curve and derating curve. (The overload capacity sustains for 1 minute when the drive outputs 150% of the drive's rated output current.)	
	Action time	When the load is higher than the protection level and exceeds allowable time, the oL protection activates.	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset in 5 sec . after the fault is cleared	
	Record	Yes	
	Cause		Corrective Actions
The loa	is too large	Reduce the load	
Accel./D cycle a	ecel. time or the working too short	Increase the setting value for Pr.01-12-01-19 (accel./decel time)	
V/F volt	ge is too high	Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). Refer to the V/F curve selection of Pr.01-43.	
The cap small	city of the drive is too	Replace the drive with a larger capacity model.	
Overloa operatio	during low-speed	Reduce the load during low-speed operation. Increase the drive capacity. Decrease the carrier frequency of Pr.00-17.	
Torque	mpensation is too large	Adjust the torque compensation (refer to Pr.07-26 Torque Compensation Gain) until the output current reduces and the motor does not stall.	
Check preven	the setting for stall n is correct.	Set the stall prevention to the proper value.	
Output	hase loss	Check the status of three-phase motor. Check if the cable is broken or the screws are loose.	
Input ph	ase loss	Check if the motor three-phase impedance is equaled, or whether the screws are loosened.	
Improp the spe (includin power	parameter settings for d tracking function restart after momentary ss and restart after fault)	Correct the parameter settings for speed tracking. 1. Start the speed tracking function. 2. Adjust the maximum current for Pr.07-09 speed tracking.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
22	AUTO Fault EoL1 Thermal relay 1	Electronics thermal relay 1 protection (EoL1)	Electronics thermal relay 1 protection. The drive coasts to stop once it activates.
Action and Reset			
	Action condition	Start counting when output current > 105\% of motor 1 rated current	
	Action time	Pr.06-14 (if the output current is larger than 105\% of motor 1 rated current again within 60 sec., the counting time reduces and is less than Pr.06-14)	
	t treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset in 5 sec . after the fault is cleared	
	Record	Yes	
	Cause	Corrective Actions	
The load	is too large	Reduce the load.	
Accel. cycle	ecel. time or the working oo short	Increase the setting values for Pr.01-12-01-19 (Accel./Decel. time)	
V/F vo	ge is too high	Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). Refer to the V/F curve selection of Pr.01-43.	
Overlo operat When it oper overlo low-sp	during low-speed . ing a general motor, even es below rated current, an may still occur during d operation.	Decrease low-speed operation time. Replace the drive with a dedicated to VFD model. Increase the motor capacity.	
When motors therma inverte	ing VFD dedicated Pr.06-13=0 (electronic relay selection motor $1=$ motor)	Pr.06-13 = 1 electronic thermal relay selection motor 1 = standard motor (motor with fan on the shaft).	
Incorr therma	value of electronic relay	Reset to the correct motor rated current.	
The m set too	imum motor frequency is w	Reset to the correct motor rated frequency.	
One	e to multiple motors	Set Pr.06-13 = 2 electronic thermal relay selection motor 1 = disable, and install thermal relay on each motor.	
Check preven	the setting for stall is correct.	Set the stall prevention to the proper value.	
Torque	ompensation is too large	Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall.	
Motor	error	Check the status of the fan, or replace the fan.	
Unbal imped	ced three-phase ce of the motor	Replace the motor.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
23	AUTO Fault EoL2 Thermal relay 2	Electronic thermal relay 2 protection (EoL2)	Electronic thermal relay 2 protection. The drive coasts to stop once it activates.
Action and Reset			
	Action condition	Start counting when output current > 105\% of motor 2 rated current	
	Action time	Pr. 06 -28 (If the output current is larger than 105% of motor 2 rated current again within 60 sec ., the counting time reduces and is less than Pr.06-28)	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset in 5 sec . after the fault is cleared	
	Record	Yes	
	Cause	Corrective Actions	
The load	is too large	Reduce the load	
Accel./D cycle a	cel. time or the working too short	Increase the setting values for Pr.01-12-01-19 (accel./decel. time)	
V/F vor	is too high	Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). Refer to the V/F curve selection setting of Pr.01-43.	
Overload operati When operate overload low-sp	during low-speed ing general motor, even it below rated current, an may still occur during d operation.	Decrease low-speed operation time. Replace the drive with a dedicated to VFD model. Increase the motor capacity.	
When motors thermal inverter	ing VFD dedicated Pr.06-27=0 (electronic elay selection motor $2=0$ motor)	Pr.06-27 = 1 Electronic thermal relay selection motor $2=$ standard motor (motor with fan on the shaft).	
Incorre therma	value of electronic relay	Reset to the correct motor rated current.	
The ma set too	mum motor frequency is w	Reset to the correct motor rated frequency.	
One dr	to multiple motors	Set Pr.06-27 = 2 Electronic thermal relay selection motor 2 = disable, and install thermal relay on each motor.	
Check preven	the setting for stall n is correct.	Set the stall prevention to the proper value.	
Torque	mpensation is too large	Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall.	
Motor fa	error	Check the status of the fan, or replace the fan.	
Unbala impeda	ed three-phase ce of the motor	Replace the motor.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
24_1	Fault oH3 Motor over heat	Motor overheating (oH3) PTC	Motor overheating (PTC) (Pr.03-00-Pr.03-02 = 6 PTC), when PTC input > Pr.06-30, the fault treatment acts according to Pr.06-29.
Action and Reset			
	Action condition	PTC input value > Pr.06-30 setting (Default = 50\%)	
	Action time	Immediately act	
	It treatment parameter	Pr.06-29 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	
	Reset method	When Pr.06-29 $=0$, oH3 is a "Warning". The "Warning" is automatically cleared When Pr. $06-29=1$ or 2 , oH3 is a "Fault". You must reset manually.	
	Reset condition	Immediately reset	
	Record	When Pr.06-29 = 1 or 2, oH3 is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Motor sh	aft lock	Remove the shaft lock.	
The load	is too large	Reduce the load. Increase the motor capacity.	
Ambient	temperature is too high	Change the installed place if there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature.	
Motor co	oling system error	Check the cooling system to make it work normally.	
Motor fa	n error	Replace the fan.	
Operate	at low-speed too long.	Decrease low-speed operation time. Replace the motor with a dedicated to VFD model. Increase the motor capacity.	
Accel./D cycle ar	ecel. time and working too short	Increase the setting values for Pr.01-12-01-19 (accel./decel. time)	
V/F volt	age is too high	Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).	
Check matche namepl	the motor rated current that on the motor te.	Reset to the correct motor rated current.	
Check if and wir	the PTC is properly set d.	Check the connection between PTC thermistor and the heat protection.	
Check prevent	the setting for stall on is correct.	Set the stall prevention to the proper value.	
Unbalan impeda	ced three-phase ce of the motor	Replace the motor.	
Harmon	ics are too high.	Use remedies to reduce harmonics.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
24_2	FaultAUTO oH3 Motor over heat	Motor overheating (oH3) PT100	Motor overheating (PT100) (Pr.03-00-Pr.03-02 = 11 PT100). When PT100 input > Pr.06-57 (default = 7 V), the fault treatment acts according to Pr.06-29.
Action and Reset			
	Action condition	PT100 input value > Pr. $06-57$ setting (default $=7 \mathrm{~V}$)	
	Action time	Immediately act	
	treatment parameter	Pr.06-29 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	
	Reset method	When Pr.06-29 = 0 and the temperature < Pr.06-56, oH3 is automatically cleared. When Pr. $06-29=1$ or 2 , oH3 is a "Fault". You must reset manually.	
	Reset condition	Immediately reset	
	Record	When Pr. $06-29=1$ or 2, oH 3 is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Motor sh	aft lock	Remove the shaft lock.	
The load	is too large	Reduce the load. Increase the motor capacity.	
Ambie	mperature is too high	Change the installed place If there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature.	
Motor c	oling system error	Check the cooling system to make it work normally.	
Motor fa	error	Replace the fan.	
Operate	at low-speed too long	Decrease low-speed operation time. Replace the motor with a dedicated to VFD model. Increase the motor capacity.	
Accel./I cycle	ecel. time and working too short	Increase the setting values for Pr.01-12-Pr.01-19 (accel./decel. time)	
V/F volt	ge is too high	Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).	
Check matche namep	the motor rated current that on the motor e.	Reset to the correct motor rated current.	
Check and wir	the PT100 is properly set d.	Check connection of PT100 thermistor.	
Check preven	the setting for stall is correct.	Set the stall prevention to the proper value.	
Unbala impeda	ed three-phase ce of the motor	Replace the motor.	
Harmon	cs are too high	Use remedies to reduce harmonics.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
26	AUTO Fault ot 1 Over torque 1	Over torque 1 (ot1)	When output current exceeds the over-torque detection level (Pr.06-07) and exceeds over-torque detection time (Pr.06-08), and when Pr.06-06 or Pr.06-09 is set to 2 or 4, the ot1 error displays.
Action and Reset			
	Action condition	Pr.06-07	
	Action time	Pr.06-08	
	treatment parameter	Pr.06-06 0 : No function 1: Continue operation after Over-torque detection during constant speed operation 2: Stop after Over-torque detection during constant speed operation 3: Continue operation after Over-torque detection during RUN 4: Stop after Over-torque detection during RUN	
Reset method Reset condition		AutoWhen Pr.06-06 = 1 or 3 , ot1 is a "Warning". The warning is automatically cleared when the output current < (Pr.06-07 $-5 \%)$	
		Manual When Pr.06-06 = 2 or 4, ot1 is a "Fault". You must reset manually.	
	Record	Immediately reset	
	Active level	When Pr.06-06 = 2 or 4, ot1 is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Incorre	parameter setting	Reset Pr.06-07 and Pr.06-08	
Mecha over-to	cal failure (e.g. ue, mechanical lock)	Remove the causes of malfunction.	
The loa	is too large	Reduce the load. Replace the motor with a larger capacity model.	
Accel./ cycle	cel. time and working too short	Increase the setting values for Pr.01-12-Pr.01-19 (accel./decel. time)	
V/F vol	ge is too high	Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).	
The mo	r capacity is too small	Replace the motor with a larger capacity model.	
Overlo operati	during low-speed	Decrease low-speed operation time. Increase the motor capacity.	
Torqu	mpensation is too large	Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall.	
Improp speed restart and re	parameter settings for cking function (including er momentary power loss rt after fault)	Correct the parameter settings for speed tracking. 1. Start the speed tracking function. 2. Adjust the maximum current for Pr.07-09 speed tracking.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
27		Over torque 2 (ot2)	When output current exceeds the over-torque detection level (Pr.06-10) and exceeds over-torque detection time (Pr.06-11), and when Pr.06-09 is set to 2 or 4, the ot2 error displays.
Action and Reset			
	Action condition	Pr.06-10	
	Action time	Pr.06-11	
	treatment parameter	Pr.06-09 0 : No function 1: Continue operation after Over-torque detection during constant speed operation 2: Stop after Over-torque detection during constant speed operation 3: Continue operation after Over-torque detection during RUN 4: Stop after Over-torque detection during RUN	
Reset method Reset condition			
		Manual When Pr.06-09 $=2$ or 4, ot2 is a "Fault". You must reset manually.	
	Record	Immediately reset	
	Active level	When Pr.06-09 = 2 or 4, ot2 is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Incorre	parameter setting	Reset Pr.06-07 and Pr.06-08	
Mecha over-to	ical failure (e.g. que, mechanical lock)	Remove the causes of malfunction.	
The load	is too large.	Reduce the load. Replace the motor with a larger capacity model.	
Accel./D cycle	ecel. time and working too short	Increase the setting values for Pr.01-12-01-19 (accel./decel. time).	
V/F vol	age is too high	Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).	
The mo	or capacity is too small	Replace the motor with a larger capacity model.	
Overload operati	during low-speed	Decrease low-speed operation time. Increase the motor capacity.	
Torque	compensation is too large	Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall.	
Improp speed restart and re	r parameter settings for acking function (including t momentary power loss art after fault)	Correct the parameter settings for speed tracking. 1. Start the speed tracking function. 2. Adjust the maximum current for Pr.07-09 speed tracking.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
28	Fault aUTO uC Under current	Under current (uC)	Low current detection
Action and Reset			
Action condition		Pr.06-71	
Action time		Pr.06-72	
Fault treatment parameter		Pr.06-73 0 : No function 1: Fault and coast to stop 2: Fault and ramp to stop by second deceleration time 3: Warn and operation continue	
Reset method Reset condition		Auto When Pr.06-73 = 3, uC is a "Warning". The warning is automatically cleared when the output current > (Pr.06-71 $+0.1 \mathrm{~A})$.	
		Manual When Pr.06-73 = 1 or 2, uC is a "Fault". You must reset manually.	
	Record	Immediately reset	
	Active level	When Pr.06-71 = 1 or 2, uC is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Motor	ble disconnection	Troubleshoot the connection between the motor and the load.	
Improper setting of low-current protection		Reset Pr.06-71, Pr.06-72 and Pr.06-73 to proper settings.	
The load is too low		Check the load status. Check if the motor capacity matches the load.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
30	Fault \quad cF1 EEPROM write err	EEPROM write error (cF1)	Internal EEPROM cannot be programmed
Action and Reset			
	Action condition	Firmware internal detection	
	Action time	cF1 acts immediately when the drive detects the fault	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause		Corrective Actions
Interna progra	EEPROM cannot be med	Press "RESET" key or reset the parameter to the default setting, if cF1 still exists, return to the factory for repair. Cycle the power, if cF1 still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
31	Fault \quad auto cF2 EEPROM read err	EEPROM read error (cF2)	Internal EEPROM cannot be read
Action and Reset			
	Action condition	Firmware internal detection	
	Action time	cF2 acts immediately when the drive detects the fault	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause		Corrective Actions
Interna	EPROM cannot be read	Press "RESET" key or reset the parameter to the default setting, if cF2 still exists, return to the factory for repair. Cycle the power, if cF2 error still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
33	Fault \quad AUTO cd1 las sensor err	U-phase error (cd1)	U-phase current detection error when power is ON
Action and Reset			
	Action condition	Hardware detection	
	Action time	cd1 acts immediately when the drive detects the fault	
	lt treatment parameter	N/A	
	Reset method	Power-off	
	Reset condition	N/A	
	Record	Yes	
	Cause	Cycle the power. If cd1 still exists, return to the factory for repair.	
Hardwa	e failure		

Chapter 14 Fault Codes and Descriptions | CFP2000

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
34	Fault \quad cd2 aUto Ibs sensor err	V-phase error (cd2)	V-phase current detection error when power ON
Action and Reset			
Action condition		Hardware detection	
	Action time	cd2 acts immediately when the drive detects the fault	
	treatment parameter	N/A	
	Reset method	Power-off	
	Reset condition	N/A	
	Record	Yes	
	Cause	Corrective Actions	
Hardwa	failure	Cycle the power. If cd2 still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	
35	FaultAUTo cd3 Ics sensor err	W-phase error (cd3)	W-phase current detection error when power ON
Action and Reset			
Action condition			Hardware detection
Action time	Cd3 acts immediately when the drive detects the fault		
Fault treatment parameter	N/A		
Reset method	Power-off		
Reset condition	N/A		
Record	Yes		
Cause	Cycle the power. If cd3 still exists, return to the factory for repair.		
Hardware failure			

Chapter 14 Fault Codes and Descriptions | CFP2000

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
36	Fault AUTO HdO cc HW error	cc hardware failure (HdO)	cc (current clamp) hardware protection error when power is ON
Action and Reset			
	Action condition	Hardware detection	
	Action time	Hd0 acts immediately when the drive detects the fault	
	treatment parameter	N/A	
	Reset method	Power-off	
	Reset condition	N/A	
	Record	Yes	
	Cause	Corrective Actions	
Hardw	e failure	Cycle the power. If HdO still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
37	AUTO Fault Hd1 Oc HW error	oc hardware error (Hd1)	oc hardware protection error when power is ON
Action and Reset			
	Action condition	Hardware detection	
	Action time	Hd1 acts immediately when the drive detects the fault	
	treatment parameter	N/A	
	Reset method	Power-off	
	Reset condition	N/A	
	Record	Yes	
	Cause	Cycle the power. Corrective Actions	
Hardw	failure		

Chapter 14 Fault Codes and Descriptions | CFP2000

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
38	Fault Hd2 2 Ov HW error	ov hardware error (Hd2)	ov hardware protection error when power is ON
Action and Reset			
	Action condition	Hardware detection	
	Action time	Hd2 acts immediately when the drive detects the fault	
	treatment parameter	N/A	
	Reset method	Power-off	
	Reset condition	N/A	
	Record	Yes	
	Cause	Corrective Actions	
Hardwa	failure	Cycle the power. If Hd2 still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	
39	FaultAuto Hd3	occ hardware error (Hd3)	Protection error of occ IGBT short-circuit detection when power is ON
Action and Reset			
Action condition			Hardware detection
Action time	Hd3 acts immediately when the drive detects the fault		
Fault treatment parameter	N/A		
Reset method	Power-off		
Reset condition	N/A		
Record	Yes		
Cause	Cycle the power. If Hd3 still exists, return to the factory for repair.		
Hardware failure			

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
40	auto Fault AUE Auto tuning error	Auto-tuning error (AUE)	Motor auto-tuning error
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Press auto-tu	TOP" key during ng	Re-execute auto-tuning.	
Incorre or too	motor capacity (too large mall) and parameter setting	Check motor capacity and related parameters. Set the correct parameters, that is Pr.01-01-Pr.01-02. Set Pr.01-00 larger than motor rated frequency.	
Incorre	motor wiring	Check the wiring.	
Motor	aft lock	Remove the cause of motor shaft lock.	
The el ON at drive	tromagnetic contactor is tput side (U/V/W) of the	Make sure the electromagnetic valve is OFF.	
The load	is too large.	Reduce the load. Replace the motor with a larger capacity model.	
Accel./	ecel. time is too short	Increase the setting values for Pr.01-12-Pr.01-19 (Accel./Decel. time).	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
41	AUTO Fault AFE PID Fbk error	PID loss ACI (AFE)	PID feedback loss (analog feedback signal is only valid when the PID function is enabled)
Action and Reset			
Action condition		When the analog input < 4 mA (only detects 4-20 mA analog input)	
Action time		Pr.08-08	
Fault treatment parameter		Pr.08-09 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: Warn and operate at last frequency	
Reset method		Auto When Pr.08-09 $=3$ or 4, AFE is a "Warning". When the feedback signal is $>4 \mathrm{~mA}$, the "Warning" is automatically cleared.	
		Manual When Pr.08-09 = 1 or 2, AFE is a "Fault". You must reset manually.	
	Reset condition	Immediately reset	
	Record	When Pr.08-09 = 1 or 2, AFE is a "Fault", and the fault is recorded; when Pr.08-09=3 or 4, AFE is a "Warning", and the warning is not recorded.	
	Cause	Corrective Actions	
PID feedback cable is loose or cut off		Tighten the terminal. Replace the cable with a new one.	
Feedback device failure		Replace the device with a new one.	
Hardware failure		Check all the wiring. If AFE fault still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
48	Fault ACE ACIO ACI loss	ACI loss (ACE)	Analog input loss (including all the 4-20 mA analog signal)
Action and Reset			
Action condition		When the analog input is < 4 mA (only detects $4-20 \mathrm{~mA}$ analog input)	
	Action time	Immediately act	
Fault treatment parameter		Pr.03-19 0 : Disable 1: Continue operation at the last frequency (warning, ANL is displayed on the keypad) 2: Decelerate to stop (warning, ANL is displayed on the keypad) 3: Stop immediately and display ACE	
Reset method		AutoWhen Pr.03-19 = 1 or 2, ACE is a "Warning". When analog input signal is $>4 \mathrm{~mA}$, the warning is automatically cleared.	
		Manual When Pr.03-19 = 3, ACE is a "Fault". You must reset manually.	
	Reset condition	Immediately reset	
	Record	When Pr.03-19 = 3, ACE is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
ACl cable is loose or cut off		Tighten the terminal. Replace the cable with a new one.	
External device failure		Replace the device with a new one.	
Hardware failure		Check all the wiring. If ACE still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
49	AUTO Fault EF External fault	External fault (EF)	External fault. When the drive decelerates based on the setting of Pr.07-20, the EF fault displays on the keypad.
Action and Reset			
Action condition		$\mathrm{MIX}=\mathrm{EF}$ and the MI terminal is ON	
Action time		Immediately act	
Fault treatment parameter		Pr.07-20 0 : Coast to stop 1: Stop by the first deceleration time 2: Stop by the second deceleration time 3: Stop by the third deceleration time 4: Stop by the fourth deceleration time 5: System deceleration 6: Automatic deceleration (Pr.01-46)	
	Reset method	Manual reset	
	Reset condition	Manual reset only after the external fault is cleared (terminal status is recovered)	
	Record	Yes	
	Cause	Corrective Actions	
Externa	fault	Press RESET key after the fault is cleared.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
50	Fault \quad AUTo Emergency stop	Emergency stop (EF1)	When the contact of MIx = EF1 is ON, the output stops immediately and displays EF1 on the keypad. The motor is in free running.
Action and Reset			
	Action condition	$\mathrm{MIx}=\mathrm{EF} 1$ and the MI terminal is ON	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Manual reset only after the external fault is cleared (terminal status is recovered)	
	Record	Yes	
	Cause	Corrective Actions	
When	$x=E F 1$ activates	Verify if the system is back to normal condition, and then press "RESET" key to go back to the default.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
51		External base block (bb)	When the contact of Mlx = bb is ON, the output stops immediately and displays bb on the keypad. The motor is in free running.
Action and Reset			
	Action condition	$\mathrm{MIx}=\mathrm{bb}$ and the MI terminal is ON	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	The display "bb" is automatically cleared after the fault is cleared.	
	Reset condition	N/A	
	Record	No	
	Cause		Corrective Actions
When	$\mathrm{x}=\mathrm{bb}$ activates	Verify if the system is back to normal condition, and then press "RESET" key to go back to the default.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
52	Fault AUTO Pcod Password error	Password is locked (Pcod)	Entering the wrong password three consecutive times
Action and Reset			
	Action condition	Entering the wrong password three consecutive times	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Power-off	
	Record	Yes	
	Cause	Corrective Actions	
$\left\lvert\, \begin{aligned} & \text { Incorrec } \\ & \text { Pr.00-0 } \end{aligned}\right.$	password input through	1. Input the correct password after rebooting the motor drive. 2. If you forget the password, do the following steps: Step 1: Input 9999 and press ENTER. Step 2: Repeat step 1. Input 9999 and press ENTER. (You need to finish step 1 and step 2 within 10 seconds. If you don't finish the two steps in 10 seconds, try again.) 3. The parameter settings return to the default when the "Input 9999" process is finished.	

No	Display on LCD Keypad	Fault Name	Fault Descriptions
53	Fault \quad ccod SWU Code error	SW Code Error (ccod)	Firmware version is different with the control board hardware ID number
Action and Reset			
	Action condition	N/A	
	Action time	N/A	
	treatment parameter	N/A	
	Reset method	N/A	
	Reset condition	N/A	
	Record	No	
	Cause	Corrective Actions	
Wrong C2000 into C hardw	mware version (example: eries firmware is burned 000 control board)	Return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
54	Fault \quad Auto CE1 PC err command	Illegal command (CE1)	Communication command is illegal
Action and Reset			
	Action condition	When the function code is not $03,06,10$, or 63.	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	No	
	Cause	Corrective Actions	
Incorre comm	communication d from the upper unit	Check if the communication command is correct.	
Malfun	on caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differe from th	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Discon of the	ction or bad connection ble	Check the cable and replace it if necessary.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
55	$\begin{aligned} & \text { Fault AUTO } \\ & \text { CE2 } \\ & \text { PC err address } \end{aligned}$	Illegal data address (CE2)	Data address is illegal
Action and Reset			
	Action condition	When the data address is correct.	
	Action time	Immediately act	
	t treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	No	
	Cause		Corrective Actions
$\begin{aligned} & \text { Incorre } \\ & \text { comma } \end{aligned}$	communication d from the upper unit	Check if the communication command is correct.	
Malfun	ion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differen from th	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Discon of the	ection or bad connection ble	Check the cable and replace it if necessary.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
56	Fault CE3 PC err data	Illegal data value (CE3)	Data value is illegal
Action and Reset			
Action condition		When the data length is too long	
Action time		Immediately act	
Fault treatment parameter		N/A	
Reset method		Manual reset	
Reset condition		Immediately reset	
Record		No	
Cause		Corrective Actions	
Incorrect communication command from the upper unit		Check if the communication command is correct.	
Malfunction caused by interference		Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Different communication setting from the upper unit		Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Disconnection or bad connection of the cable		Check the cable and replace it if necessary.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
57	FaultCE4 AUTO PC slave fault	Data is written to read-only address (CE4)	Data is written to read-only address
Action and Reset			
	Action condition	When the data is written to read-only address.	
	Action time	Immediately act	
	It treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	No	
	Cause		Corrective Actions
Incorre comma	communication and from the upper unit	Check if the communication command is correct.	
Malfun	tion caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differe from th	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Discon of the	ection or bad connection able	Check the cable and replace it if necessary.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
58	Fault CE10 PC time out	Modbus transmission time-out (CE10)	Modbus transmission time-out occurs
Action and Reset			
Action condition		When the communication time exceeds the detection time for Pr.09-03 time-out.	
	Action time	Pr.09-03	
	treatment parameter	Pr.09-02 0: Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning, no fault and continue operation	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause		Corrective Actions
The up the com within	unit does not transmit munication command 09-03 setting time.	Check if the upper unit transmits the communication command within the setting time for Pr.09-03.	
Malfun	on caused by interference	Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.	
Differe from th	communication setting upper unit	Check if the setting for Pr.09-04 is the same as the setting for the upper unit.	
Discon of the	ection or bad connection ce	Check the cable and replace it if necessary.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
60	Fault bF Braking fault	Brake transistor error (bF)	The brake transistor of the motor drive is abnormal. (for the models with built-in brake transistor)
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Hardwa	error	1. Press "RESET" key to go back to the default. If bF still exists, return to the factory for repair. 2. Power off the motor drive since the internal circuit is abnormal. Use a meter to check if it is short-circuit between B2 to DC-. If short-circuit exists, return to the factory for repair.	
Malfun	on caused by interference	Verify wiring/grounding of the main circuit to prevent interference.	
Using th	incorrect brake resistor	Check if the resistance value of the brake resistor matches to the drive.	
$\begin{array}{\|l} \text { Incorre } \\ \text { resistor } \end{array}$	wiring of the brake	Refer to the optional accessories instruction in chapter 7, and verify the wiring.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
61		Y-connection / Δ-connection switch error (ydc)	An error occurs when $\mathrm{Y}-\Delta$ switches
Action and Reset			
	Action condition	1. ydc occurs when the confirmation signals of Y-connection and Δ-connection are conducted at the same time. 2. If any of confirmation signals is not conducted within Pr.05-25, ydc occurs.	
	Action time	Pr.05-25	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Can be reset only when the confirmation signal of Y -connection is conducted if it is Y -connection, or when the confirmation signal of Δ-connection is conducted if it is Δ-connection.	
	Record	Yes	
	Cause	Corrective Actions	
The el operat switch	tromagnetic valve incorrectly during $\mathrm{Y}-\Delta$	Check if the electromagnetic valve works normally. If not, replace it.	
Incorre	parameter setting	Check if related parameters are all set up and set correctly.	
The w incorre	g of $\mathrm{Y}-\Delta$ switch function is	Check the wiring.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
62	Fault dEb Dec. Energy back	Deceleration energy backup error (dEb)	When Pr.07-13 is not 0 , and the power is suddenly off, causing the DC bus voltage lower than the dEb action condition, the dEb function acts and the motor ramps to stop. Then dEb displays on the keypad.
Action and Reset			
	Action condition	When Pr.07-13 is not 0, and the DC bus voltage is lower than the level of dEb.	
	Action time	Immediately act	
	treatment parameter	N/A	
Reset method		Auto drive outputs	$13=2$ (dEb with auto-acceleration / auto-deceleration, the the frequency after the power is restored): dEb is cleared.
		When Pr.07-13 = 1 (dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored): The drive stops when dEb acts and the rotation speed becomes 0 Hz , then the drive can be reset manually.	
	Reset condition	Auto: The fault is automatically cleared. Hand: When the drive decelerates to 0 Hz .	
	Record	Yes	
	Cause	Corrective Actions	
Unstab power	power source or the off	Check the power system.	
There is operate	any other large load in the power system	1. Replace power system with a larger capacity. 2. Use a different power system from the large load system.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
64	Fault ryF MC Fault	Electric valve switch error (ryF)	Electric valve switch error when executing Soft Start
Action and Reset			
	Action condition	Hardware detection (Frame D)	
	Action time	Immediately act	
	lt treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset when the electric valve switch is correctly closed	
	Record	Yes	
	Cause	Corrective Actions	
The inp	t power is abnormal	Check if the power is shut down during the drive operation. Check if the three-phase input power is normal.	
Malfunc	ion caused by interference	Verify the wiring/grounding of the main circuit to prevent interference.	
Hardwa	e failure	Cycle the power after checking the power. If ryF error still exists, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
68	Faultauto SdRv SpdFbk Dir Rev	Reverse direction of the speed feedback (SdRv)	Rotating direction is different from the commanding direction detected by the sensorless
Action and Reset			
	Action condition	Software detection	
	Action time	Pr.10-09	
	treatment parameter	Pr.10-08 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	When Pr.10-08 = 1 or 2, SdRv is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
The se bandw improp	ing of Pr.10-25 FOC h of speed observer is	Decrease the setting of Pr.10-25	
The se incorre	ng of motor parameter is	Reset the motor parameter and execute parameter tuning	
The m broken	r cable is abnormal or	Check if the cable is well functioned or replace the cable	
A reve motor start	force is exerted, or the ons in a reverse direction at	Start speed tracking function (Pr.07-12)	
Malfun	on caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
69	AUTO Fault SdOr SpdFbk over SPD	Over speed rotation feedback (SdOr)	Over speed rotation detected by sensorless
Action and Reset			
	Action condition	Pr. 10-10	
	Action time	Pr.10-11	
	lt treatment parameter	Pr.10-12 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	When Pr. $10-12=1$ or 2, SdOr is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
The se bandwid improp	ing of Pr.10-25 FOC th of speed observer is	Decrease the setting of Pr.10-25	
The se speed	ing of ASR bandwidth of ontroller is improper	Increase the bandwidth of ASR speed controller	
The se incorre	ng of motor parameter is	Reset motor parameter and execute parameter tuning	
Malfun	ion caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
70	FaultAUTO SdDe SpdFbk deviate	Large deviation of speed feedback (SdDe)	A large deviation between the rotating speed and the command detected by the sensorless
Action and Reset			
	Action condition	Pr.10-13	
	Action time	Pr.10-14	
	treatment parameter	Pr.10-15 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	When Pr.10-15 = 1 or 2, SdDe is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Improp abnorm	parameter setting for rotating slip function	Reset proper setting for Pr.10-13 and Pr.10-14	
Improp ASR	parameter setting for acceleration/deceleration	Reset ASR parameters Set proper acceleration/deceleration time	
The a is too	leration/deceleration time rt	Reset proper acceleration/deceleration time	
Motor	aft lock	Remove the cause of motor shaft lock	
The m releas	hanical brake is not	Verify the system action timeline	
Incorr torque 20)	parameter setting for nit (Pr.06-12, Pr.11-17 -	Adjust the setting to proper value	
Malfun	on caused by interference	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
71		Watchdog (WDTT)	Watchdog error
Action and Reset			
	Action condition	Hardware detection	
	Action time	N/A	
	treatment parameter	N/A	
	Reset method	Hardware failure, and cannot reset. Cycle the power.	
	Reset condition	N/A	
	Record	Yes	
	Cause	Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. If the WDTT fault still exists, return to the factory for repair.	
Hardwa	e interference		

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
72		STO Loss 1 (STL1)	STO1-SCM1 internal loop detection error
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Hardware failure, and cannot reset. Cycle the power.	
	Reset condition	N/A	
	Record	Yes	
	Cause	Corrective Actions	
$\begin{aligned} & \hline \text { STO1 a } \\ & \text { are not } \\ & \hline \end{aligned}$	SCM1 short circuit lines onnected	Connect the short circuit line	
Hardwa	failure	After you make sure all the wiring is correct, if STOL fault still exists after cycling the power, return to the factory for repair.	
Bad co	nection of the IO card	Check if the PIN of IO card is broken. Check if the IO card connects to the control board correctly, and if the screws are tightened well.	
The IO version	ard does not match the f the control board	Contact local agent or Delta	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
73	Fault S1 S1-emergy stop	Emergency stop for external safety (S1)	Emergency stop for external safety
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Reset only after S1 error is cleared.	
	Record	Yes	
	Cause	Corrective Actions	
The sw (OPEN)	ch action of S1 and SCM	Reset the switch and cycle the power.	
S1 and not con	SCM short circuit lines are ected	Re-connect the short circuit lines	
Malfun	ion caused by interference	Verify the wiring/grounding of the main circuit, control circuit and encoder to prevent interference.	
Hardwa	e failure	If S1 fault still exists after cycling the power, return to the factory for repair.	
Poor co	nection of the IO card	Check if the PIN of IO card is broken. Check if the IO card connects to the control board correctly, and if the screws are tightened well.	
The IO version	ard does not match the of the control board	Contact local agent or Delta	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
75	Fault \quad Auto Brk EXT-Brake Error	External brake error (Brk)	External mechanical brake error The MO terminal is active when $\mathrm{MOx}=12,42,47$ or 63 , but the MIx = 55 does not receive signal for mechanical brake action during the set time of Pr.02-56.
Action and Reset			
	Action condition	MIx $=55$ did not receive signal for the mechanical brake action during the set time of Pr.02-56.	
	Action time	Pr.02-56	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Mecha	cal brake error	Verify if the mechanical brake can work correctly. Replace mechanical brake.	
Incorre	parameter setting	If there is no brake-confirming signal to use, set Pr.02-56 $=0$.	
Signal	ble is loose or cut off	Tighten the screws. Replace the signal cable with a new one.	
The tim short	of Pr.02-56 is set too	Increase the time setting of Pr.02-56	
Malfun	on caused by interference	Verify the wiring/grounding of the main circuit, control circuit and encoder to prevent interference.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
76		STO (STO)	Safety Torque Off function active
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately act	
	treatment parameter	N/A	
Reset method		Auto $\begin{aligned} & \text { When Pr.06-44 = } 1 \text { and after STO error is cleared, it automatically } \\ & \text { resets. }\end{aligned}$	
		Manual When Pr.06-44 $=0$ and after STO error is cleared, reset it manually.	
	Reset condition	Reset only after STO error is cleared.	
	Record	Yes	
	Cause		Corrective Actions
The sw	$\begin{aligned} & \text { ch action of STO1/SCM1 } \\ & \text { 2/SCM2 (OPEN) } \end{aligned}$	Reset the switch (ON) and cycle the power	
Poor co	nection of the IO card	Check if the PIN of IO card is broken. Check if the IO card connects to the control board correctly, and if the screws are tightened well.	
The IO version	ard does not match the of the control board	Contact local agent or Delta	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
77		STO Loss 2 (STL2)	STO2-SCM2 internal loop detection error
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately act	
	t treatment parameter	N/A	
	Reset method	Hardware failure, and cannot reset. Cycle the power.	
	Reset condition	N/A	
	Record	Yes	
	Cause	Corrective Actions	
$\begin{array}{\|l} \hline \text { STO2 } \\ \text { are not } \\ \hline \end{array}$	d SCM2 short circuit lines onnected	Connect the short circuit lines	
Hardwa	e failure	After you make sure all the wiring is correct, if STL2 fault still exists after cycling the power, return to the factory for repair.	
Poor con	nection of the IO card	Check if the PIN of IO card is broken. Check if the IO card connects to the control board correctly, and if the screws are tightened well.	
The IO version	ard does not match the f the control board	Contact local agent or Delta	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
78	FaultSTL3 STO Loss 3	STO Loss 3 (STL3)	STO1-SCM1 and STO2-SCM2 internal loop detection error
Action and Reset			
	Action condition	Hardware detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Hardware failure, and cannot reset. Cycle the power.	
	Reset condition	N/A	
	Record	Yes	
	Cause	Corrective Actions	
STO1 SCM2 conne	SCM1, or STO2 and hort circuit lines are not d	Re-connect the short circuit lines	
Hardw	e failure	After you make sure all the wiring is correct, if STL3 fault still exists after cycling the power, return to the factory for repair.	
Poor	nection of the IO card	Check if the PIN of IO card is broken. Check if the IO card connects to the control board correctly, and if the screws are tightened well.	
The IO version	ard does not match the of the control board	Contact local agent or Delta	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
82		Output phase loss U phase (OPHL)	U phase output phase loss
Action and Reset			
Action condition		Pr.06-47	
	Action time	Pr.06-46Pr.06-48: Use the setting value of Pr.06-48 first if there is DC braking function,and then use that of Pr.06-46.	
	treatment parameter	Pr.06-45 0 : Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Pr.06-45 = 1 or 2 is "Fault", and will be recorded.	
	Cause	Corrective Actions	
The thr motor is	-phase impedance of unbalanced	Replace the motor.	
The motor is wired incorrectly		Check the cable condition. Replace the cable.	
Using a single-phase motor		Choose a three-phase motor	
The cu	nt sensor is damaged	Check the flat cable of the control board. Re-do the wiring and test again if the flat cable is loose. If the fault still exists, return the unit to the factory. Verify that the three-phase current is balanced via a current clamp meter. If it is balanced and the OPHL fault still exists, return the unit to the factory	
The dri than th	capacity is much larger motor capacity	Make sure the capacity of the drive and motor match to each other.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
83		Output phase loss \checkmark phase (OPHL)	\checkmark phase output phase loss
Action and Reset			
	Action condition	Pr.06-47	
	Action time	Pr.06-46 Pr.06-48: Use the setting value of Pr.06-48 first. If DC braking function activates, use that of Pr.06-46.	
	lt treatment parameter	Pr.06-45 0: Warn and keep operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	When Pr.06-45 = 1 or 2, OPHL is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Unbala impeda	ced three-phase ce of the motor	Replace the motor.	
Check	the wiring is incorrect	Check the cable and replace it if necessary.	
Check single-	the motor is a hase motor	Choose a three-phase motor.	
Check broken	the current sensor is	Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the fault still exists, return to the factory for repair. Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL fault still exists, return to the factory for repair.	
Check if the drive capacity is larger than the motor capacity		Choose the drive that matches the motor capacity	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
84	FaultOPHLO W phase lacked	Output phase loss W phase (OPHL)	W phase output phase loss
Action and Reset			
Action condition		Pr.06-47	
	Action time	Pr.06-46 Pr.06-48: Use the setting value of Pr.06-48 first. If DC braking function activates, use that of Pr.06-46.	
	treatment parameter	Pr.06-45 0: Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	When Pr.06-45 = 1 or 2, OPHL is a "Fault", and the fault is recorded.	
	Cause	Corrective Actions	
Unbala impedan	ced three-phase ce of the motor	Replace the motor.	
Check	the wiring is incorrect	Check the cable and replace it if necessary.	
Check single-p	the motor is a ase motor	Choose a three-phase motor.	
Check if the current sensor is broken		Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the fault still exists, return to the factory for repair. Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL fault still exists, return to the factory for repair.	
Check than th	the drive capacity is larger motor capacity	Choose the drive that matches the motor capacity	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
87	$\begin{aligned} & \text { Fault AUTO } \\ & \text { oL3 } \\ & \text { Derating Error } \end{aligned}$	Overload protection a low frequency (oL3)	Low frequency and high current protection
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
The driv below too lar	operates at a frequency Hz , and output current is	1. Enhance the heat dissipation capacity for the cabinet. 2. Lower the carrier frequency (Pr.00-17) 3. Decrease the voltage settings that correspond to frequency below 15 Hz in the V/F curve. 4. Change Pr.00-11 to general control mode. 5. Replace the drive with a larger power model.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
89	Fault \quad AUTO RoPd Rotor Pos. Error	Rotor position detection error (RoPd)	Rotor position detection error protection
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Check abnorm	the motor cable is or broken	Check or replace the cable.	
Motor	error	Replace the motor.	
Hardw	failure	IGBT broken. Return to the factory for repair.	
Drive's	urrent feedback line error	Cycle the power. If RoPd still occurs during operation, return to the factory for repair.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
90	Fault Fstp Force Stop	Force to stop (FStp)	Keypad forces PLC to Stop
Action and Reset			
	Action condition	When Pr.00-32 $=1$, STOP button on the keypad is valid. When giving the STOP command during the PLC operation, FStp fault will active.	
	Action time	Immediately act	
	It treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause		Corrective Actions
$\begin{array}{\|l\|} \hline \text { Pr.00- } \\ \text { is valid } \end{array}$	= 1: keypad STOP button	Check if it is necessary to set Pr.00-32 $=0$, so the keypad STOP button is invalid.	
Press operat	TOP button during PLC n	Verify the timing of STOP function.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
101	Fault \quad CGdE Guarding T-out	CANopen guarding error (CGdE)	CANopen guarding error
Action and Reset			
	Action condition	When CANopen Node Guarding detects that one of the slaves does not response, the CGdE fault will activate. The upper unit sets factor and time during configuration.	
	Action time	The time that upper unit sets during configuration	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	The upper unit sends a reset package to clear this fault	
	Record	Yes	
	Cause		Corrective Actions
The gua less de	ding time is too short, or ction times	Increase the guarding time (Index 100C) and detection times	
Malfun	ion caused by interference	1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. 2. Make sure the communication circuit is wired in series. 3. Use CANopen cable or add terminating resistance.	
Comm bad co	ication cable is broken or nected	Check or replace the communication cable.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
102	Fault ${ }^{\text {CHbE }}$ Heartbeat T-out	CANopen heartbeat error (CHbE)	CANopen heartbeat error
Action and Reset			
	Action condition	When CANopen Heartbeat detects that one of the slaves does not response, the CHbE fault will activate. The upper unit sets the confirming time of producer and consumer during configuration.	
	Action time	The confirming time that upper unit sets for producer and consumer during configuration.	
	It treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	The upper unit sends a reset package to clear this fault	
	Record	Yes	
	Cause		Corrective Actions
The he	tbeat time is too short	Increase heartbeat time (Index 100C)	
Malfun	ion caused by interference	1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. 2. Make sure the communication circuit is wired in series. 3. Use CANopen cable or add terminating resistance.	
$\begin{aligned} & \text { Comml } \\ & \text { bad cor } \end{aligned}$	ication cable is broken or nected	Check or replace the communication cable.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
104	AUTO Fault CbFE Can bus off	CANopen bus off error (CbFE)	CANopen bus off error
Action and Reset			
		Hardware When CANopen card is not installed, CbFE fault will occur.	
	Action condition	SoftwareWhen the master received wrong communication package, CbFE fault will occur. Too much interference on BUS When the CAN_H and CAN_L communication cable is short, the master will receive wrong package, and CbFE fault will occur.	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Cycle the power	
	Record	Yes	
	Cause		Corrective Actions
Check installe	the CANopen card is	Make sure the CANopen card is installed.	
Check is corre	the CANopen speed	Reset CANopen speed (Pr.09-37)	
Malfun	on caused by interference	1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. 2. Make sure the communication circuit is wired in series. 3. Use CANopen cable or add terminating resistance.	
Comm bad co	ication cable is broken or ected	Check or replace the communication cable.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
105	FaultCIdE Canto bus Index Err	CANopen index error (CidE)	CANopen index error
Action and Reset			
Action condition		Software detection	
Action time		Immediately act	
	lt treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Upper unit sends a reset package to clear this fault	
	Record	Yes	
	Cause		Corrective Actions
Incorrect setting of CANopen index		Reset CANopen Index (Pr.00-02 = 7)	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
106	Fault \quad Auto CAdE Can bus Add. Err	CANopen station address error (CAdE)	CANopen station address error (only supports 1-127)
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset (Pr.00-02 = 7)	
	Reset condition	N/A	
	Record	Yes	
	Cause	Corrective Actions	
Incorre station	setting of CANopen ddress	1. Disable CANopen (Pr.09-36 = 0) 2. Reset CANopen (Pr.00-02 = 7) 3. Reset CANopen station address (Pr.09-36)	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
107	Fault ${ }^{\text {CFrE }}$ Can bus off	CANopen memory error (CFrE)	CANopen memory error
Action and Reset			
	Action condition	When the user update firmware version of the control board, the FRAM internal data will not be changed, and then CFrE fault will occur.	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Pr.00-02 = 7	
	Record	Pr. $00-21=3$, the fault is recorded	
	Cause	Corrective Actions	
CANop	n internal memory error	1. Disable CANopen (Pr.09-36 = 0) 2. Reset CANopen (Pr. $00-02=7$)	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
111	Fault ictE InrCom Time Out	InrCOM time-out error (ictE)	Internal communication time-out

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
112		PMLess shaft lock (SfLK)	The drive has RUN command with output frequency, but the permanent magnetic motor does not turn.
Action and Reset			
	Action condition	Software detection	
	Action time	3 sec .	
	lt treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Improp observe	setting of the speed bandwidth	Increase the setting value.	
Motor s	haft lock	Remove causes of the motor shaft lock.	
Motor	ror (e.g. demagnetization)	Replace the motor with a new one.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
142	FaultAUTO AUE1 Auto tuning Err	Auto-tune error 1 (AUE1)	No feedback current error when motor parameter automatically detects
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Motor is	not wired	Wire the motor correctly	
The el used a output	tromagnetic contactor is an open state on the de of the drive (U/V/W).	Verify that the electromagnetic valve is closed.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
143	Fault AUE2 Auto tuning Err	Auto-tune error 2 (AUE2)	Motor phase loss error when motor parameter automatically detects
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Incorre	motor wiring	Wire the motor correctly.	
Motor		Check if the motor works normally.	
The ele used a output	tromagnetic contactor is an open state on the de of the drive (U/V/W).	Verify that the three-phases of the electromagnetic valve are all closed.	
Motor U/V/W wire error		Check if the wires are broken.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
144	$\begin{aligned} & \text { Fault AUTO } \\ & \text { AUE3 } \\ & \text { Auto tuning Err } \end{aligned}$	Auto-tune error 3 (AUE3)	No load current Io measurement error when motor parameter automatically detects.
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause		Corrective Actions
Incorre param	settings for the motor er (rated current)	Check the settings for Pr.05-01 / Pr.05-13 / Pr.05-34.	
Motor error		Check if the motor works normally.	

No.	Display on LCD Keypad	Fault Name	Fault Descriptions
148	FaultAUTO AUE4 Auto tuning Err,$~$	Auto-tune error 4 (AUE4)	Leakage inductance Lsigma measurement error when motor parameter automatically detects.
Action and Reset			
	Action condition	Software detection	
	Action time	Immediately act	
	treatment parameter	N/A	
	Reset method	Manual reset	
	Reset condition	Immediately reset	
	Record	Yes	
	Cause	Corrective Actions	
Motor e		Check if the motor works normally.	
Incorre parame	setting of motor ers (base frequency)	Check the setting of Pr.01-01.	

[This page intentionally left blank]

Chapter 15 CANopen Overview

15-1 CANopen Overview
15-2 Wiring for CANopen
15-3 CANopen Communication Interface Description
15-4 CANopen Supporting Index
15-5 CANopen Fault Codes
15-6 CANopen LED Function

The built-in CANopen function is a kind of remote control. You can control the AC motor drive by using the CANopen protocol. CANopen is a CAN-based higher layer protocol that provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO) and special functions (Time Stamp, Sync message, and Emergency message). It also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

Delta CANopen supporting functions:

- Support CAN2.0A Protocol
- Support CANopen DS301 V4. 02
- Support DSP-402 V2.0

Delta CANopen supporting services:

- PDO (Process Data Objects): PDO1-PDO4
- SDO (Service Data Object)
- Initiate SDO Download
- Initiate SDO Upload
- Abort SDO
- You can use the SDO message to configure the slave node and access the Object Dictionary in every node.
- SOP (Special Object Protocol)
- Support default COB-ID in Predefined Master / Slave Connection Set in DS301 V4.02
- Support SYNC service
- Support Emergency service
- NMT (Network Management)
- Support NMT module control
- Support NMT Error control
- Support Boot-up

Delta CANopen not supporting service:

- Time Stamp service

15-1 CANopen Overview

CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover the application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA DS302), recommendations for cables and connectors (CiA DS303-1) and SI units and prefix representations (CiA DS303-2).

RJ45 Pin Definition

PIN	Signal	Description
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground $/$ OV $/ \mathrm{V}$ -
6	CAN_GND	Ground $/$ OV $/ \mathrm{V}$ -

CANopen Communication Protocol contains the following services:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Object)
- EMCY (Emergency Object)

NMT (Network Management Object)

- The Network Management (NMT) follows a Master / Slave structure for executing NMT service. A network has only one NMT master, and the other nodes are slaves. All CANopen nodes have a present NMT state, and the NMT master can control the state of the slave nodes. The following shows the state diagram of a node:

(1) After power is applied, start in the auto-initialization state
(2) Automatically enter the pre-operational state

A: NMT
(3) (6) Start remote node

B: Node Guard
(4) (7) Enter pre-operational state

C: SDO
(5) (8) Stop remote node

D: Emergency
(9) (10) (11) Reset node

E: PDO
(12) (13) (14) Reset communication

F: Boot-up
(15) Automatically enter the reset application state
(16) Automatically enter the reset communication state

	Initializing	Pre-Operational	Operational	Stopped
PDO			O	
SDO		O	\circ	
SYNC		O	O	
Time Stamp		O	O	
EMCY		O	\circ	
Boot-up	O	O	O	\circ
NMT				

SDO (Service Data Objects)

- Use SDO to access the Object Dictionary in every CANopen node using the Client / Server model. One SDO has two COB-ID (request SDO and response SDO) to upload or download data between two nodes. There is no data limit for SDOs to transfer data, but it must transfer data by segment when the data exceeds four bytes with an end signal in the last segment.
- The Object Dictionary (OD) is a group of objects in a CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path in the OD is the index and sub-index; each object has a unique index in the OD, and has a sub-index if necessary.

PDO (Process Data Object)

- PDO communication can be described by the producer / consumer model. Each node of the network listens to the messages of the transmission node and distinguishes whether the message has to be processed or not after receiving the message. A PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and an RxPDO. PDOs are transmitted in a non-confirmed mode. All transmission types are listed in the following table:

Type Number	PDO					
	Cyclic	Acyclic	Synchronous	Asynchronous	RTR only	
		0	0			
	0		0			
	Reserved					
			0		0	
				0	0	
254				0		
255				0		

- Type number 0 indicates the synchronous aperiodic message between two PDO transmissions.
- Type number 1-240 indicates the number of SYNC message between two PDO transmissions.
- Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.
- Type number 253 indicates the data is updated immediately after receiving RTR.
- Type number 254 indicates that Delta CANopen does not support this transmission format.
- Type number 255 indicates the data is an asynchronous aperiodic transmission.
- All PDO transmission data must be mapped to index via Object Dictionary.

EMCY (Emergency Object)

When errors occur inside the hardware, an emergency object is triggered. An emergency object is only sent when an error occurs. As long as there is none of hardware error, there is no emergency object warning of an error message.

15-2 Wiring for CANopen

Use an external CANopen communication card EMC-COP01 for CANopen wiring to connect the CANopen to the CFP2000. The link uses an RJ45 cable. You must write the two farthest ends with 120 Ω terminating resistors as shown in the picture below.

15-3 CANopen Communication Interface Description

15-3-1 CANopen Control Mode Selection

There are two control modes for CANopen: the DS402 standard (Pr.09-40 = 1) is the default, and the Delta's standard setting (Pr.09-40 = 0). There are two control modes according to Delta's standard. One is the old control mode (Pr.09-30 = 0); this control mode can only control the motor drive under frequency control. The other mode is a new standard (Pr.09-30 = 1); this new control mode allows the motor drive to be controlled under all kinds of modes. The CFP2000 currently only supports speed mode. The following table shows the control mode definitions:

CANopen Control Mode Selection	Control Mode	
	Speed	
	Index	Description
$\begin{gathered} \hline \text { DS402 standard } \\ \text { Pr.09-40 = } 1 \\ \hline \end{gathered}$	6042-00	Target rotating speed (rpm)
	-----	-----
Delta Standard (Old definition) $\text { Pr.09-40 = } 0 \text { Pr. 09-30 = } 0$	2020-02	Target rotating speed (Hz)
Delta Standard (New definition)$\text { Pr. } 09-40=0, \text { Pr. } 09-30=1$	2060-03	Target rotating speed (Hz)
	2060-04	Torque Limit (\%)

CANopen Control Mode	Operation Control	
Selection	Index	Description
DS402 standard	$6040-00$	Operation Command
Pr.09-40 = 1		

CANopen Control Mode Selection	Other	
	Index	Description
$\begin{gathered} \text { DS402 standard } \\ \text { Pr.09-40 = } 1 \end{gathered}$	605A-00	Quick stop processing method
	605C-00	Disable operation processing method
Delta Standard (Old definition) $\text { Pr. } 09-40=1, \text { Pr. } 09-30=0$	-----	-----
Delta Standard (New definition)$\text { Pr. } 09-40=0, \operatorname{Pr} .09-30=1$	-----	-----
	----	-----

You can use some indices in either DS402 or Delta's standard.
For example:

1. Index that are defined as RO attributes.
2. The corresponding index of available parameter groups: 2000-00-200B-XX)
3. Acceleration / Deceleration Index: 604F 6050
4. Control mode: Index: 6060

15-3-2 DS402 Standard Control Mode

15-3-2-1 Related setting for an AC motor drive (following the DS402 standard)
If you want to use the DS402 standard to control the motor drive, follow these steps:

1. Wire the hardware (refer to Section $15-2$ Wiring for CANopen)
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control. (Run/stop, forward/reverse run...etc.)
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.)
4. Set DS402 for the control mode: Pr.09-40 = 1
5. Set the CANopen station: set Pr.09-36, the range is between $1-127$. When Pr.09-36 $=0$, the CANopen slave function is disabled. Note that if an error appears (station address error CAdE or CANopen memory error CFrE) when you finish the station setting, set Pr.00-02 $=7$ to reset.
6. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: $1 \mathrm{Mbps}(0), 500 \mathrm{Kbps}(1), 250$ Kbps (2), 125 Kbps (3), 100 Kbps (4) and 50 Kbps (5))
7. Set the multiple input functions to Quick Stop. You can also choose to enable or disable; the default setting is disabled. If it is necessary to enable the function, set MI terminal to 53 in one of the following parameter: Pr.02-01-Pr.02-08 or Pr.02-26-Pr.02-31. Note that this function is available in DS402 only.

15-3-2-2 The status of the motor drive (by following DS402 standard)
According to the DS402 definition, the motor drive is divided into 3 blocks and 9 statuses as described below.

3 blocks

1. Power Disable: Without PWM output
2. Power Enable: With PWM output
3. Fault: One or more errors have occurred.

9 status

1. Start: Power On
2. Not ready to switch on: The motor drive is initiating.
3. Switch On Disable: occurs when the motor drive finishes initiating.
4. Ready to switch on: warming up before running.
5. Switch On: the motor drive has the PWM output now, but the reference command is not effective.
6. Operation Enable: able to control normally.
7. Quick Stop Active: when there is a Quick Stop request, stop running the motor drive.
8. Fault Reaction Active: the motor drive detects conditions which might trigger error(s).
9. Fault: One or more errors have occurred in the motor drive.

When the motor drive turns on and finishes the initiation, it remains in Ready to Switch On status. To control the operation of the motor drive, change to Operation Enable status. To do this, set the control word's bit0-bit3 and bit7 of the Index 6040H and pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described as below:

Index 6040

$15-9$	8	7	$6-4$	3	2	1	0
Reserved	Halt	Fault Reset	Operation	Enable operation	Quick Stop	Enable Voltage	Switch On

Index 6041

$15-14$	$13-12$	11	10	9	8	7	6	5	4	3	2	1	0
Reserved Operation	Internal limit active	Target reached	Remote	Reserved	Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enable	Switch on	Ready to switch on	

Set command $6040=0 x E$, then set another command $6040=0 x F$. Then you can switch the motor drive to Operation Enable. The Index 605A determines the direction of the lines from Operation Enable when the control mode changes from Quick Stop Active. When the setting value is $1-3$, both direction lines are active, but when the setting value of 605 A is not $1-3$, once the motor drive is switched to Quick Stop Active, it is not be able to switch back to Operation Enable.

When the control block switches from Power Enable to Power Disable, use 605C to define the stop method.

Index	Sub	Definition	Default	R/W	Size	Unit	PDO Map	Mode	note
605 Ch	0	Disable operation option code	1	RW	S16		No		0: Disable drive function 1: Slow down with slow down ramp; disable of the drive function

15-3-2-3 Various mode control method (by following DS402 standard)
CFP2000 currently only supports speed control which is described as below:

Speed mode

1. Set CFP2000 to speed control mode: set Index6060 to 2 .
2. Switch to Operation Enable mode: Set $6040=0 x E$, then set $6040=0 x F$.
3. Set the target frequency: Set target frequency for 6042 , since the operation unit of 6042 is rpm, a conversion is required:

$$
\mathrm{n} \text { : rotation speed (rpm) (rounds/minute) }
$$

$$
\mathrm{n}=\mathrm{f} \times \frac{120}{\mathrm{p}}
$$

P : motor's pole number (Pole)
For example:
f: rotation frequency (Hz)

Set $6042 \mathrm{H}=1500(\mathrm{rpm})$, if the number of poles for the drive is 4 (Pr.05-04 or Pr.05-16), then the motor drive's operation frequency is $1500 \div(120 \div 4)=50 \mathrm{~Hz}$. The 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter-clockwise
4. To set acceleration and deceleration: Use 604F (Acceleration) and 6050 (Deceleration).
5. Trigger an ACK signal: in the speed control mode, control the bit6-4 of Index 6040. It is defined below:

Speed mode (Index $6060=2)$	Index 6040			SUM
	bit6	bit5	bit4	
	1	0	1	Run to reach targeting signal.
	1	1	1	Decelerate to 0 Hz.
	Other			

NOTE:

1. Read 6043 to get the current rotation speed. (Unit: rpm)
2. Read bit10 of 6041 to check if the rotation speed has reached the targeting value. (0 : Not reached; 1: Reached)

15-3-3 Using the Delta Standard (Old definition, only supports speed mode)
15-3-3-1 Various mode control method (following the Delta Old Standard)
If you want to use the Delta old standard to control the motor drive, follow these steps:

1. Wire the hardware (refer to Section 15-2 Wiring for CANopen)
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control. (Run / stop, forward / reverse run..., etc.)
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set Delta Standard (Old definition, only supports speed mode) as the control mode: Pr.09-40 = 0 and Pr.09-30 $=0$.
5. Set the CANopen station: set Pr.09-36; the range is between $1-127$. When Pr.09-36 $=0$, the CANopen slave function is disabled. Note that if an error appears (station address error CAdE or CANopen memory error CFrE) when you finish the station setting, set Pr.00-02 $=7$ to reset.
6. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: $1 \mathrm{Mbps}(0), 500 \mathrm{Kbps}(1), 250$ $\mathrm{Kbps}(2), 125 \mathrm{Kbps}(3), 100 \mathrm{Kbps}(4)$ and $50 \mathrm{Kbps}(5))$

15-3-3-2 The control method under speed mode

1. Set the target frequency: Set 2020-02, the unit is Hz , with 2 decimal places. For example, 1000 is 10.00 Hz .
2. Operation control: set 2020-01 $=0002 \mathrm{H}$ for running, and set $2020-01=0001 \mathrm{H}$ for stopping.

15-3-4 By using Delta Standard (New Definition)

15-3-4-1 Related settings for an AC motor drive (following the Delta New Standard) If you want to use the Delta new standard to control the motor drive, follow these steps:

1. Wire the hardware (refer to Section 15-2 Wiring for CANopen)
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control. (Run / stop, forward / reverse run..., etc.)
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set Delta Standard (New definition) as the control mode: Pr.09-40 $=0$ and Pr.09-30 $=1$.
5. Set the CANopen station: set Pr.09-36; the range is between $1-127$. When Pr.09-36 $=0$, the CANopen slave function is disabled. Note that if an error appears (station address error CAdE or CANopen memory error CFrE) when you finish the station setting, set Pr.00-02 $=7$ to reset.)
6. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: 1 Mbps (0), 500 Kbps (1), 250 Kbps (2), $125 \mathrm{Kbps}(3), 100 \mathrm{Kbps}(4)$ and $50 \mathrm{Kbps}(5))$.

15-3-4-2 Various mode control method (Delta New Standard)

Speed Mode

1. Set CFP2000 to speed control mode: set Index6060 $=2$.
2. Set the target frequency: set 2060-03, unit is Hz , with 2 decimal places. For example, 1000 is 10.00 Hz .
3. Operation control: set 2060-01 = 008H for Server on, and set 2060-01 $=0081 \mathrm{H}$ for running.

NOTE:

1. Read 2061-05 to get the current position.
2. Read bit0 of 2061 to check if the position has reached to the target position. (0: Not reached, 1: Reached).

15-3-5 DI/ DO/ AI/ AO are controlled via CANopen

To control the DO and AO of the motor drive through CANopen, follow these steps:

1. Define the DO to be controlled by CANopen. For example, set Pr.02-14 $=50$ to control RY2.
2. Define the AO to be controlled by CANopen. For example, set Pr.03-23 $=20$ to control AFM2.
3. Control the Index mapped by CANopen. To control DO, use control Index2026-41. To control AO, use control 2026-AX. To set RY2 as ON, set bit1 of Index 2026-41 = 1, then RY2 outputs 1. To control AFM2 output $=50.00 \%$, set Index 2026-A2 $=5000$, then AFM2 outputs 50%.

The following table shows the mapping of CANopen DI/ DO/ AI/ AO:
DI:

Terminal	Related Parameters	R/W	Mapping Index
FWD	==	RO	2026-01 bit0
REV	==	RO	$2026-01$ bit1
M1 1	=	RO	2026-01 bit2
MI 2	=	RO	2026-01 bit3
MI 3	=	RO	2026-01 bit4
MI 4	==	RO	2026-01 bit5
M1 5	=	RO	2026-01 bit6
MI 6	==	RO	$2026-01$ bit7
MI 7	=	RO	2026-01 bit8
M1 8	=	RO	2026-01 bit9
MI 10	=	RO	2026-01 bit10
MI 11	==	RO	2026-01 bit11
MI 12	=	RO	2026-01 bit12
MI 13	=	RO	2026-01 bit13
MI 14	==	RO	2026-01 bit14
MI 15	==	RO	2026-01 bit15

DO :

Terminal	Related Parameters	R/W	Mapping Index
RY1	Pr.02-13 $=51$	RW	$2026-41$ bit0
RY2	Pr.02-14 $=51$	RW	$2026-41$ bit1
RY3	Pr.02-15 $=51$	RW	$2026-41$ bit2
MO10/RY10	Pr.02-36 $=51$	RW	$2026-41$ bit 5
MO11/RY11	Pr.02-37 $=51$	RW	$2026-41$ bit6
RY12	Pr.02-38 $=51$	RW	$2026-41$ bit7
RY13	Pr.02-39 $=51$	RW	$2026-41$ bit8
RY14	Pr.02-40 $=51$	RW	$2026-41$ bit
RY15	Pr.02-41 $=51$	RW	$2026-41$ bit10

AI :

Terminal	Related Parameters	R/W	Mapping Index
AVI1	$==$	RO	Value of 2026-61
ACl	$==$	RO	Value of 2026-62
AVI2	$==$	RO	Value of 2026-63

AO :

Terminal	Related Parameters	R/W	Mapping Index
AFM1	Pr.03-20 $=21$	RW	Value of 26A0h
AFM2	Pr.03-23 $=21$	RW	Value of 26A1h
AFM10	Pr.14-12 $=21$	RW	Value of 26AAh
AFM11	Pr.14-13 $=21$	RW	Value of 26ABh

15-4 CANopen Supporting Index

CFP2000 Index:
The parameter index corresponds as following in this example:

Index

2000H + Group
sub-Index
member+1

For example:
Pr. 10-15 (Encoder Slip Error Treatment)

Group	member	
$10(0 \mathrm{AH})$	-	$15(0 \mathrm{FH})$

Index $=2000 \mathrm{H}+0 \mathrm{AH}=200 \mathrm{~A}$
Sub Index $=0 \mathrm{FH}+1 \mathrm{H}=10 \mathrm{H}$
CFP2000 Control Index:
Delta Standard Mode (Old definition)

Index	Sub	Definition	Default	R/W	Size	Note	
2020H	0	Number	3	R	U8		
	1	Control word	0	RW	bit1-0		00B: disable
							01B: stop
							10B: disable
							11B: JOG Enable
					U16	bit3-2	Reserved
						bit5-4	00B: disable
							01B: Direction forward
							10B: Reverse
							11B: Switch Direction
						bit7-6	00B: $1^{\text {st }}$ step Accel. /Decel.
							01B: $2^{\text {nd }}$ step Accel. /Decel.
							10B: $3^{\text {rd }}$ step Accel. /Decel.
							11B: $4^{\text {th }}$ step Accel. /Decel.
						bit11-8	0000B: Master speed
							0001B: $1^{\text {st }}$ step speed
							0010B: $2^{\text {nd }}$ step speed
							0011B: $3^{\text {rd }}$ step speed
							0100B: $4^{\text {th }}$ step speed
							0101B: $5^{\text {th }}$ step speed
							0110B: $6^{\text {th }}$ step speed
							0111B: $7^{\text {th }}$ step speed
							1000B: $8^{\text {th }}$ step speed
							1001B: $9^{\text {th }}$ step speed
							1010B: $10^{\text {th }}$ step speed
							1011B: $11^{\text {th }}$ step speed
							1100B: $12^{\text {th }}$ step speed
							1101B: $13^{\text {th }}$ step speed
							1110B: $14^{\text {th }}$ step speed
							1111B: $15^{\text {th }}$ step speed
						bit12	1: Enable the function of bit6-11
						bit15	Reserved
	2	Freq. command (XXX.XX Hz)	0	RW	U16		
	3	Other	0	RW	U16	bit0	1: E.F. ON
	3	Other trigger	0	RW	U16	bit1	1: Reset

Index	Sub	Definition	Default	R/W	Size		Note
						bit2	1: Base Block (B.B) ON
						bit15-3	Reserved
	0	Number	10	R	U8		
	1	Error code	0	R	U16	High byte Low byte:	Warn code Error code
							00B: stop
							01B: decelerate to stop
						bit1-0	10B: waiting for operation command
							11B: in operation
						bit2	1: JOG command
							00B: run forward
						b	01B: switch from run in reverse to run forward
						bit4-3	10B: switch from run forward to run in reverse
							11B: run in reverse
	2	AC	0	R	6	bit7-5	Reserved
	2		0	R	6	bit8	1: master frequency command controlled by communication interface
						bit9	1: master frequency command controlled by analog signal input
2021H						bit10	1: operation command controlled by communication interface
						bit11	1: Parameter lock
						bit12	1: Enable the digital keypad copy parameter function
						bit15-13	Reserved
	3	Freq. command (XXX.XX Hz)	0	R	U16		
	4	Output freq. (XXX. $\mathrm{XX} \mathrm{Hz)}$	0	R	U16		
	5	Output current (XX.X A)	0	R	U16		
	6	DC bus voltage (XXX. ${ }^{\text {V }}$)	0	R	U16		
	7	Output voltage (XXX. X V)	0	R	U16		
	8	The current segment run by the multi-segment speed command	0	R	U16		
	9	Reserved	0	R	U16		
	A	Display counter value (c)	0	R	U16		
	B	Display output power angle (XX. X ${ }^{\circ}$)	0	R	U16		
	C	Display output torque (XXX.X\%)	0	R	U16		
	D	Display actual motor speed (rpm)	0	R	U16		
	10	Power output (X.XXX kWh)	0	R	U16		
	17	Multi-function display (Pr.00-04)	0	R	U16		
2022H	0	Reserved	0	R	U16		
	1	Display output current	0	R	U16		
	2	Display counter value	0	R	U16		
	3	Display actual output frequency (XXX.XX Hz)	0	R	U16		
	4	Display DC bus voltage (XXX.X V)	0	R	U16		
	5	Display output voltage (XXX.X V)	0	R	U16		

Index	Sub	Definition	Default	R/W	Size		Note
	$2 E$	Motor actual position high-word					
	$2 F$	PID reference target					
	30	PID bias value					
	31	PID output frequency					

CANopen Remote IO mapping

Index	Sub	R/W	Definition
2026H	01h	R	Each bit corresponds to different terminal input contact
	03h-40h	R	Reserved
	41h	RW	Each bit corresponds to different terminal output contact
	42h-60h	R	Reserved
	61h	R	AVI1 proportional value
	62h	R	ACI proportional value
	63h	R	AVI2 proportional value
	64h-6Ah	R	Reserved
	6Bh	R	Extension card Al10, 0.0-100.0\% (EMC-A22A)
	6Ch	R	Extension card Al11, 0.0-100.0\% (EMC-A22A)
	6Dh-A0h	R	Reserved
	A1h	RW	AFM1 output proportional value
	A2h	RW	AFM2 output proportional value
	A3h-AAh	RW	Reserved
	ABh	RW	Extension card AO10, 0.0-100.0\% (EMC-A22A)
	ACh	RW	Extension card AO11, 0.0-100.0\% (EMC-A22A)

Index $2026-01$	bit0	bit1	bit2	bit3	bit4	bit5	bit6	bit7	bit8	bit9	bit10	bit11	bit12	bit13	bit14	bit15
1	FWD	REV	MI 1	MI 2	MI 3	MI 4	$\mathrm{MI5}$	MI 6	$\mathrm{MI7}$	MI 8						
2											MI 10	MI 11	MI 12	MI 13	MI 14	MI 15
3											MI 10	MI 11	MI 12	MI 13		

1 : Control broad I/O (Standard)
2 : Add external card, EMC-D611A
3 : Add external card, EMC-D42A

Index 2026-41	bit0	bit1	bit2	bit3	bit4	bit5	bit6	bit7	bit8	bit9	bit10	bit11	bit12	bit13	bit14	bit15
1	RY1	RY2		MO1	MO2											
2						MO10	MO11									
3						RY10	RY11	RY12	RY13	RY14	RY15					

1 : Control broad I/O (Standard)
2 : Add external card, EMC-D42A
3 : Add external card, EMC-R6AA

Delta Standard Mode (New definition)

Index	sub	R/W	Size	Descriptions			Speed Mode
				bit	Definition	Priority	
2060h	00h	R	U8				
	01h	RW	U16	0	Ack	4	$\begin{aligned} & \text { 0: fcmd }=0 \\ & 1: \text { fcmd }=\text { Fset (Fpid) } \end{aligned}$
				1	Dir	4	0: FWD run command 1: REV run command
				2			
				3	Halt		0: drive run till target speed is attained 1: drive stop by deceleration setting
				4	Hold		0 : drive run till target speed is attained 1: frequency stop at current frequency
				5	JOG		$\begin{aligned} & \text { 0: JOG OFF } \\ & \text { Pulse 1: JOG RUN } \end{aligned}$
				6	QStop		Quick Stop
				7	Power		0:Power OFF 1:Power ON
				8	Reserved		
				9	Ext Cmd2	4	0->1: Absolute position cleared
				10-14	Reserved		
				15	RST	4	Pulse 1: Fault code cleared
	02h	RW	U16		Mode Cmd		0: Speed mode
	03h	RW	U16				Speed command (unsigned decimal)
	04h	RW	U16				
	05h	RW	S32				
	06h	RW					
	07h	RW	U16				
	08h	RW	U16				
2061h	01h	R	U16	0	Arrive		Frequency attained
				1	Dir		0: Motor FWD run 1: Motor REV run
				2	Warn		Warning
				3	Error		Error detected
				4			
				5	JOG		JOG
				6	QStop		Quick stop
				7	Power On		Switch ON
				15-8			
	02h	R					
	03h	R	U16				Actual output frequency
	04h	R					
	05h	R	S32				Actual position (absolute)
	06h	R					
	07h	R	S16				Actual torque

Mapping for CANopen built-in PLC register D (mapping from D900-D999 to $3000 \mathrm{H}-3063 \mathrm{H}$)

Index	Sub	R/W	Definition
3000	0	RW	PLC D900
3001	0	RW	PLC D901
3002	0	RW	PLC D902
\ldots	\ldots	\ldots	\ldots
3063	0	RW	PLC D999

DS402 Standard

15-5 CANopen Fault Codes

		AUTO
(1) Fault	(1) Display error signal	
(2) OCA	(2) Abbreviate error code	
(3) Oc at accel	(3) Display error description	

- Refer to setting value of Pr.06-17-Pr.06-22.
- Refer to Chapter 14 Fault Codes for detailed descriptions.

$\begin{array}{\|l} \hline \text { ID } \\ \text { No. } \end{array}$	Display	Fault code	Description	CANopen fault register (bit0-7)	CANopen fault code
1	Fault ocA Oc at accel	0001H	Over-current during acceleration (ocA)	1	2213 H
2	Fault $\begin{array}{l}\text { ocd } \\ \text { Oc at decel }\end{array}$	0002H	Over-current during deceleration (ocd)	1	2213 H
3	Fault AUTO ocn Oc at normal SPD	0003H	Over-current during steady operation (ocn)	1	2214H
4	Fault GFF Ground fault	0004H	Ground fault (GFF)	1	2240H
5	$\begin{aligned} & \text { Fault occ } \\ & \text { Short Circuit } \end{aligned}$	0005H	IGBT short circuit between upper bridge and lower bridge (occ)	1	2250H
6	$\begin{aligned} & \text { Fault ocs } \\ & \text { OUTO } \\ & \text { Oc at stop } \end{aligned}$	0006H	Over-current at stop (ocS)	1	2314H
7	\qquad	0007H	Over-voltage during acceleration (ovA)	2	3210 H
8	Fault ovd Ov at decel	0008H	Over-voltage during deceleration (ovd)	2	3210H

Chapter 15 CANopen Overview | CFP2000

$\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$	Display	Fault code	Description	CANopen fault register (bit0-7)	CANopen fault code
9	Fault ovn Ov at normal SPD	0009H	DC bus over-voltage at constant speed (ovn)	2	3210 H
10	Fault ovS Ov at stop	000AH	Over-voltage at stop (ovS)	2	3210H
11	Fault LvA Lv at accel	000BH	Low-voltage during acceleration (LvA)	2	3220H
12	\qquad	000CH	Low-voltage during deceleration (Lvd)	2	3220 H
13	$\begin{array}{\|l} \text { Fault } \\ \text { Lvn } \\ \text { Lvat normal SPD } \end{array}$	000DH	Low-voltage at constant speed (Lvn)	2	3220H
14	FaultAUTO LvS Lvat stop	000EH	Low-voltage at stop (LvS)	2	3220 H
15	Phase lacked	000FH	Phase loss protection (OrP)	2	3130 H
16	AUTO Fault oH1 IGBT over heat	0010H	IGBT overheating (oH1)	3	4310H
17	$\begin{aligned} & \text { Fault }{ }^{\text {oH }} 2 \\ & \text { Heato Sink oH } \end{aligned}$	0011H	Heatsink overheating (oH2)	3	4310H
18	Fault AUTO tH1o Thermo 1 open	0012H	IGBT temperature detection failure (tH1o)	3	FFOOH
19	$\begin{aligned} & \text { Fault Auto } \\ & \text { tH20 } \\ & \text { Thermo } 2 \text { open } \end{aligned}$	0013H	Capacitor hardware error (tH2o)	3	FF01H

$\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$	Display	Fault code	Description	CANopen fault register (bit0-7)	CANopen fault code
21	Fault oL Over load	0015H	Over load (oL)	1	2310H
22	Fault AUTO EoL1 Thermal relay 1	0016H	Electronic thermal relay 1 protection (EoL1)	1	2310H
23	Fault EoL2 Thermal relay 2	0017H	Electronic thermal relay 2 protection (EoL2)	1	2310H
24	AUTO Fault oH3 Motor over heat	0018H	Motor overheating (oH3)	3	FF20H
26	Fault AUTO ot1 Over torque 1	001AH	Over torque 1 (ot1)	3	8311H
27	AUTO Fault ot2 Over torque 2	001BH	Over torque 2 (ot2)	3	8311H
28		001CH	Under current (uC)	1	8321H
30		001EH	EEPROM write error (cF1)	5	5530H
31	Fault \quad AUTO CF2 EEPROM read err	001FH	EEPROM read error (cF2)	5	5530H
33		0021H	U-phase error (cd1)	1	FF04H
34		0022H	V-phase error (cd2)	1	FF05H

$\begin{array}{\|l\|} \hline \text { ID } \\ \text { No. } \end{array}$	Display	Fault code	Description	CANopen fault register (bit0-7)	CANopen fault code
35	Fault cd3 Ics sensor err	0023H	W-phase error (cd3)	1	FF06H
36	\qquad HdO cc HW error	0024H	cc (current clamp) hardware error (HdO)	5	FF07H
37	AUTO Fault Hd1 Oc HW error	0025H	oc hardware error (Hd1)	5	FF08H
38	AUTO Fault Hd2 Ov HW error	0026H	ov hardware error (Hd2)	5	FF09H
39	Auto Fault Hd3 occ HW error	0027H	occ hardware error (Hd3)	5	FFOAH
40	Fault AUTO AUE Auto tuning error	0028H	Auto-tuning error (AUE)	1	FF21H
41	AUTO Fault AFE PID Fbk error	0029H	PID loss ACI (AFE)	7	FF22H
48	Fault ACE AUTO ACl loss	0030H	ACI loss (ACE)	1	FF25H
49	AUTO Fault EF External fault	0031H	External fault (EF)	5	9000H
50	Fault AUTO EF1 Emergency stop	0032H	Emergency stop (EF1)	5	9000H
51	Fault bb Base block	0033H	External base block (bb)	5	9000H

$\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$	Display	Fault code	Description	CANopen fault register (bit0-7)	CANopen fault code
52		0034H	Password is locked (Pcod)	5	FF26H
54	$\begin{aligned} & \text { Fault } \quad \text { AUTO } \\ & \text { CE1 } \\ & \text { PC err command } \end{aligned}$	0036H	Illegal command (CE1)	4	7500H
55	AUTO CE2 PC err address	0037H	Illegal data address (CE2)	4	7500H
56	$$	0038H	Illegal data value (CE3)	4	7500H
57		0039H	Data is written to read-only address (CE4)	4	7500H
58	\square	003AH	Modbus transmission time-out (CE10)	5	7500H
60		003CH	Brake transistor error (bF)	4	7110H
61		003DH	Y-connection / Δ-connection switch error (ydc)	2	3330H
62	FaultdEb Dec. Energy back	003EH	Deceleration energy backup error (dEb)	2	FF27H
63		003FH	Over slip error (oSL)	7	FF28H
64	Fault ryF MC Fault	0040H	Electric valve switch error (ryF)	5	7110H

$\begin{array}{\|l\|} \hline \text { ID } \\ \text { No. } \end{array}$	Display	Fault code	Description	CANopen fault register (bit0-7)	CANopen fault code
68	Fault SdRv SpdFbk Dir Rev	0044H	Reverse direction of the speed feedback (SdRv)	0	8400H
69	Fault SdOr SpdFbk over SPD	0045H	Over speed rotation feedback (SdOr)	0	8400 H
70	Fault SdDe SpdFbk deviate	0046H	Large deviation of speed feedback (SdDe)	0	8400H
71	AUTO Fault WDTT Watchdog	0047H	Watchdog (WDTT)	1	6010H
72	\qquad STL1 STOLoss 1	0048H	STO loss 1 (STL1)	5	FF30H
73	Fault S1 S1-emergy stop	0049H	Emergency stop for external safety (S1)	5	FF2AH
74		004AH	Fire mode (Fire)	7	FF2FH
76	\qquad	004CH	Safe torque off (STO)	5	FF31H
77	\qquad STL2 STOLoss 2	004DH	STO loss 2 (STL2)	5	FF32H
78		004EH	STO loss 3 (STL3)	5	FF33H
82		0052H	Output phase loss U phase (OPHL)	2	2331H

$\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$	Display	Fault code	Description	\qquad	CANopen fault code
83		0053H	Output phase loss V phase (OPHL)	2	2332H
84	Fault OPHL OUTO W phase lacked	0054H	Output phase loss 3 W phase (OPHL)	2	2333H
90	FaultFstp AUTO Force Stop	005AH	Force to stop (FStp)	7	FF2EH
101	Fault CGdE CGUTO Guarding T-out	0065H	CANopen guarding error (CGdE)	4	8130H
102	Fault CHbE Heartbeat T-out	0066H	CANopen heartbeat error (CHbE)	4	8130H
104	Fault CbFE Can bus off	0068H	CANopen bus off error (CbFE)	4	8140H
105	FaultCIdE Canto Cus Index Err	0069H	CANopen index error (CIdE)	4	8100H
106	Fault CAdE CaUTO Can bus Add. Err	006AH	CANopen station address error (CAdE)	4	8100H
107	Fault ${ }^{\text {CFrE }}$ Can bus off	006BH	CANopen memory error (CFrE)	4	8100H
111	Faultauto ictE InrCom Time Out	006FH	InrCOM time-out error (ictE)	4	7500H
112	Fault SfLK AUTO PMLess Shaft Lock	0070H	PMLess shaft lock (SfLK)	7	8A00H

$\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$	Display	Fault code	Description	CANopen fault register (bit0-7)	CANopen fault code
142	Fault AUE1 Auto tuning Err	008EH	Auto-tune error 1 (AUE1)	1	FF3DH
143	AUE2 Auto tuning Err	008FH	Auto-tune error 2 (AUE2)	1	FF3EH
144	Fault AUTO AUE3 Auto tuning Err	0090H	Auto-tune error 3 (AUE3)	1	FF3FH
148	Fault AUTO AUE4 Auto tuning Err	0094H	Auto-tune error 4 (AUE4)	1	FF43H

15-6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.
RUN LED:

LED status	Condition	CANopen State
OFF		Initial
Blinking		Pre-Operation
Single flash		Stopped
ON	ERR - CAN RUN	Operation

ERR LED:

LED status	Condition/ State
OFF	No Error
Single flash	One Message fail
Double flash	Node guarding failure or heartbeat message failure
Triple flash	Synchronization failure
ON	Bus off ERR CAN RUN

[This page intentionally left blank]

Chapter 16 PLC Function Applications

16-1 PLC Summary
16-2 Notes Before PLC Use
16-3 Turn On
16-4 Basic Principles of PLC Ladder Diagram
16-5 Various PLC Device Functions
16-6 Introduction to The Command Window
16-7 Error Display and Handling
16-8 CANopen Master Control Applications
16-9 Explanation of Various PLC Speed Mode Controls
16-10 Internal Communications Main Node Control
16-11 Modbus Remote IO Control Applications (Use MODRW)
16-12 Calendar Functions

16-1 PLC Summary

16-1-1 Introduction

The commands provided by the CFP2000's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the usage of basic commands and applications commands, chiefly retain the operating methods of Delta's PLC DVP series.

16-1-2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's program editing software for the DVP and CFP2000 programmable controllers in the Windows operating system environment. Apart from general PLC program design general Windows editing functions (such as cut, paste, copy, multiple windows, etc.), WPLSoft also provides many Chinese / English annotation editing and other convenience functions (such as registry editing, settings, file reading, saving, and contact graphic monitoring and settings, etc.).

The following basic requirements that need to install WPLSoft editing software:

Item	System requirements
Operating system	Windows 95 / 98 / 2000 / NT / ME / XP
CPU	At least Pentium 90
Memory	At least 16MB (we recommend at least 32MB)
Hard drive	Hard drive capacity: at least 100MB free space One optical drive (for use in installing this software)
Display	Resolution: 640×480, at least 16 colors; it is recommended that the screen area be set at 800×600 pixels
Mouse	Ordinary mouse or Windows-compatible device
Printer	Printer with a Windows driver program
RS-485 port	Must have at least an RS-485 port to link to the PLC

16-2 Notes before PLC Use

1. The PLC has a preset communications format of $7, \mathrm{~N}, 2,9600$, with node 2 ; the PLC node can be changed in Pr.09-35, but this address may not be the same as the drive's address setting of Pr.09-00.
2. The CFP2000 provides two communications serial ports that can be used to download PLC programs (see figure below). Channel 1 has a fixed communications format of 19200, 8, N, 2 RTU.

3. You can simultaneously access data from the converter and internal PLC, which is performed through identification of the node. For instance, if the converter node is 1 and the internal PLC node is 2 , then the client command will be

- 01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in converter Pr.04-00.
- 02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0

4. The PLC program is disabled when uploading / downloading programs.
5. When using WPR commands to write in parameters, values may be modified up to a maximum of 10^{9} times, otherwise a memory write error will occur. The calculation of modifications is based on whether the entered value has been changed. If the entered value is left unchanged, the modifications does not increase afterwards. However, if the entered value is different from before, the number of modifications increases by one. Those parameters listed below are exceptions, refer to the next page for details:

- Pr.00-11 Speed control mode
- Pr.01-12-Pr.01-19 Acceleration / Deceleration time 1-4
- Pr.02-12 Multi-function input mode selection
- Pr.02-18 Multi-function output direction
- Pr.04-50-Pr.04-59 PLC buffer 0-9
- Pr.08-04 Upper limit of integral control
- Pr.08-05 PID output command limit

6. When Pr.00-04 is set as 28, the displayed value is the value of PLC register D1043 (see figure below):
Keypad KPC-CC01
Can display 0-65535

7. In the PLC Run and PLC Stop mode, the content 9 and 10 of Pr.00-02 cannot be set nor be reset to the default value.
8. The PLC can be reset to the default value when Pr.00-02 is set as 6 .
9. The corresponding MI function is disabled when the PLC writes to input contact X .
10. When the PLC controls converter operation, the control command is entirely controlled by the PLC and will not be affected by the setting of parameter 00-21.
11. When the PLC controls converter frequency commands (FREQ commands), frequency commands is entirely controlled by the PLC, and will not be affected by the setting of Pr.00-20 or the Hand ON / OFF configuration.
12. When the PLC controls the drive's operation, if the keypad Stop setting is valid, this will trigger an FStP error and cause stoppage.

16-3 Turn On

16-3-1 Connect to PC

Start operation of PLC functions in accordance with the following four steps

1. After pressing the Menu key and selecting 4: PLC on the KPC-CC01 digital keypad, press the Enter key (see figure below).

2. Wiring: Connect the drive's RJ45 communications interface to a PC via the RS-485

CFP2000
3. PLC function usage

PLC functions are as shown in the figure on the left; select item 2 and implement PLC functions.
1: No function (Disable)
2: Enable PLC (PLC Run)
3: Stop PLC functions (PLC Stop)

- When the external multifunctional input terminals (MI1-MI8) are in PLC Mode select bit0 (51) or PLC Mode select bit1 (52), and the terminal contact is closed or open, it will compulsorily switch to the PLC mode, and keypad switching will be ineffective. Corresponding actions are as follows:

PLC mode	PLC Mode select bit1 (52)	PLC Mode select bit0 (51)
Using KPC-CC01		
Disable	OFF	ON
PLC Run	ON	OFF
PLC Stop	ON	ON
Maintain previous state		

NOTE:

1. When input / output terminals (FWD REV MI1-MI8, MI10-15, Relay1-3, RY10-RY15, MO10-MO11,) are included in the PLC program, these input / output terminals will only be used by the PLC. As an example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay (RA / RB / RC) will operate in accordance with the program. At this time, the multifunctional input/output terminal setting will be ineffective. Because these terminal functions are already being used by the PLC, the DI / DO / AO in use by the PLC can be determined by looking at Pr.02-52, Pr.02-53, and Pr.03-30.
2. When the PLC's procedures use special register D1040, the corresponding AO contact AFM1 will be occupied, and AFM2 corresponding to special register D1045 will have the same situation.
3. Pr.03-30 monitors the state of action of the PLC function analog output terminal; bit0 corresponds to the AFM1 action state, and bit1 corresponds to the AFM2 action state.

16-3-2 I/O device explanation

Input devices:

Serial No.	X 0	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 10	X 11	X 12	X 13	X 14	X 15	X 16	X 17
1	FWD	REV	MI 1	MI 2	MI 3	$\mathrm{MI4}$	MI 5	$\mathrm{MI6}$	$\mathrm{MI7}$	MI 8						
2											MI 10	MI 11	MI 12	MI 13	MI 14	MI 15
3											MI 10	MI 11	MI 12	MI 13		

1: Control I/O
2: Extension card: EMC-D611A (D1022=4)
3: Extension card: EMC-D42A (D1022=5)
Output devices:

Serial No.	Y 0	Y 1	Y 2	Y 3	Y 4	Y 5	Y 6	Y 7	Y 10	Y 11	Y 12	Y 13	Y 14	Y 15	Y 16	Y 17
1	RY 1	RY 2	RY 3													
2						MO10	MO11									
3						RY10	RY11	RY12	RY13	RY14	RY15					

1: Control I/O
2: Extension card: EMC-D42A (D1022=5)
3: Extension card: EMC-R6AA (D1022=6)

RY1 / RY2 / RY3

RY10 / RY11 / RY12 / RY13 / RY14 / RY15

16-3-3 Installation WPLSoft

Download and install WPLSoft editing software in Delta's website:
After completing installation, the WPLSoft program will be installed in the designated subfolder "C:
IProgram FilesIDelta Industrial Automation\WPLSoft x.xx".

16-3-4 Program writing

Step 1: Click on the WPLSoft icon to start the editing software. (See figure 16-1)

Figure 16-1 (Left: WPLSoft icon; Right: Start WPLSoft)

Step 2: The WPLSoft editing window appears (see figure 16-2 below). When running WPLSoft for the first time, before "New file" has been used, only the "File (F)," "Communications (C)," View (V)," "Options (O)," and "Help (H)" columns will appear on the function toolbar.

Figure 16-2

NOTE: After running WPLSoft for the second time, the last file edited will open and be displayed in the editing window. The following figure 16-3 provides an explanation of the WPLSoft editing software window:

Figure 16-3

Figure 16-4
NOTE: You can also find "New file (N) (Ctrl+N)" in the "File (F)", as shown in figure 16-5 below.

Figure 16-5

Step 4: The "Device settings" window will appear after clicking, see figure 16-6 below. You can now enter the project title and filename, and select the device and communication settings to be used.

Figure 16-6
Communications settings: Perform settings in accordance with the desired communications method. See figure 16-7 below.

Figure 16-7

Step 5: Press Confirm after completing settings and begin program editing. There are two program editing methods; you can choose whether to perform editing in the command mode or the ladder diagram mode (see figure 16-8 below).

```
8/ WPL Editor
Eile Edit Compiter Comments Search Yew | communication Options Wizard Window Help
```


Figure 16-8
NOTE: In ladder diagram mode, you can perform program editing using the buttons on the function icon row (see figure 16-9 below).

Figure 16-9

- Basic Operation-Example

Input the ladder diagram as the figure below. The following steps can be operated through the mouse or function key (F1-F12) on the keyboard.

Figure 16-10

Step 1: The following screen will appear after a new file is established:

Figure 16-11

Step 2: Click on the always-open switch icon $\begin{aligned} & \text { 가 } \mathrm{FT} \text { or press the function key F1. After the name of the }\end{aligned}$ input device and the comment dialog box have appeared, the device name (such as " M "), device number (such as "10"), and input comments (such as "auxiliary contact") can be selected; press the OK button when finished (see figure 16-12 and 16-13 below).

Figure 16-12

Figure 16-13

Step 3: Click on the output coil icon $\mathrm{C}_{\mathrm{F}}{ }^{3}$ or press function key F7. After the name of the input device and the comment dialog box have appeared, the device name (such as " Y "), device number (such as "0"), and input comments (such as "output coil") can be selected; press the OK button when finished (see figure 16-14 and 16-15 below).
8. WPL Editor - [Ladder Diagram Mode]

害置 File Edit Compiler Comments Search View | Communication Options Wizard Window Help

Figure 16-14

Figure 16-15

Step 4: Press "ENTER" button, when the "Input Instructions" window appears, key in "END" in the field and press the OK button (see figure 16-16 and 16-17 below).

Figure 16-16

Figure 16-17

Step 5: Click on the 気 "Ladder diagram => Code" icon, which will compile the edited ladder diagram as a command program. After compiling, the number of steps will appear on the left side of the busbar (see figure 16-18 below).

Figure 16-18

16-3-5 Program download

After inputting a program using WPLSoft, select compile \square After completing compilation, select the 53 to download a program. WPLSoft will perform program download with the online PLC in the communications format specified in communications settings.

16-3-6 Program monitoring

While confirming that the PLC is in the Run mode, after downloading a program, click on in the communications menu and select start ladder diagram control (see figure below)

16-4 Basic Principles of PLC Ladder Diagrams

16-4-1 Schematic diagram of PLC ladder diagram program scanning

Output results are calculated on the basis of the ladder diagram configuration (internal devices will have real-time output before results are sent to an external output point)

Repeated implementation

16-4-2 Introduction to ladder diagrams

Ladder diagrams comprise a graphic language widely applied in automatic control, and employs common electrical control circuit symbols. After a ladder diagram editor has been used to create a ladder pattern, PLC program designed is completed. The use of a graphic format to control processes is very intuitive, and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram comprise commonly seen electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as conventional electrical control circuit elements such as relays, coils, and contacts, a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1 , this may indicate that a coil is electrified, and if that bit is 0 , it will indicate that the coil is not electrified. An N.O. contact (Normal Open, or contact a) can be used to directly read the value of the corresponding bit, and an N.C. contact (Normal Close, or contact b) can be used to obtain the inverse of the bit's value. Multiple relays occupy multiple bits, and 8 bits comprise one byte; two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (such as addition/ subtraction or displacement, etc.), a byte, word, or double word can be used. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process some numerical values, these values are usually in the form of bytes, words, or double words.

The various internal devices in a PLC all account for a certain quantity of storage units in the PLC's storage area. When these devices are used, the content of the corresponding storage area is red in the form of bits, bytes, or words.

Introduction to the basic internal devices in a PLC

Device type	\quad Description of Function
	$\begin{array}{l}\text { An input relay constitutes the basic unit of storage in a PLC's internal memory } \\ \text { corresponding to an external input point (which serves as a terminal connecting } \\ \text { with an external input switch and receiving external input signals). It is driven by } \\ \text { external input signals, to which it assigns values of 0 or 1. A program design } \\ \text { method cannot change the input relay status, and therefore cannot rewrite the } \\ \text { corresponding basic units of an input relay, and WPLSoft cannot be used to } \\ \text { perform compulsory ON / OFF actions. A relay's contacts (contacts a and b) can } \\ \text { be used an unlimited number of times. An input relay with no input signal must } \\ \text { be left idle and cannot be used for some other purpose. } \\ \text { Input Relay } \\ \text { Device indicated as: X0, X1, X7, X10, X11, etc. This device is expressed } \\ \text { with the symbol "X," and a device's order is indicated with an octal number. } \\ \text { Input point numbers are indicated in Section 16-8 I/O devices explanation. }\end{array}$
	$\begin{array}{l}\text { An output relay constitutes the basic unit of storage in a PLC's internal memory } \\ \text { corresponding to an external output point (which connects with an external } \\ \text { load). It may be driven by an input relay contact, a contact on another internal } \\ \text { device, or its own contacts. It uses one N.O. contact to connect with external } \\ \text { loads or other contacts, and, like input contacts, can use the contact an } \\ \text { unlimited number of times. An output relay with no input signal will be idle, but } \\ \text { may be used an internal relay if needed. } \\ \text { - Revice indicated as: Y0, Y1, Y7, Y10, Y11, etc. This device is expressed } \\ \text { with the symbol "Y," and a device's order is indicated with an octal number. }\end{array}$
Output point numbers are indicated in Section 16-8 I/O devices	

Device type	Description of Function
	When a PLC is used to perform various types of sequence control and set time value and count value control, it most commonly perform data processing and numerical operations, and data registers are used exclusively for storage of data and various parameters. Each data register contains 16 bits of binary data, which means that it can store one word. Two data registers with adjacent numbers can be used to process double words. Degister symbol "D," and its order is expressed as a decimal number.

Ladder diagram images and their explanation

Ladder diagram structures	Explanation of commands	Command	Using Device
\dagger	NO switch, contact a	LD	X, Y, M, T, C
U	NC switch, contact b	LDI	X, Y, M, T, C
-	Series NO	AND	X, Y, M, T, C
1	Series NC	ANI	X, Y, M, T, C
$\checkmark \vdash \mid$	Parallel NO	OR	X, Y, M, T, C
$\begin{gathered} -1 \\ M \end{gathered}$	Parallel NC	ORI	X, Y, M, T, C
	Positive edge-triggered switch	LDP	X, Y, M, T, C
$-\downarrow \mid \downarrow$	Negative edge-triggered switch	LDF	X, Y, M, T, C
$\dashv \longmapsto \vdash \mid$	Positive edge-triggered series	ANDP	X, Y, M, T, C
	Negative edge-triggered series	ANDF	X, Y, M, T, C
	Positive edge-triggered parallel	ORP	X, Y, M, T, C
	Negative edge-triggered parallel	ORF	X, Y, M, T, C
	Block series	ANB	N/A
	Block parallel	ORB	N/A
	Multiple outputs	MPS MRD MPP	N/A

Ladder diagram structures	Explanation of commands	Command	Using Device
-	Coil driven output commands	OUT	Y, M
\square	Some basic commands, applications commands	Some basic commands Applications commands	
\square	Inverted logic	INV	N/A

16-4-3 Overview of PLC ladder diagram editing

The program editing method begins from the left busbar and proceeds to the right busbar (the right busbar is omitted when editing using WPLSoft). Continue to the next row after completing each row; there is a maximum of 11 contacts on each row. If this is not sufficient, a continuous line will be will be generated to indicate the continued connection and more devices can be added. A continuous series of numbers will be generated automatically and identical input points can be used repeatedly. See figure below:

The ladder diagram programming method involves scanning from the upper left corner to the lower right corner. The coils and applications command computing box are handled in the output, and the ladder diagram is placed on the farthest right. Taking the figure below as an example, we can gradually analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.

Explanation of command sequence

1	LD	X0	
2	OR	M0	
3	AND	X1	
4	LD	X3	
	AND	M1	
	ORB		
5	LD	Y1	
	AND	X4	
6	LD	T0	
	AND	M3	
	ORB		
7	ANB		
8	OUT	Y1	
	TMR	T0	K10

- Explanation of basic structure of ladder diagrams

LD (LDI) command: An LD or LDI command is given at the start of a block.

LDP and LDF have this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact. (see figure below):

AND (ANI) command: A series configuration in which a single device is connected with one device or a block.
AND command

AND command

ANDP, ANDF also have structures like this, but their action occurs at the rising and falling edge.
OR (ORI) command: A single device is connected with one device or a block.

ORP, ORF also have identical structures, but their action occurs at the rising and falling edge.
ANB command: A configuration in which one block is in series with one device or block.

ORB command: A configuration in which one block is in parallel with one device or block.

In the case of ANB and ORB operations, if a number of blocks are connected, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: Branching point memory for multiple outputs, enabling multiple, different outputs. The MPS command begins at a branching point, where the so-called branching point refers to the intersection of horizontal and vertical lines. We have to rely on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when converting a ladder diagram. The structure of the ladder diagram can be used to judge what kinds of contact memory commands are used.

MPS can be distinguished by use of the " \uparrow " symbol; this command can be used consecutively for up to 8 times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other ladder diagrams, the original contact status must be read.

MRD can be distinguished by use of the " \mid " symbol. The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded. MPP can be distinguished by use of the " L " symbol. Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following figure:

16-4-4 Commonly-used basic program design examples

Start, stop, and protection

Some applications may require a brief close or brief break using the buttons to start and stop equipment. A protective circuit, therefore, must be designed to maintain continued operation in these situations; this protective circuit may employ one of the following methods:

Example 1: Priority stop protective circuit
When the start N.O. contact $\mathrm{X} 1=\mathrm{On}$, and the stop N.C. contact $\mathrm{X} 2=\mathrm{OFF}, \mathrm{Y} 1=\mathrm{ON}$; if $\mathrm{X} 2=\mathrm{ON}$ at this time, coil Y 1 will no longer be electrified, and this is therefore referred to as priority stop.

Example 2: Priority start protective circuit
When start N.O. contact $\mathrm{X} 1=\mathrm{ON}$, and the stop N.C. contact $\mathrm{X} 2=\mathrm{OFF}, \mathrm{Y} 1=\mathrm{ON}$, and coil Y 1 will be electrified and protected. At this time, if $\mathrm{X} 2=\mathrm{ON}$, coil Y 1 will still protect the contact and continue to be electrified, and this is therefore priority start.

Example 3: Setting (SET) and reset (RST) command protective circuit
The following figure shows a protective circuit composed of RST and SET commands.
Priority stop occurs when the RST command is placed after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y 1 will indicate whether coil Y 1 is electrified. When X 1 and X 2 are both actuated, Y 1 will lose power, and this is therefore priority stop.

Priority start occurs when the SET command is placed after the RST command. When X1 and X 2 are both actuated, Y 1 will be electrified, and this is therefore priority start.

Top priority of start

Commonly-used control circuits

Example 4: Conditional control
X 1 and X 3 respectively starts and stops Y 1 ; X 2 and X 4 respectively starts and stops Y 2 . All of these have protective circuits. Because Y1's N.O. contact is series connected with Y2's circuit, it becomes an AND condition for the actuation of Y 2 . The action of Y 1 is therefore a condition for the action of Y 2 , and Y 1 must be actuated before Y 2 can be actuated.

Example 5: Interlocking control

The figure below shows an interlocking control circuit. Depending on which of the start contacts $\mathrm{X} 1, \mathrm{X} 2$ is valid first, the corresponding output Y 1 or Y 2 will be actuated, and when one is actuated, the other will not be actuated. This implies that Y1 and Y2 cannot be actuated at the same time (interlocking effect). Even if both X 1 and X 2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y 1 and Y 2 to be actuated at same time. This ladder diagram assigns priority only to Y1.

Example 6: Sequence control

If the N.C. contact of Y 2 in the interlocking control configuration of example 5 is put in series with the Y 1 circuit, so that it is an AND condition for actuation of Y 1 (see figure below), not only is Y 1 a condition for the actuation of Y 2 in this circuit, the actuation of Y 2 will also stop the actuation of Y 1 . This configuration confirms the actuation order of Y 1 and Y 2 .

Example 7: Oscillating circuit

Oscillating circuit with a period of $\Delta T+\Delta T$

The figure below shows a very simple ladder diagram. When starting to scan the Y1 N.C. contact, because the Y1 coil has lost power, the Y1 N.C. contact will be closed. When the Y1 coil is then scanned, it will be electrified, and the output will be 1 . When the Y1 N.C. contact is scanned in the scanning cycle, because Y 1 coil is electrified, the Y 1 N.C. contact will be open, the Y 1 coil will then lose power, and the output will be 0 . Following repeated scanning, the output of Y1 coil will have an oscillating waveform with a period of $\Delta \mathrm{T}(\mathrm{ON})+\Delta \mathrm{T}$ (OFF).

Oscillating circuit with a period of $n T+\Delta T$

The program of the ladder diagram shown below uses timer T0 to control coil Y1's electrified time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which will cause the output from Y 1 to have the oscillating waveform shown in the figure below. Here n is the timer's decimal setting value, and T is the clock cycle of the timer.

Example 8: Flashing circuit

The following figure shows an oscillating circuit of a type commonly used to cause an indicator light to flash or buzzers to buzz. It uses two timers to control the ON and OFF time of Y1 coil. Here n1, n 2 are the timing set values of T 1 and T 2 , and T is the clock cycle of the timer.

Example 9: Triggering circuit

In the figure below, a command consisting of the differential of the rising edge of X 0 causes coil M0 to generate a single pulse for $\Delta \mathrm{T}$ (length of one scanning cycle), and coil Y 1 is electrified during this scanning cycle. Coil MO loses power during the next scanning cycle, N.C. contact M0 and N.C. contact Y 1 are both closed. This causes coil Y 1 to stay in an electrified state until there is another rising edge in input X0, which again causes the electrification of coil MO and the start of another scanning cycle, while also causing coil Y 1 to lose power, etc. The sequence of these actions can be seen in the figure below. This type of circuit is commonly used to enable one input to perform two actions in alternation. It can be seen from the time sequence in the figure below that when input $\mathrm{X0}$ is a square wave signal with a period of T , the output of coil Y 1 will be a square wave signal with a period of 2 T .

Example 10: Delay circuit

When input X0 is On, the timer T10 is in no power status because the corresponding N.C. contacts OFF, and the output coil Y1 is electrified. T10 receives power and begins timing only after input X0 is OFF, and the output coil Y1 is delayed for 100 sec . ($\mathrm{K} 1000 \times 0.1 \mathrm{sec} .=100 \mathrm{sec}$.) before losing power; refer to the sequence of actions in the figure below.

TB:0.1 sec

Example 11: The open / close delay circuit is composed of two timers; output Y 4 has a delay whether the input XO is ON or OFF.

Example 12: Extended timing circuit
In the circuit in the figure on the left, the total delay time from the moment input $\mathrm{X0} 0$ closes to the time output Y 1 is electrified is $(\mathrm{n} 1+\mathrm{n} 2) \times \mathrm{T}$, where T is the clock cycle. Timers: $\mathrm{T} 11, \mathrm{~T} 12$; clock cycle: T.

16-5 Various PLC Device Functions

Item	Specifications	Notes
Algorithmic control method	Program stored internally, alternating back-and-forth scanning method	
Input / output control method	When it starts again after ending (after execution to the END command), the input/output has an immediate refresh command	Applications command (1-several tens of $\mu \mathrm{s})$
Algorithmic processing speed	Basic commands (several $\mu \mathrm{s}$);	Programming language
Command + ladder diagram	This number of contacts constitutes CFP2000 input/output contacts; other devices have different correspondences	
Input / output terminal	Input (X): 10, output (Y): 3	

Type	Device	Item		Range		Function
Relay bit form	X	External input relay		X0-X17, 16 points, octal number	Total 32 points	Corresponds to external input point
	Y	External output relay		Y0-Y17, 16 points, octal number		Corresponds to external output point
	M	Auxiliary Relay	General Use	M0-M799, 800 points	Total 880 points	Contact can switch ON / OFF within the program
			Special purpose	M1000-M1079, 80 points		
	T	Timer	100ms timer	T0-T159, 160 points	Total 160 points	Timers referred to by the TMR command; contact of the T with the same number will go On when the time is reached
	C	Counter	16-bit counter, general use	C0-C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the C with the same number will go On when the count is reached
Register word data	T	Current timer value		T0-T159, 160 points		The contact will be On when the time is reached
	C	Current counter value		C0-C79, 16-bit counter 80 points		The counter contact will come On when the count is reached
	D	Data Register	Used to maintain power OFF	D0-D399, 400 points		Used as data storage
			Special purpose	D1000-D1199, 200 points D2000-D2799, 800 points		memory area
Constant	K	Decimal	Single-byte	Setting Range: K-32,768-K32,767		
			Double-byte	Setting Range: K-2,147,483,648-K2,147,483,647		
	H	Hexadecimal	Single-byte	Setting Range:H0000-HFFFF		
			Double-byte	Setting Range: H00000000-HFFFFFFFF		
Serial communications port (program write / read)				RS-485/keypad port		
Input / output				Built-in three analog inputs and two analog outputs		
Function expansion module			Optional Accessories	EMC-D42A; EMC-R6AA; EMC-D611A		
Communication Expansion Module			Optional Accessories	EMC-COP01 (CANopen)		

16-5-1 Introduction to device functions

Input / output contact functions

Input contact X functions: Input contact X is connected with an input device, and reads input signals entering the PLC. The number of times that contact a or b of input contact X used in the program is not subject to restrictions. The ON / OFF state of input contact X will change as the input device switches ON and OFF; a peripheral device (WPLSoft) cannot be used to force contact X ON or OFF.

Output contact Y functions

The job of output contact Y is to send an ON / OFF signal to drive the load connected with output contact Y . Output contacts consist of two types: relays and transistors. While number of times that contact a or b of each output contact Y used in the program is not subject to restrictions, it is recommended that the number of output coil Y be used only once in a program, otherwise the right to determine the output state when the PLC performs program scanning will be assigned to the program's final output Y circuit.

The output of Y 0 will be decided by circuit 2
i.e. decided by On/Off of X10.

Numerical value, constant $[\mathrm{K}] /[\mathrm{H}]$

Constant	Single-byte	K	Decimal	K-32,768-K32,767
	Double-byte			
	Single-byte	H	Hexadecimal	H0000-HFFFF

The PLC can use five types of numerical values to implement calculations based on its control tasks; the following is an explanation of the missions and functions of different numerical values.

- Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Binary nibbles and relevant terms are explained as follows:

bit	bits are the fundamental units of binary values, and have a state of either 1 or 0
Nibble	Comprised of a series of 4 bits (such as b3-b0); can be used to express a one-nibble decimal number 0-9 or hexadecimal number: 0-F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a hexadecimal number with four nibbles: $0000-$ FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a hexadecimal number with eight nibbles: $00000000-F F F F F F F F$

Relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below):

- Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers Example: External input: X0-X7, X10-X17... (Device number table);
External output: Y0-Y7, Y10-Y17... (Device number table)

- Decimal Number, DEC

Decimal numbers are used for the following purposes in a PLC system:

1. The setting values of timer T or counter C , such as TMR C0 K50. (K constant)
2. The numbers of devices including M, T, C, or D, such as M10 or T30. (device number)
3. Used as an operand in an application command, such as MOV K123 D0. (K constant)

- Binary Code Decimal, BCD

Uses one nibble or 4 bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with 4 nibbles. Chiefly used to read the input value of a fingerwheel numerical switch input or output a numerical value to a seven-segment display driver.

- Hexadecimal Number, HEX

Applications of hexadecimal numbers in a PLC system: Used as operands in application commands, such as MOV H1A2B D0. (H constant)

- Constant K

Decimal numbers are usually prefixed with a "K" in a PLC system, such as K100. This indicates that it is a decimal number with a numerical value of 100 .

Exceptions: K can be combined with bit device $\mathrm{X}, \mathrm{Y}, \mathrm{M}$, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2-K4 variously represent 8-, 12-, and 16-bit combinations.

- Constant H

Hexadecimal numbers are usually prefixed with the letter "H" in a PLC system, such as in the case of H 100 , which indicates a hexadecimal number with a numerical value of 100 .

Functions of auxiliary relays

Like an output relay Y , an auxiliary relay M has an output coil and contacts a and b , and the number of times they can be used in a program is unrestricted. Users can use an auxiliary relay M to configure the control circuit, but cannot use it to directly drive an external load. Auxiliary relays have the following two types of characteristics:

- Ordinary auxiliary relays:

Ordinary auxiliary relays will all revert to the OFF state if a power outage occurs while the PLC is running, and will remain in the OFF state if power is again turned down.

- Special purpose auxiliary relays:

Each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

Timer functions

Timers take 100 ms as their timing units. When the timing method is an upper time limit, when the current timer value = set value, power will be sent to the output coil. Timer setting values consist of decimal K values, and the data register D can also serve as a setting value.

Actual timer setting time $=$ timing units \times set value
Counter features

Item	
Type	General Type
CT Direction:	Score:
Setting	$0-32,767$
Designation of set value	Constant K or data register D
Change in current value	When the count reaches the set value, there is no longer a count
Output contact	When the count reaches the set value, the contact comes ON and stays ON
Reset	The current value reverts to 0 when an RST command is executed, and the contact reverts to OFF
Contact actuation	All are actuated after the end of scanning

Counter functions

When a counter's counting pulse input signal goes OFF \rightarrow ON, if the counter's current value is equal to the set value, the output coil will become ON . The setting value will be a decimal K values, and the data register D can also serve as a setting value.
16-bit counter C0-C79:

- 16-bit counter setting range: K0-K32,767. (when K0 and K1 are identical, the output contact will immediately be ON during the first count.)
- The current counter value will be cleared from an ordinary counter when power is shut off to the PLC.
- If the MOV command or WPLSoft is used to transmit a value greater than the set value to the C0 current value register, when the next X1 goes from OFF \rightarrow ON, the C0 counter contact will change to On, and the current value will change to the set value.
- A counter's setting value may be directly set using a constant K or indirectly set using the value in register D (not including special data registers D1000-D1199 or D2000-D2799).
- If the set value employs a constant K , it may only be a positive number; the set value may be either a positive or a negative number if the value in data register D is used. The current counter value will change from 32,767 to $-32,768$ as the count continues to accumulate.

Example

LD	X0
RST	C0
LD	X1
CNT	C0 \quad K5
LD	C0
OUT	Y0

1. When $\mathrm{XO}=\mathrm{ON}$ and the RST command is executed, the current value of CO will revert to 0 , and the output contact will revert to OFF.
2. When X1 changes from OFF $\rightarrow \mathrm{ON}$, the current value of the counter will execute an increase (add one).
3. When the count of counter CO reaches the set value K5, the contact C0 becomes ON,

Contacts Y0,C0 and the current value of $C 0=$ set value $=K 5$. Afterwards, signal C 0 triggered by X 1 cannot be received, and the current value of C 0 will remain K5.

16-5-2 Introduction to special relay functions (special M)

RO: read only; RW: read and write

Special M	Description of Function	R / W *
M1000	Operates monitor N.O. contact (contact a). N.O. while RUN, contact a. This contact is ON while in the RUN state.	RO
M1001	Operates monitor N.C. contact (contact b). N.C. while RUN, contact b. This contact is OFF while in the RUN state.	RO
M1002	Initiates a forward (the instant RUN is ON) pulse. Initial pulse, contact a. Produces a forward pulse the moment RUN begins; its width = scan cycle	RO
M1003	Initiates a reverse (the instant RUN is OFF) pulse. Initial pulse, contact a. Produces a reverse pulse the moment RUN ends; the pulse width = scan cycle	RO
M1004	Reserved	RO
M1005	Driver malfunction instructions	RO
M1006	Converter has no output	RO
M1007	Driver direction FWD (0) / REV (1)	RO
M1008	--	--
M1009	--	--
M1010	--	--
M1011	10 ms clock pulse, 5 ms ON / 5 ms OFF	RO
M1012	100 ms clock pulse, 50 ms ON / 50 ms OFF	RO
M1013	1 sec. clock pulse, 0.5s ON / 0.5s OFF	RO
M1014	1 min. clock pulse, 30s ON / 30s OFF	RO
M1015	Frequency attained (when used together with M1025)	RO

Special M	Description of Function	R/W *
M1016	Parameter read / write error	RO
M1017	Parameter write successful	RO
M1018	--	--
M1019	Motor drive warning indicator	RO
M1020	Zero flag	RO
M1021	Borrow flag	RO
M1022	Carry flag	RO
M1023	Divisor is 0	RO
M1024	--	--
M1025	$\begin{aligned} & \text { Drive frequency }=\text { set frequency (ON) } \\ & \text { Drive frequency }=0 \text { (OFF) } \end{aligned}$	RW
M1026	Drive operating direction FWD (OFF) / REV (ON)	RW
M1027	Drive Reset	RW
M1028	--	--
M1029	--	--
M1030	--	--
M1031	Compulsory setting of the current PID integral value equal to D1019 (0 change, 1 valid)	RW
M1032	Compulsory definition of FREQ command after PID control	RW
M1033	--	--
M1034	Initiates CANopen real-time control	RW
M1035	Initiates internal communications control	RW
M1036	Ignore calendar error	RW
M1037	--	--
M1038	--	--
M1039	--	--
M1040	Excitation (Servo ON)	RW
M1041	--	--
M1042	Quick stop	RW
M1043	--	--
M1044	Pause (Halt)	RW
M1045	--	--
M1046	--	--
M1047	--	--
M1048	--	--
M1049	--	--
M1050	--	--
M1051	--	--
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053	--	--
M1054	--	--
M1055	--	--
M1056	Excitation ready (Servo ON Ready)	RO
M1057	--	--
M1058	On Quick Stopping	RO
M1059	CANopen Master setting complete	RO
M1060	CANopen Currently initializing slave station	RO
M1061	CANopen Slave station initialization failure	RO
M1062	--	--
M1063	--	--
M1064	--	--
M1065	Read / write CANopen data time out	RO
M1066	Read / write CANopen data complete	RO
M1067	Read / write CANopen data successful	RO
M1068	Calendar calculation error	RO
M1069	--	--

Special M	Description of Function	R / W
M1070	--	--
M1071	--	--
M1072	--	--
M1073	--	--
M1074	--	--
M1075	--	RO
M1076	Calendar time error or refresh time out	RO
M1077	485 Read / write complete	RO
M1078	485 Read-write error	RO
M1079	485 Communications time out	RO
M1090	OFF (refer to parameter descriptions for Pr.00-29)	RO
M1091	HAND (refer to parameter descriptions for Pr.00-29)	RO
M1092	AUTO (refer to parameter descriptions for Pr.00-29)	RO
M1100	LOCAL (refer to parameter descriptions for Pr.00-29)	RO
M1101	REMOTE (refer to parameter descriptions for Pr.00-29)	RW
M1168	SMOV BCD and BIN mode switch	RW
M1260	PLC PID1 Enable	RW
M1262	PLC PID1 Positive integral value limit	RW
M1270	PLC PID2 Enable	RW
M1272	PLC PID2 Positive integral value limit	

16-5-3 Introduction to special register functions (special D)

Special D	Description of Function	R / W *
D1000	--	--
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Total program memory content	--
D1004	--	--
D1005	--	--
D1006	--	--
D1007	--	--
D1008	--	RO
D1009	--	RO
D1010	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	--
D1012	Maximum scan time (units: 0.1 ms)	--
D1013	--	--
D1014	--	--
D1015	--	RO
D1016	--	RW
D1017	--	RO
D1018	Current integral value	RO
D1019	Compulsory setting of PID I integral	
D1020	Output frequency (0.00-600.00 Hz)	RO
D1021	Output current (\#\#\#\#.\# A)	RI
	Al AO DI DO extension card number 0: No extension card 4: AC input card (6 in) (EMC-D611A) 5: Digital I/O Card (4 in 2 out) (EMC-D42A) 6: Relay card (6 out) (EMC-R6AA) 11: Analog I/O card (2 in 2 out) (EMC-A22A) Communication extension card number 0: No extension card 1: DeviceNet Slave (CMC-DN01) 2: Profibus-DP Slave (CMC-PD01) 3: CANopen Slave (EMC-COP01)	RO
D1022		
D1023		

Special D	Description of Function	R/W *
	5: EtherNet/IP Slave (CMC-EIP01) 12: PROFINET Slave (CMC-PN01)	
D1024	--	--
D1025	--	--
D1026	--	--
D1027	PID calculation frequency command (frequency command after PID calculation)	RO
D1028	AVI1value (0.00-100.00\%)	RO
D1029	ACI value (0.0-100.00\%)	RO
D1030	AVI2 value (0.00-100.00\%)	RO
D1031	C series: extension card Al10 (0.0-100.0\%)	RO
D1032	C series: extension card Al11 (0.0-100.0\%)	RO
D1033	--	--
D1034	--	--
D1035	--	--
D1036	Servo fault bit	RO
D1037	Drive output frequency	RO
D1038	DC bus voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM1 (-100.00-100.00\%)	RW
D1041	C series: extension card AO10 (0.0-100.0\%)	RW
D1042	C series: extension card AO11 (0.0-100.0\%)	RW
D1043	Can be user-defined (will be displayed on panel when Pr.00-04 is set as 28; display method is Cxxx)	RW
D1044	--	-
D1045	Analog output value AFM2 (-100.00-100.00\%)	RW
D1046	--	--
D1047	--	--
D1048	--	--
D1049	--	--
D1050	Actual Operation Mode 0 : Speed	RO
D1051	--	--
D1052	--	--
D1053	--	--
D1054	--	--
D1055	--	--
D1056	--	--
D1057	--	--
D1058	--	--
D1059	--	--
D1060	Operation Mode setting 0 : Speed	RW
D1061	485 COM1 communications time out time (ms)	RW
D1062	Torque command (torque limit in speed mode)	RW
D1063	Year (Western calendar) (display range 2000-2099) (must use KPC-CC01)	RO
D1064	Week (display range 1-7) (must use KPC-CC01)	RO
D1065	Month (display range 1-12) (must use KPC-CC01)	RO
D1066	Day (display range 1-31) (must use KPC-CC01)	RO
D1067	Hour (display range 0-23) (must use KPC-CC01)	RO
D1068	Minute (display range 0-59) (must use KPC-CC01)	RO
D1069	Second (display range 0-59) (must use KPC-CC01)	RO
D1100	Target frequency	RO
D1101	Target frequency (must be operating)	RO
D1102	Reference frequency	RO
D1103	--	--

Special D	Description of Function	R / W *
D1104	--	--
D1105	--	--
D1106	--	--
D1107	п(Pi) Low word	RO
D1108	$\pi(\mathrm{Pi})$ High word	RO
D1109	Random number	RO
D1110	Internal node communications number (set number of slave stations to be controlled)	RW
D1111	--	--
D1112	--	--
D1113	--	--
D1114	Numbering of the operating motors: 1: Motor 1 2: Motor 2	RO
D1115	Internal node synchronizing cycle (ms)	RO
D1116	Internal node error (bit0 = Node 0, bit1 = Node 1,...bit7 = Node 7)	RO
D1117	$\begin{aligned} & \text { Internal node online correspondence (bit0 = Node 0, bit1 = Node } 1, \ldots \text { bit7 } \\ & =\text { Node } 7 \text {) } \end{aligned}$	RO
D1118	--	--
D1119	--	--
D1120	Internal node 0 control command	RW
D1121	Internal node 0 mode	RW
D1122	Internal node 0 reference command L	RW
D1123	Internal node 0 reference command H	RW
D1124	--	--
D1125	--	--
D1126	Internal node 0 status	RO
D1127	Internal node 0 reference status L	RO
D1128	Internal node 0 reference status H	RO
D1129	--	--
D1130	Internal node 1 control command	RW
D1131	Internal node 1 mode	RW
D1132	Internal node 1 reference command L	RW
D1133	Internal node 1 reference command H	RW
D1134	--	--
D1135	--	--
D1136	Internal node 1 status	RO
D1137	Internal node 1 reference status L	RO
D1138	Internal node 1 reference status H	RO
D1139	--	--
D1140	Internal node 2 control command	RW
D1141	Internal node 2 mode	RW
D1142	Internal node 2 reference command L	RW
D1143	Internal node 2 reference command H	RW
D1144	--	--
D1145	--	--
D1146	Internal node 2 status	RO
D1147	Internal node 2 reference status L	RO
D1148	Internal node 2 reference status H	RO
D1149	--	--
D1150	Internal node 3 control command	RW
D1151	Internal node 3 mode	RW
D1152	Internal node 3 reference command L	RW
D1153	Internal node 3 reference command H	RW
D1154	--	--
D1155	--	--

Special D	Description of Function	R/W *
D1156	Internal node 3 status	RO
D1157	Internal node 3 reference status L	RO
D1158	Internal node 3 reference status H	RO
D1159	--	--
D1160	Internal node 4 control command	RW
D1161	Internal node 4 mode	RW
D1162	Internal node 4 reference command L	RW
D1163	Internal node 4 reference command H	RW
D1164	--	--
D1165	--	--
D1166	Internal node 4 status	RO
D1167	Internal node 4 reference status L	RO
D1168	Internal node 4 reference status H	RO
D1169	--	--
D1170	Internal node 5 control command	RW
D1171	Internal node 5 mode	RW
D1172	Internal node 5 reference command L	RW
D1173	Internal node 5 reference command H	RW
D1174	--	RW
D1175	--	--
D1176	Internal node 5 status	--
D1177	Internal node 5 reference status L	RO
D1178	Internal node 5 reference status H	RO
D1179	--	--
D1180	Internal node 6 control command	RW
D1181	Internal node 6 mode	RW
D1182	Internal node 6 reference command L	RW
D1183	Internal node 6 reference command H	RW
D1184	--	--
D1185	--	--
D1186	Internal node 6 status	RO
D1187	Internal node 6 reference status L	RO
D1188	Internal node 6 reference status H	RO
D1189	--	--
D1190	Internal node 7 control command	RW
D1191	Internal node 7 mode	RW
D1192	Internal node 7 reference command L	RW
D1193	Internal node 7 reference command H	RW
D1194	--	--
D1195	--	--
D1196	Internal node 7 status	RO
D1197	Internal node 7 reference status L	RO
D1198	Internal node 7 reference status H	RO
D1199	--	--
D1560	Motor drive warning code	RO

Special D	Description of Function	Default	R / W^{*}
D1200	PID1 mode: 0: Basic mode	0	RW
D1201	PID1 target selection: 0: Refer to D1202 1: AVI1 2: ACI 3: AVI2	0	RW
D1202	PID1 target value (0.00-100.00\%)	5000	RW

Chapter 16 PLC Function Applications | CFP2000

Special D	Description of Function	Default	R / W*
D1203	PID1 feedback selection 0: Refer to D1204 1: AVI1 2: ACI 3: AVI2	1	RW
D1204	PID1 feedback value (0.00-100.00\%)	0	RW
D1205	PID1 P value (decimal point 2)	10	RW
D1206	PID1 I value (decimal point 2)	1000	RW
D1207	PID1 D value (decimal point 2)	0	RW
D1209	Max. limit of PID1	10000	RW
D1215	Counting value of PID1 (decimal point 2)	0	RO
D1220	PID2 mode: 0: Basic mode	PID2 target selection: 0: Refer to D1202 1: AVI1 2: ACI 3: AVI2	0
D1221	RW		
D1222	PID2 target value (0.00-100.00\%)	RW	
D1223	PID2 feedback selection 0: Refer to D1204 1: AVI1 2: ACI 3: AVI2	5000	RW
D1224	PID2 feedback value (0.00-100.00\%)	1	RW
D1225	PID1 P value (decimal point 2)	0	RW
D1226	PID2 I value (decimal point 2)	10	RW
D1227	PID2 D value (decimal point 2)	0	RW
D1229	Max. limit of PID2	10000	RW
D1235	Counting value of PID2 (decimal point 2)	RO	

The following is CANopen Master's special D (can be written in only with PLC in Stop state)
> CFP2000 does not have torque and position mode. As CANopen master, however, CFP2000 can issue torque and position commands to CANopen slaves.
$\mathrm{n}=0-7$

Special D	Description of Function	PDO Mapping	Power OFF Memory	Default	R/W
D1070	Channel opened by CANopen initialization (bit0=Machine code0)	NO	NO	0	R
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0)	NO	NO	0	R
D1072	Reserved	-	-		-
D1073	CANopen break channel (bit0=Machine code0)	NO	NO		R
D1074	Error code of master error 0 : No error 1: Slave station setting error 2: Synchronizing cycle setting error (too small)	NO	NO	0	R
D1075	Reserved	-	-		-
D1076	SDO error message (main index value)	NO	NO		R
D1077	SDO error message (secondary index value)	NO	NO		R
D1078	SDO error message (error code)	NO	NO		R
D1079	SDO error message (error code)	NO	NO		R
D1080	Reserved	-	-		-
D1081	Reserved	-	-		-
D1082	Reserved	-	-		-
D1083	Reserved	-	-		-
D1084	Reserved	-	-		-
D1085	Reserved	-	-		-
D1086	Reserved	-	-		-
D1087	Reserved	-	-		-
D1088	Reserved	-	-		-
D1089	Reserved	-	-		-
D1090	Synchronizing cycle setting	NO	YES	4	RW
D1091	Sets slave station On or Off (bit0-bit7 correspond to slave stations number 0-7)	NO	YES	FFFFH	RW
D1092	Delay before start of initialization	NO	YES	0	RW
D1093	Break time detection	NO	YES	1000ms	RW
D1094	Break number detection	NO	YES	3	RW
D1095	Reserved	-	-		-
D1096	Reserved	-	-		-
D1097	Corresponding real-time transmission type (PDO) Setting range: 1-240	NO	YES	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1-240	NO	YES	1	RW
D1099	Initialization completion delay time Setting range: 1 to 60000 sec	NO	YES	15 sec.	RW
$\begin{gathered} \mathrm{D} 2000+100 \\ \times \mathrm{n} \end{gathered}$	Station number n of slave station Setting range: 0-127 0 : No CANopen function	NO	YES	0	RW

The CFP2000 supports 8 slave stations under the CANopen protocol; each slave station occupies 100 special D locations; stations are numbered $1-8$, total of 8 stations.

Explanation of slave Slave station no. 1 station number

Slave station no. 1	D2000
	$\begin{gathered} \text { D2001 } \\ \text { D2099 } \end{gathered}$
Slave station no. 2	D2100
	D2101
	-199
	D2199
Slave station no. 3	D2200
	D2201
	$\begin{gathered} 1 \\ 0299 \end{gathered}$
	ת
Slave station no. 8	D2700
	D2701
	I
	D2799

Node ID Slave station no. 1 torque restrictions 1
Address 4(H) corresponding to receiving channel 4 Node ID Slave station no. 2 torque restrictions 1
Address 4(H) corresponding to receiving channel 4 Node ID Slave station no. 3 torque restrictions I
Address 4(H) corresponding to receiving channel 4

Node ID
Slave station no. 8 torque restrictions I
Address $4(\mathrm{H})$ corresponding to receiving channel 4

1. The range of n is $0-7$
2. • indicates PDOTX, $\mathbf{\Delta}$ indicates PDORX; unmarked special D can be refreshed using the

CANFLS command

Special D	Description of Function	Default	R / W
$\mathrm{D} 2000+100 \times \mathrm{n}$	Station number n of slave station Setting range: 0-127 0: No CANopen function	0	RW
$\mathrm{D} 2002+100 \times \mathrm{n}$	Manufacturer code of slave station number n (L)	0	R
D2003+100 n	Manufacturer code of slave station number $\mathrm{n}(\mathrm{H})$	0	R
$\mathrm{D} 2004+100 \times \mathrm{n}$	Manufacturer's product code of slave station number $\mathrm{n}(\mathrm{L})$	0	R
$\mathrm{D} 2005+100 \times \mathrm{n}$	Manufacturer's product code of slave station number $\mathrm{n}(\mathrm{H})$	0	R

Basic definitions

Special D	Description of Function	Default	PDO Mapping	PDO Default				R / W
				1	2	3	4	
D2006+100×n	Communications break handling method of slave station number n	0	6007H-0010H					RW
D2007+100×n	Error code of slave station number n error	0	$603 \mathrm{FH}-0010 \mathrm{H}$					R
D2008+100×n	Control word of slave station number n	0	$6040 \mathrm{H}-0010 \mathrm{H}$	\bullet		\bullet	\bullet	RW
D2009+100×n	Status word of slave station number n	0	$6041 \mathrm{H}-0010 \mathrm{H}$	-		Δ	Δ	R
D2010+100×n	Control mode of slave station number n	2	6060H-0008H					RW
D2011+100×n	Actual mode of slave station number n	2	$6061 \mathrm{H}-0008 \mathrm{H}$					R

Velocity Control

Slave station number $\mathrm{n}=0-7$

Special D	Description of Function	Default	PDO Mapping	PDO Default			R/W
				1	2	4	
D2001+100×n	Torque restriction on slave station number n	0	$6072 \mathrm{H}-0010 \mathrm{H}$				RW
D2012+100×n	Target speed of slave station number n	0	$6042 \mathrm{H}-0010 \mathrm{H}$	\bullet			RW
D2013+100×n	Actual speed of slave station number n	0	$6043 \mathrm{H}-0010 \mathrm{H}$	-			R
D2014+100×n	Error speed of slave station number n	0	$6044 \mathrm{H}-0010 \mathrm{H}$				R
D2015+100×n	Acceleration time of slave station number n	1000	604FH-0020H				R
D2016+100×n	Deceleration time of slave station number n	1000	$6050 \mathrm{H}-0020 \mathrm{H}$				RW

20XXH correspondences: MI / MO / AI / AO
Slave station number $\mathrm{n}=0-7$

Special D	Description of Function	Default	PDO Mapping	PDO Default				R / W
				1	2	3	4	
D2026+100×n	Ml status of slave station number n	0	2026H-0110H		Δ			RW
D2027+100×n	MO setting of slave station number n	0	$2026 \mathrm{H}-4110 \mathrm{H}$		\bullet			RW
D2028+100×n	Al1 status of slave station number n	0	2026H-6110H		A			RW
D2029+100×n	Al2 status of slave station number n	0	$2026 \mathrm{H}-6210 \mathrm{H}$		A			RW
D2030+100×n	Al3 status of slave station number n	0	2026H-6310H		Δ			RW
D2031+100×n	AO1 status of slave station number n	0	2026H-A110H		\bullet			RW
D2032+100×n	AO2 status of slave station number n	0	$2026 \mathrm{H}-\mathrm{A} 210 \mathrm{H}$		\bullet			RW
D2033+100×n	AO3 status of slave station number n	0	2026H-A310H		\bullet			RW

PDO reflection length setting

Special D	Description of Function	Default	R $/ \mathrm{W}$
D2034+100×n	Real-time transmission setting of slave station number n	000 AH	RW
D2067+100×n	Real-time reception setting of slave station number n	0000 H	RW

16-5-4 PLC Communication address

Device	Range	Type	Address (Hex)
X	00-37 (Octal)	bit	0400-041F
Y	00-37 (Octal)	bit	0500-051F
T	00-159	bit / word	0600-069F
M	000-799	bit	0800-0B1F
M	1000-1079	bit	0BE8-0C37
C	0-79	bit / word	0E00-0E47
D	00-399	word	1000-118F
D	1000-1198	word	13E8-144B
D	2000-2799	word	17D0-1AEF

Command code that can be used

Function Code	Description of Function	Function target
01	Coil status read	$\mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
02	Input status read	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
03	Read single unit of data	$\mathrm{T}, \mathrm{C}, \mathrm{D}$
05	Compulsory single coil status change	$\mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
06	Write single unit of data	$\mathrm{T}, \mathrm{C}, \mathrm{D}$
0 F	Compulsory multiple coil status change	$\mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
10	Write multiple units of data	$\mathrm{T}, \mathrm{C}, \mathrm{D}$

NOTE: When PLC functions have been activated, the CFP2000 can match PLC and driver parameters; this method employs different addresses and driver (default station number is 1, PLC sets station number as 2).

16-6 Introduction to the Command Window

16-6-1 Overview of basic commands

Ordinary commands

Command code	Function	OPERAND	Execution speed (us)
LD	Load contact a	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	0.8
LDI	Load contact b	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	0.8
AND	Connect contact a in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	0.8
ANI	Connect contact b in series	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	0.8
OR	Connect contact a in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	0.8
ORI	Connect contact b in parallel	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	0.8
ANB	Series circuit block	N / A	0.3
ORB	Parallel circuit block	N / A	0.3
MPS	Save to stack	N / A	0.3
MRD	Stack read (pointer does not change)	N / A	0.3
MPP	Read stack	N / A	0.3

Output command

Command code	Function	OPERAND	Execution speed (us)
OUT	Drive coil	Y, M	1
SET	Action continues (ON)	Y, M	1
RST	Clear contact or register	Y, M, T, C, D	1.2

Timer, counter

Command code	Function	OPERAND	Execution speed (us)
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Main control command

Command code	Function	OPERAND	Execution speed (us)
MC	Common series contact connection	N0-N7	0.4
MCR	Common series contact release	N0-N7	0.4

Contact rising edge / falling edge detection command

Command code	Function	OPERAND	Execution speed (us)
LDP	Start of forward edge detection action	X, Y, M, T, C	1.1
LDF	Start of reverse edge detection action	X, Y, M, T, C	1.1
ANDP	Forward edge detection series connection	X, Y, M, T, C	1.1
ANDF	Reverse edge detection series connection	X, Y, M, T, C	1.1
ORP	Forward edge detection parallel connection	X, Y, M, T, C	1.1
ORF	Reverse edge detection parallel connection	X, Y, M, T, C	1.1

Upper / lower differential output commands

Command code	Function	OPERAND	Execution speed (us)
PLS	Upper differential output	Y, M	1.2
PLF	Lower differential output	Y, M	1.2

Stop command

Command code	Function	OPERAND	Execution speed (us)
END	Program conclusion	N/A	0.2

Other commands

Command code	Function	OPERAND	Execution speed (us)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
P	Index	P	0.3

16-6-2 Detailed explanation of basic commands

Command	Function					
LD	Load contact a					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The LD command is used for contact a starting at the left busbar or contact a starting

Example | Ladder diagram: | Command code: | Description: |
| :--- | :--- | :--- |
| LD | X0 | Load Contact a of X0 |

Command	Function					
LDI	Load contact b					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The LDI command is used for contact b starting at the left busbar or contact b starting
at a contact circuit block; its function is to save current content and save the acquired
contact status in the cumulative register.

Command	Function					
AND	Connect contact a in series					
	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	$\mathrm{M} 0-\mathrm{M} 799$	$\mathrm{~T} 0-159$	$\mathrm{C} 0-\mathrm{C} 79$	$\mathrm{D} 0-\mathrm{D} 399$
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The AND command is used to create a series connection to contact a; first reads
 current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.

Command code:		
LDI	X1	Description:
Load Contact b of X1		
AND	X0	Create series connection to contact a of X0
OUT	Y1	Drive Y1 coil

Command	Function						
ANI	Connect contact b in series						
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399	
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	

The ANI command is used to create a series connection to contact b; its function is to

Explanation first read current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.

Command code: Description:

LD	X1	Load Contact a of X1
ANI	X0	Create series connection to contact b of X0
OUT	Y1	Drive Y1 coil

Command	Function					
OR	Connect contact a in parallel					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The OR command is used to establish a parallel connection to contact a; its function is

Explanation to first read current status of the designated series contact and logical operation results before contact in order to perform "OR" operation; saves results in cumulative register.

Command code: Description:

LD	X0	Load Contact a of X0
OR	X1	Create series connection to contact a of X1
OUT	Y1	Drive Y1 coil

Command	Function					
ORI	Connect contact b in parallel					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The ORI command is used to establish a parallel connection to contact b; its function
 is to first read current status of the designated series contact and logical operation results before contact in order to perform "OR" operation; saves results in cumulative register.

Exam	Ladder ${ }_{\text {X }}{ }_{\text {X }}$	Command code:		Description:
		LD	X0	Load Contact a of X0
	X1	ORI	X1	Create series connection to contact of X1
		OUT	Y1	Drive Y1 coil

Command	Function	
ANB	Series circuit block	N/A
Operand		

Explanation ANB performs an "AND" operation on the previous saved logic results and the current cumulative register content.

Example \begin{tabular}{l}
Ladder diagram: Command code:

LD

D0scription:

Load Contact a of X0
\end{tabular}

Command	Function	
MPS	Save to stack	
Operand	N/A	

Command	Function
MRD	Read stack (pointer does not change)
Operand	N/A

Explanation Reads stack content and saves to cumulative register. (Stack pointer does not change)

Command	Function	
MPP	Read stack	N/A
Operand		

Explanation Retrieves result of previously-save logical operation from the stack, and saves to cumulative register. (Subtract one from stack pointer)

Example	Ladder diagram: MPS	Command code:		Description:
		LD	X0	Load Contact a of X0
		MPS		Save to stack
	H1-	AND	X1	Create series connection
	X2	OUT	Y1	Drive Y1 coil
		MRD		Read stack (pointer does not change)
	-	AND	X2	Create series connection to contact a of X2
	MPP	OUT	M0	Drive M0 coil
	END	MPP		Read stack
		OUT	Y2	Drive Y2 coil
		END		Program conclusion

Command	Function					
OUT	Drive coil					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	-	\checkmark	\checkmark	-	-	-

Explanation	Outputs result of logical operation before OUT command to the designated element. Coil contact action:				
	Result:	Out command			
		Coil	Access Point:		
			Contact a (N.O.)	Contact b (N.C.)	
	FALSE	Off	Not conducting	Conducting	
	TRUE	On	Conducting	Not conducting	
Example	Ladder diagram:			Command code:	Description:
				LD X0	Load Contact b of X0
				AND X 1	connection to contact a of X 1
				OUT Y1	Drive Y1 coil

Command	Function						
SET	Action continues (ON)						
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399	
	-	\checkmark	\checkmark	-	-	-	

the designated element will be set as On, and will
Explanation be maintained in an On state, regardless of whether the SET command is still driven. The RST command can be used to set the element as Off.

Command code:	Description:	
LD	X0	Load Contact a of X0
Lostablish parallel		

Command	Function					
RST	Clear contact or register	M0-M799	T0-159	C0-C79	D0-D399	
Operand	X0-X17	Y0-Y17	M0-M	\checkmark	\checkmark	\checkmark
	When the RST command is driven, the action of the designated element will be as follows:					

Element	Mode
Y, M	Both coil and contact will be set as Off.
T, C	The current timing or count value will be set as 0 , and both the coil and contact will be set as Off.
D	The content value will be set as 0.

If the RST command has not been executed, the status of the designated element will remain unchanged.

Command code:	Description:		
LD	X0	Load Contact a of X0	
RST	Y5	Clear contact register	or

Command	Function	
TMR	16-bit timer	T0-T159, K0-K32,767

N.O. (Normally Open) contact	Closed
N.C. (Normally Close) contact	Open

If the RST command has not been executed, the status of the designated element will remain unchanged.

Example

Ladder diagram:

Command code:		Description:
LD	X0	Load Contact a of X0

Command	Function	
CNT	16-bit counter	
Operand	C-K	C0-C79, K0-K32,767
	C-D	C0-C79, D0-D399

Explanation
When the CNT command is executed from OFF to ON, this indicates that the designated counter coil goes from no power to electrified, and 1 will be added to the counter's count value; when the count reaches the designated value (count value = set value), the contact will have the following action:

N.O. (Normally Open) contact	Closed
N.C. (Normally Close) contact	Open

After the count value has been reached, the contact and count value will both remain unchanged even if there is continued count pulse input. Please use the RST command if you wish to restart or clear the count.
Example

Ladder diagram:

X0	CNT	C2	K100

Command code: Description:
LD X0 Load Contact a of X0
CNT C2 K100
C2counter
Set value as K100

MC/MCR Connect/release a common series contact
Operand N0-N7
Explanation
MC is the main control initiation command, and any commands between MC and MCR will be executed normally. When the MC command is OFF, any commands between MC and MCR will act as follows:

Determination of commands	Description
Ordinary timer	The timing value will revert to 0, the coil will lose power, and the contact will not operate
Counter	The coil will lose power, and the count value and contact will stay in their current state
Coil driven by OUT command	None receive power Elements driven by SET, RST commands Will remain in their current state
Applications commands	None are actuated

MCR is the main control stop command, and is placed at the end of the main control program. There may not be any contact commands before the MCR command.
The MC-MCR main control program commands support a nested program structure with a maximum only 8 levels; use in the order NO-N7, please refer to the following program:

Command code:	Description:	
LD	X0	Load Contact a of X0
MC	N0	Connection of N0 common series contact
LD	X1	Load Contact a of X1
OUT	Y0	Drive Y0 coil
L		
LD	X2	Load Contact a of X2
MC	N1	Connection of N1 common series contact
LD	X3	Load Contact a of X3
OUT	Y1	Drive Y1 coil
:	N1	Release N1 common series contact
MCR		
:	N0	Release N0 common series contact
MCR	N0	
LD	X10	Load Contact a of X10
MC	N0	Connection of N0 common series
contact		
LD	X11	Load Contact a of X11
OUT	Y10	Drive Y10 coil
:	N0	Release N0 common series contact

Command	Function					
ODP	Start of forward edge detection action					
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation The LDP command has the same usage as LD, but its action is different; its function is to save current content, while also saving the detected state of the rising edge of the contact to the cumulative register.

Command Description:
code:

LDP	X0	Start of X0 forward edge detection action
AND	X 1	Create series connection to contact a of X 1

OUT Y1 Drive Y1 coil
Remark
Refer to the function specifications table for each device in series for the scope of usage of each operand.
A rising edge contact will be TRUE after power is turned on if the rising edge contact is On before power is turned on to the PLC.

Command	Function					
LDF	Start of reverse edge detection action					
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The LDF command has the same usage as LD, but its action is different; its function is
 contact to the cumulative register.

Command code: Description:

LDF	X0	Start of X0 reverse edge detection action
AND	X1	Create series connection to contact a of X 1
OUT	Y1	Drive Y1 coil

Command	Function					
ANDP	Forward edge detection series connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation	The ANDP command used for a contact rising edge detection series connection.		
Example	Command code:	Description:	
Ladder diagram:	LD	X0	Load Contact a of X0

Command	Function					
ANDF	Reverse edge detection series connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation	The ANDF command is used for a contact falling edge detection series connection.						
Example	Ladder diagram:			$\begin{aligned} & \text { Command code: } \\ & \text { LD X0 } \end{aligned}$		Description: Load Contact a of X0	
				ANDF		X1 Re detect conne	e edge series
				OUT	Y1	Drive	
Command	Function						
ORP	Forward edge detection parallel connection						
Operand	X0-X17	Y0-Y17	M0-M799	T0-159		C0-C79	D0-D399
	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	-

Explanation The ORP command is used for a contact rising edge detection parallel connection.

Ladder diagram:

Command code:

LD	X0	Load Contact a of X0
ORP	X1	X1 Forward edge detection parallel connection
OUT	Y1	Drive Y1 coil

Command	Function						
ORF	Reverse edge detection paralle connection						
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399	
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	

Explanation The ORF command is used for contact falling edge detection parallel connection.

Ladder diagram:

Command code:
$\left.\begin{array}{cll}\text { LD } & \text { X0 } & \begin{array}{l}\text { Load Contact a of X0 } \\ \text { O1 Reverse edge } \\ \text { ORF }\end{array} \\ \text { X1 } \\ \text { detection parallel } \\ \text { connection }\end{array}\right]$

Command	Function					
PLS	Upper differential output	M0-M799	T0-159	C0-C79	D0-D399	
	X0-X17	Y0-Y17	M0-M7	-		

Upper differential output commands. When $\mathrm{X} 0=\mathrm{OFF} \rightarrow \mathrm{ON}$ (positive edge-triggered),

Explanation the PLS command will be executed, and M0 will send one pulse, with a pulse length consisting of one scanning period.

Command code: Description:

LD	XO	Load Contact a of X0
PLS	MO	MO Upper differential output
LD	MO	Load Contact a of M0
SET	YO	YO Action continues (ON)

Command	Function					
PLF	Lower differential output	C0-Y79				
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	-	\checkmark	\checkmark	-	-	-

Lower differential output command. When $\mathrm{XO}=\mathrm{ON} \rightarrow$ OFF (negative edge-triggered),
Explanation the PLF command will be executed, and MO will send one pulse, with pulse length consisting of one scanning period.

Time sequence diagram:
\qquad

Command code: Description:

LD	X0	Load Contact a of X0
PLF	M0	M0 Lower differential output
LD	M0	Load Contact a of M0
SET	Y0	Y0 Action continues $(O N)$

Command	Function	
END	Program conclusion	
Operand	N/A	

An END command must be added to the end of a ladder diagram program or
Explanation command program. The PLC will scan from address 0 to the END command, and will return to address 0 and begins scanning again after execution.

Command	Function			
NOP	No action			
Operand	N/A			
Explanation	The command NOP does not perform any operation in the program. Because execution of this command will retain the original logical operation results, it can be used in the following situation: the NOP command can be used to replace a command that is deleted without changing the program length.			
Example	Ladder diagram: NOP command will be simplified and not displayed when the ladderdiagram is displayed.	Comm LD	code: X0	Description: Load Contact b of XO
		NOP		No action
		OUT	Y1	Drive Y1 coil

Command	Function	
INV	Inverse of operation results	N/A
Operand	N	

Explanation
Saves the result of the logic inversion operation prior to the INV command in the cumulative register.

Example	Ladder diagram:	Command code:		Description:
		LD	X0	Load Contact a of X0
		INV		Inverse of operation results
		OUT	Y1	Drive Y1 coil

Command	Function	
\mathbf{P}	Index	
Operand	P0-P255	

Pointer P is used to subprogram call command API 01 CALL. Use does not require
Explanation starting from zero, but the number cannot be used repeatedly, otherwise an unpredictable error will occur.

Example

Ladder diagram:

Command code: Description:

LD	X0	Load Contact a of X0
CALL	P10	Call command CALL to
P10		
P10		Pointer P10
LD	X1	Load Contact a of X1
OUT	Y1	Drive Y1 coil

16-6-3 Overview of application commands

Classification	API	Command code		P command	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
Circuit control	01	CALL	-	\checkmark	Call subprogram	3	-
	02	SRET	-	-	Conclusion of subprogram	1	-
	06	FEND	-	-	Conclusion of main program	1	-
Send comparison	10	CMP	DCMP	\checkmark	Compares set output	7	13
	11	ZCP	DZCP	\checkmark	Range comparison	9	17
	12	MOV	DMOV	\checkmark	Data movement	5	9
	13	SMOV	DSMOV	\checkmark	Nibble movement	11	21
	15	BMOV	-	\checkmark	Send all	7	-
Four logical operations	18	BCD	DBCD	\checkmark	BIN to BCD transformation	5	9
	19	BIN	DBIN	\checkmark	BCD to BIN transformation	5	9
	20	ADD	DADD	\checkmark	BIN addition	7	13
	21	SUB	DSUB	\checkmark	BIN subtraction	7	13
	22	MUL	DMUL	\checkmark	BIN multiplication	7	13
	23	DIV	DDIV	\checkmark	BIN division	7	13
	24	INC	DINC	\checkmark	BIN add one	3	
	25	DEC	DDEC	\checkmark	BIN subtract one	3	5
Rotational displacement	30	ROR	DROR	\checkmark	Right rotation	5	-
	31	ROL	DROL	\checkmark	Left rotation	5	-
Data Process	40	ZRST	-	\checkmark	Clear range	5	-
	41	DECO	DDECO	\checkmark	Decoder	7	13
	42	ENCO	DENCO	\checkmark	Encoder	7	13
	43	Sum	DSUM	\checkmark	ON bit number	5	9
	44	BON	DBON	\checkmark	ON bit judgement	7	13
	49	-	DFLT	\checkmark	BIN whole number \rightarrow binary floating point number transformation	-	9
Floating point operation	110	-	DECMP	\checkmark	Comparison of binary floating point numbers	-	13
	111	-	DEZCP	\checkmark	Comparison of binary floating point number range	-	17
	116	-	DRAD	\checkmark	Angle \rightarrow Radian	-	9
	117	-	DDEG	\checkmark	Radian \rightarrow Angle	-	9
	120	-	DEADD	\checkmark	Binary floating point number addition	-	13
	121	-	DESUB	\checkmark	Binary floating point number subtraction	-	13
	122	-	DEMUL	\checkmark	Binary floating point number multiplication	-	13
	123	-	DEDIV	\checkmark	Binary floating point number division	-	13
	124	-	DEXP	\checkmark	Binary floating point number obtain exponent	-	9
	125	-	DLN	\checkmark	Binary floating point number obtain logarithm	-	9
	127	-	DESQR	\checkmark	Binary floating point number find square root	-	9
	129	INT	DINT	\checkmark	Binary floating point number \rightarrow BIN whole number transformation	-	9
	130	-	DSIN	\checkmark	Binary floating point number SIN operation	-	9
	131	-	DCOS	\checkmark	Binary floating point number COS operation	-	9
	132	-	DTAN	\checkmark	Binary floating point number TAN operation	-	9
	133	-	DASIN	\checkmark	Binary floating point number ASIN operation	-	9

Classification	API	Command code		P command	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
	134	-	DACOS	\checkmark	Binary floating point number ACOS operation	-	9
	135	-	DATAN	\checkmark	Binary floating point number ATAN operation	-	9
Floating point operation	136	-	DSINH	\checkmark	Binary floating point number SINH operation	-	9
	137	-	DCOSH	\checkmark	Binary floating point number COSH operation	-	9
	138	-	DTANH	\checkmark	Binary floating point number TANH operation	-	9
Other	147	SWAP	DSWAP	\checkmark	Exchange the up / down 8 bits	3	5
Communication	150	MODRW	-	\checkmark	Modbus read/write	7	-
Calendar	160	TCMP	-	\checkmark	Compare calendar data	11	-
	161	TZCP	-	\checkmark	Compare calendar data range	9	-
	162	TADD	-	\checkmark	Calendar data addition	7	-
	163	TSUB	-	\checkmark	Calendar data subtraction	7	-
	166	TRD	-	\checkmark	Calendar data read	3	-
GRAY code	170	GRY	DGRY	\checkmark	$\mathrm{BIN} \rightarrow$ GRY code transformation	5	9
	171	GBIN	DGBIN	\checkmark	GRY code \rightarrow BIN transformation	5	9
Contact form logical operation	215	LD\&	DLD\&	-	Contact form logical operation LD\#	5	9
	216	LD\|	DLD\|	-	Contact form logical operation LD\#	5	9
	217	LD^	DLD^	-	Contact form logical operation LD\#	5	9
	218	AND\&	DAND\&	-	Contact form logical operation AND\#	5	9
	219	ANDI	DANDI	-	Contact form logical operation AND\#	5	9
	220	AND^	DAND^	-	Contact form logical operation AND\#	5	9
	221	OR\&	DOR\&	-	Contact form logical operation OR\#	5	9
	222	OR\|	DOR\|	-	Contact form logical operation OR\#	5	9
	223	OR^	DOR^	-	Contact form logical operation OR\#	5	9
Contact form compare command	224	LD=	DLD =	-	Contact form compare LD*	5	9
	225	LD >	DLD >	-	Contact form compare LD*	5	9
	226	LD $<$	DLD $<$	-	Contact form compare LD*	5	9
	228	LD $<>$	DLD $<>$	-	Contact form compare LD*	5	9
	229	$\mathrm{LD}<=$	DLD $<=$	-	Contact form compare LD*	5	9
	230	LD $>=$	DLD $>=$	-	Contact form compare LD*	5	9
	232	AND =	DAND =	-	Contact form compare AND※	5	9
	233	AND >	DAND >	-	Contact form compare AND ※	5	9
	234	AND $<$	DAND <	-	Contact form compare AND※	5	9
	236	AND $<>$	DAND $<>$	-	Contact form compare AND ※	5	9
	237	AND $<=$	DAND $<=$	-	Contact form compare AND ※	5	9
	238	AND $>=$	DAND $>=$	-	Contact form compare AND※	5	9
	240	$\mathrm{OR}=$	DOR =	-	Contact form compare OR*	5	9
	241	OR >	DOR >	-	Contact form compare OR*	5	9

Classification	API	Command code		P command	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
	242	OR <	DOR<	-	Contact form compare OR*	5	9
	244	OR $<>$	DOR<>	-	Contact form compare OR*	5	9
	245	$\mathrm{OR}<=$	DOR $<=$	-	Contact form compare OR*	5	9
	246	OR $>=$	DOR $>=$	-	Contact form compare OR*	5	9
Classification	API	Command code		P command	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
Floating point contact form	275	-	FLD $=$	-	Floating point number contact form compare LD*	-	9
	276	-	FLD >	-	Floating point number contact form compare LD*	-	9
	277	-	FLD $<$	-	Floating point number contact form compare LD*	-	9
Compare command	278	-	FLD $<>$	-	Floating point number contact form compare LD*	-	9
	279	-	$\mathrm{FLD}<=$	-	Floating point number contact form compare LD*	-	9
	280	-	FLD $>=$	-	Floating point number contact form compare LD*	-	9
	281	-	FAND $=$	-	Floating point number contact form compare AND*	-	9
	282	-	FAND >	-	Floating point number contact form compare AND*	-	9
	283	-	FAND $<$	-	Floating point number contact form compare AND*	-	9
	284	-	FAND $<>$	-	Floating point number contact form compare AND*	-	9
	285	-	FAND $<=$	-	Floating point number contact form compare AND*	-	9
	286	-	FAND $>=$	-	Floating point number contact form compare AND*	-	9
	287	-	$\mathrm{FOR}=$	-	Floating point number contact form compare OR※	-	9
	288	-	FOR >	-	Floating point number contact form compare OR※	-	9
	289	-	FOR<	-	Floating point number contact form compare OR※	-	9
	290	-	FOR $<>$	-	Floating point number contact form compare OR※	-	9
	291	-	FOR $<=$	-	Floating point number contact form compare OR※	-	9
	292	-	FOR $>=$	-	Floating point number contact form compare OR※	-	9
Driver special command	139	RPR	-	\checkmark	Read servo parameter	5	-
	140	WPR	-	\checkmark	Write servo parameter	5	-
	141	FPID	-	\checkmark	Driver PID control mode	9	-
	142	FREQ	-	\checkmark	Driver torque control mode	7	-
	261	CANRX	-	\checkmark	Read CANopen slave station data	9	-
	264	CANTX	-	\checkmark	Write CANopen slave station data	9	-
	265	CANFLS	-	\checkmark	Refresh special D corresponding to CANopen	3	-
	320	ICOMR	DICOMR	\checkmark	Internal communications read	9	17
	321	ICOMW	DICOMW	\checkmark	Internal communications write	9	17
	323	WPRA	-	-	RAM write in drive parameters	5	-

16-6-4 Detailed explanation of applications commands

API	\square	CALL		\mathbf{P}	S
01			Call subprogram		

	Bit device			Word device								16-bit command (3 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
Notes on operand usage:												32-bit command			
												-	-	-	-
CFP2000 series device: The S operand can designate P0-P63												Flag signal: none			

Explanation - S: Call subprogram pointer.

- The subprogram must end after the SRET command.
- Refer to the FEND command explanation and sample content for detailed command functions.

API					
02		SRET		-	Conclusion of subprogram

	Bit device		Word device								16-bit co	mand (1 ST		
X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FEND	Continuous	-	-
Notes on operand usage:											32-bit command			
No	rand										-	---	-	-
A contact-driven command is not needed											Flag signal: none			

Explanation - A contact-driven command is not needed. Automatically returns next command after CALL command

- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.

API					
06		FEND		-	Conclusion a main program

Explanation

CALL command process

This command indicates the end of the main program. It is the same as the END command when the PLC executes this command.

- The CALL command program must be written after the FEND command, and the SRET command added to the end of the subprogram.
- When using the FEND command, an END command is also needed. However, the END command must be placed at the end, after the main program and subprogram.

API	D	CMP			S1 S2	(D)
10	\mathbf{D}	Compares set output				

	Bit device				Word device								
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		
S				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$		
S 2				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$		
D		$*$	$*$										

16 -bit command (7 STEP)			
CMP	Continuous execution type	CMPP	Pulse execution type
32-bit command (13 STEP)			
DCMP	Continuous execution type	DCMPP	Pulse execution type

Notes on operand usage:
The operand D occupies three consecutive points

Flag signal: none

Explanation

- S1: Compare value 1.

S2: Compare value 2.
D: Results of comparison.

- Compares the size of the content of operand S1 and S2; the results of comparison are expressed in D.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16-bit command, when b15 is 1 , this indicates a negative number.

Example

- When the designated device is Y0, it automatically occupies Y0, Y1 and Y2.
- When $\mathrm{X} 10=\mathrm{ON}$, the CMP command executes, and Y0, Y1 or Y2 will be ON. When $\mathrm{X} 10=\mathrm{OFF}$, the CMP command will not execute, and the state of Y0, Y1 and $Y 2$ will remain in the state prior to $\mathrm{X} 10=O F F$.
- If \geq, \leq, or \neq results are needed, they can be obtained via series / parallel connections of $\mathrm{YO}-\mathrm{Y} 2$.

- To clear results of comparison, use the RST or ZRST command.

API	D	ZCP		S1 S2 S S S	S	Range comparison

		de					Vord	devic				16-bit co	mand (9 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ZCP	Continuous	ZCPP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (17 STEP)			
S				*	*	*	*	*	*	*	*	DZCP	Continuous	DZCPP	Pulse
D		*	*										execution type		execution type
Notes on operand usage: The content value of operand S1 is less than the content value of S2 operand The operand D occupies three consecutive points												Flag sig	l: none		

- S1: Lower limit of range comparison.

S2: Upper limit of range comparison.
S: Comparative value.
D: Results of comparison.

- When the comparative value S is compared with the lower limit S1 and upper limit S2, the results of comparison are expressed in D.
- When lower limit S1 > upper limit S2, the command will use the lower limit S1 to perform comparison with the upper and lower limit.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.

Example

- When the designated device is M0, it automatically occupies M0, M1 and M2.
- When $\mathrm{X} 0=\mathrm{ON}$, the ZCP command executes, and M0, M1 or M2 will be ON. When X0 = OFF, the ZCP command will not execute, and the state of M0, M1 or M 2 will remain in the state prior to $\mathrm{X} 0=\mathrm{OFF}$.
- If \geq, \leq, or \neq results are needed, they can be obtained via series / parallel connections of M0-M2.

- To clear results of comparison, use the RST or ZRST command.

API	D MOV		P	S D	Data movement
12	D		(

		dev					ord	devic				16-bit co	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MOV	Continuous	MOVP	Pulse
S				*	*	*	*	*	*	*	*		execution type		execution type
D							*	*	*	*	*	32-bit command (9 STEP)			
	S	pe	nd	age	one							DMOV	Continuous execution type	DMOVP	Pulse execution type
												Flag signal:			

Explanation

- S: Data source.

D: Destination of data movement.

- When this command is executed, the content of S content will be directly moved to D. When the command is not executed, the content of D will not change.

Example

- When $\mathrm{X0} 0=\mathrm{OFF}$, the content of D10 will not change; if $\mathrm{X0}=\mathrm{ON}$, the value K 10 will be sent to data register D10.
- When $\mathrm{X} 1=\mathrm{OFF}$, the content of D10 will not change; if $\mathrm{X} 1=\mathrm{ON}$, the current value of T0 will be sent to data register D10.

$\frac{\text { API }}{13}$					
13	D	SMOV	P	(S) m1 m2 D D	Nibble movement

	Bit device			Word device								16-bit command (11 STEP)					
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MOV	Continuous execution type	SMOVP	$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$		
S				*	*	*	*	*	*	*	*						
D							*	*	*	*	*	32-bit command (21 STEP)			Pulse execution type		
Notes on operand usage: none																	
												Flag sign	I: M1168				

Explanation

- S: Data source.
m 1 : The data source transfers starting bit number.
m 2 : The data source transfers individual bit number.
D: Transfer destination.
n : Transferring starting bit number of the destination.
- BCD mode (M1168 = OFF):

SMOV enables and operates BCD under this mode, the operation is similar to the way SMOV operates decimal numbers. The command copies specific bit number of arithmetic element S (S is a 4-figure decimal number), and sends the bit number to arithmetic element D (D is also a 4-figure decimal number). The current data on the target register will be covered.

- m 1 range: $1-4$
- m 2 range: $1-\mathrm{m} 1$ (m 2 cannot be larger than m 1)
- n range: $m 2-4$ (n cannot be smaller than $m 2$)
- When M1168 = OFF (BCD mode), X0 is ON, the instruction transfers two digits of the decimal number starting from the fourth digit of the decimal number (the digit in the thousands place of the decimal number) in D10 to the two digits of the decimal number starting from the third digit of the decimal number (the digit in the hundreds place of the decimal number) in D20. After the instruction is executed, the digits in the thousands place of the decimal number $\left(10^{3}\right)$ and the ones place of the decimal number (10°) in D20 are unchanged.

D10 (16-bit binary number)
Automatic conversion
D10 (4-digit binary-coded decimal)
Transferring the digits
D20 (4-digit binary-coded decimal)
Automatic conversion
D20 (16-bit binary number)

- When M1168 is ON (BIN mode), and the SMOV command is executed, D10 and D20 do not change in BCD mode, but send 4 digits as a unit in BIN mode.

D10 (16-bit binary number)
Transferring the digits
D20 (16-bit binary number)

API	BMOV		S	(D	(
15		Send all			

		dev					Vord	devic				16-bit c	mmand (7 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	BMOV	: Continuous	BMOVP	Pulse
S						*	*	*	*	*	*		execution type		execution type
D							*	*	*	*	*	32-bit command			
n				*	*				*	*					
$\begin{aligned} & \text { Notes on operand usage: } \\ & \text { n operand scope } \mathrm{n}=1 \text { to } 512 \end{aligned}$												Flag sign	al: none		

- S: Initiate source device.

D: Initiate destination device.
n : Send block length.

- The content of n registers starting from the initial number of the device designated by S will be sent to the n registers starting from the initial number of the device designated by n; if the number of points referred to n exceeds the range used by that device, only points within the valid range will be sent.

Example 1

- When $\mathrm{X} 10=\mathrm{ON}$, the content of registers D0-D3 will be sent to the four registers D20 to D23.

Example 2

- If the designated bit devices $\mathrm{KnX}, \mathrm{KnY}$, and KnM are sent, S and D must have the same number of nibbles, which implies that n must be identical.

- In order to prevent overlap between the transmission addresses of two operands, which would cause confusion, make sure that the addresses designated by the two operands have different sizes, as shown below:
When $S>D$, send in the order (1) \rightarrow (2) \rightarrow (3).

When $S<D$, send in the order (3) \rightarrow (2) \rightarrow (1).

API	-18	BCD			S
18	\mathbf{D}	D	BIN to BCD transformation		

		dev					Vord	devic				16-bit co	mmand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	BCD	Continuous	BCDP	Pulse
S						*	*	*	*	*	*		execution type		execution type
D							*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: none												DBCD	execution type		Pulse execution type

Explanation

- S: Data source.

D: Destination of data movement.

- The content of data source S (BIN value, 0-9999) executes BCD transformation and saves in D.
- Arithmetic elements S and D use the F device, it can only use 16-bit command.

Example

- When $\mathrm{X0}$ is ON , and the BIN value of D10 is transformed to BCD value, the digit is saved in 4-bit element of K1Y0 (Y0-Y3).

■ If $\mathrm{D} 10=001 \mathrm{E}(\mathrm{Hex})=0030$ (Decimal), the executed result will be $\mathrm{Y} 0-\mathrm{Y} 3=0000$ (BIN).

API		BIN			S	D
19	\mathbf{D}	BIN	\mathbf{P}	BCD to BIN transformation		

Explanation

S: Data source.
D: Transformation result.

- The content of data source S (BCD: 0-9,999) executes BIN transformation and saves in D.
- Valid number range of the data source S: BCD (0-9,999), DBCD (0-99,999,999).

Example

- When X0 is ON, and the BCD value of K1X20 is transformed to BIN value, the result saves in D10.

| X0 | | |
| :--- | :--- | :--- | :--- |
| BIN | K1X20 | D10 |

- When PLC reads a BCD type switch-off from the outside, it has to use the BIN command to transform the read data to BIN value, then saves the value into PLC.

API		ADD		S1	S2	D
20	\mathbf{D}					

	Bit device			Word device								
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S 1				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
S 2				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
D							$*$	$*$	$*$	$*$	$*$	

16 -bit command (7 STEP) \quad\begin{tabular}{c}
Continuous

ADD

execution type

\quad

Pulse

execution type
\end{tabular}

32-bit command (13 STEP)
Notes on operand usage: none
DADD : Continuous : DADDP execution type

Pulse
DADDP execution type

Flag signal: M1020 Zero flag
M1021 Borrow flag
M1022 Carry flag
Please refer to the following supplementary explanation

- S1: Augend.

S2: Addend.
D: Sum.

- Using two data sources: The result of adding S1 and S2 using the BIN method will be stored in D.
- The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic addition operations. (e.g.: $3+(-9)=-6$)
- Flag changes connected with the addition.

1. When calculation results are 0 , the zero flag M 1020 will be ON.
2. When calculation results are less than $-32,768$, the borrow flag M1021 will be ON .
3. When calculation results are greater than 32,767 , the carry flag M1022 will be ON .

- 16-bit BIN addition: When XO = ON, the result of the content of addend DO plus the content of augend D10 will exist in the content of D20.

X0				
	ADD	D0	D10	D20

Remark

- Relationship between flag actions and negative/positive numbers:

16-bit:

32-bit:

API	D	SUB			S1 (S2)	D
21	D	BIN subtraction				

	Bit device			Word device								16-bit command (7 STEP)						
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	SUB	Continuous execution type	SUBP	Pulse execution type			
S1				*	*	*	*	*	*	*	*							
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)						
D							*	*	*	*	*	DSUB © Continuous : DSUBP			Pulse execution type			
Notes on operand usage: n ne																		
												Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation						

Explanation S2: Subtrahend.
D: Difference.

- Using two data sources: The result of subtraction of S1 and S2 using the BIN method is stored in D.
- The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic subtraction operations.
- Flag changes connected with subtraction.

1. When calculation results are 0 , the zero flag M 1020 will be ON .
2. When calculation results are less than $-32,768$, the borrow flag M 1021 will be ON.
3. When calculation results are greater than 32,767 , the carry flag M1022 will be ON.

Example

- 16-bit BIN subtraction: When X0 $=$ ON, the content of D10 is subtracted from the content of D0, and the difference is stored in D20.

API	D	MUL			S1	S2
22	D	D	BIN multiplication			

		devi					/ord	evic				16-bit co	mmand (7 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MUL	Continuous	MULP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D							*	*	*	*	*	DMUL	Continuous	DMULP	Pulse
Notes on operand usage: The 16 -bit command operand D will occupy 2 consecutive points												Flag sign	execution type al: none		execution type

Explanation

- S1: Multiplicand.

S2: Multiplier.
D: Product.

- Using two data sources: When S1 and S2 are multiplied using the BIN method, the product is stored in D .
- 16-bit BIN multiplication operation:

X

b 15 is a symbol bit b15 is a symbol bit b31 is a symbol bit (b15 of D+1)
Symbol bit $=0$ refers to a positive value Symbol bit = 1 refers to a negative vlalue

When D is a bit device, $\mathrm{K} 1-\mathrm{K} 4$ can be designated as a hexadecimal number, which will occupy 2 consecutive units.

- When 16 -bit DO is multiplied by 16 -bit D10, the result will be a 32 -bit product; the upper 16 bits will be stored in D21, and the lower 16 bits will be stored in D20. Whether the bit at the farthest left is OFF or ON will indicate the sign of the result.

API	D	DIV		S1	S2	D
23	D	BIN division				

		dev					/ord	devic				16-bit	mand (7 S		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DIV	Continuous	DIVP	Pulse
S1				*	*	*	*	*	*	*	*		execution typ		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D							*	*	*	*	*				
Notes on operand usage: The 16 -bit command operand D will occupy 2 consecutive points												Flag sig	execution type : none		execution type

Explanation

- S1: Dividend.

S2: Divisor.
D: Quotient and remainder.

- Using two data sources: The quotient and remainder will be stored in D when S1 and S2 are subjected to division using the BIN method. The sign bit for S1, S2 and D must be kept in mind when performing a 16-bit operation.
- 16-bit BIN division:

If D is a bit device, $\mathrm{K} 1-\mathrm{K} 4$ can be designated 16 bits, which will occupy 2 consecutive units and yield the quotient and remainder.

Example

- When $\mathrm{X0}=\mathrm{ON}$, the quotient resulting from division of dividend D0 by divisor D10 will be placed in D20, and the remainder will be placed in D21. Whether the highest bit is OFF or ON will indicate the sign of the result.

API	D	INC			D

Explanation

- D: Destination device.
- If a command is not the pulse execution type, when the command is executed, the program will add 1 to the content of device D for each scanning cycle.
- This command is ordinarily used as a pulse execution type command (INCP).
- During 16-bit operation, 32,767+1 will change the value to $-32,768$. During 32 bit operation, $2,147,483,647+1$ will change the value to $-2,147,483,648$.

Example

- When $\mathrm{XO}=\mathrm{OFF} \rightarrow \mathrm{ON}, 1$ is automatically added to the content of D 0 .

API		DEC			BIN subtract one
25	D		D		

	Bit device			Word device								16-bit command (3 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DEC	Continuous	DECP	Pulse
D							*	*					execution type		execution type
Notes on operand usage: none 32 -bit command (5 STEP)															
												DDEC	Continuous execution type	DDECP	Pulse execution type
												Flag sign	al: none		

Explanation

- D: Destination device.
- If a command is not the pulse execution type, when the command is executed, the program will add 1 to the content of device D for each scanning cycle.
- This command is ordinarily used as a pulse execution type command (DECP).
- During 16-bit operation, $-32,768-1$ will change the value to 32,767 . During 32 bit operation, $-2,147,483,648-1$ will change the value to $2,147,483,647$.

Example

- When $\mathrm{XO}=\mathrm{OFF} \rightarrow \mathrm{ON}, 1$ is automatically subtracted from the content of D0.

API	R	ROR		P	D	n
30	D	Right rotation				

		-					rd	evic				16-bit	mand (5 S		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROR	Continuous	RORP	Pulse
D							*	*	*	*	*		execution typ		execution type
n				*	*							32-bit command (9 STEP)			
Notes on operand usage: Only K4 (16-bit) will be valid if the operand D is designated as KnY or KnM. n operand $\mathrm{n}=\mathrm{K} 1-\mathrm{K} 16$ (16-bit)												DROR Flag sign	Continuous execution type I: M1022	DRORP rry flag	Pulse execution type

Explanation

- D: Device to be rotated. n : Number of bits for one rotation.
- Rotate the device designated by D to the right n bits.
- This command is ordinarily used as a pulse execution type command (RORP).

Example

- When $\mathrm{XO}=\mathrm{OFF} \rightarrow \mathrm{ON}, 4$ of the 16 bits in D10 specify a right rotation; the content of the bit indicated with * (see figure below) will be sent to the carry flag signal M1022.

$A P I$		ROL		(D)	D

Explanation

- D: Device to be rotated. n: Number of bits for one rotation.
- Rotates the device designated by D to the left n bits.
- This command is ordinarily used as a pulse execution type command (ROLP).

Example

- When $\mathrm{XO}=\mathrm{OFF} \rightarrow \mathrm{ON}, 4$ of the 16 bits in D10 specify a left rotation; the content of the bit indicated with * (see figure below) will be sent to the carry flag signal M1022.

API	- ZRST		(D1) (D2)	Clear range
40		P	(D)	

	Bit device			Word device								16-bit command (5TEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ZRST	Continuous	ZRSTP	Pulse
D1		*	*						*	*	*		execution type		execution type
D2		*	*						*	*	*	32-bit command			
Notes on operand usage: Number of operand D1 operand \leq number of operand D2 Operands D1, D2 must designate the same type of device Please refer to the function specifications table for each device in series for the scope of device usage												32-bit co $-\ldots-{ }^{----}$ Flag sign	mand	-	-

Explanation

- D1: Clear range's initial device.

D2: Clear range's final device.

- When the number of operand D1 > number of operand D2, only the operand designated by D2 will be cleared.

Example

- When X0 is ON, auxiliary relays M300-M399 will be cleared and changed to OFF.
- When X1 is ON, 16-bit counters C0-C127 will all be cleared. (Writes 0 , and clears and changes contact and coil to OFF).
- When X10 is ON, timer T0-T127 will all be cleared. (Writes 0 , and clears and changes contact and coil to OFF).
- When X 3 is ON, the data in data registers D0-D100 will be cleared and set as 0 .

Remark

- Devices can independently use the clear command (RST), such as bit device Y, M and word device T, C, D.

API	D	DECO			S	D
41	D	Decoder				

		dev					ord	devic				16-bit com	mand (7 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DECO	Continuous	DECOP	Pulse
S	*	*	*	*	*				*	*	*		execution type		execution type
D		*	*				*	*	*	*	*	32-bit command (13 STEP)			
n				*	*								execution type		execution type
Notes on operand usage: none												Flag signal: none			

Explanation

- S: Decoding source device.

D: Device that saves the decoding result.
n : Length of decoding bit.

- Decodes with the lower " n " bit, and saves the length of " $2 n$ " bit in D.
- This command usually uses pulse execution type command (DECOP).
- When D is the bit device, $n=1-8$, when D is the word device, $n=1-4$.
- When Dis the bit device, the valid range of n is $0<n \leq 8$. If $n=0$ or $n>8$, a fault will occur.
- When $\mathrm{n}=8$, the maximum decoding will be $2^{8}=256$ points.
- When M200 switches from Off to On, the content of X0-X2 is decoded to M100-M107.
- If $S=3, \mathrm{M} 103$ (the third digit starting from M100) $=\mathrm{ON}$.
- When the command is executed, M200 turns to OFF. The ones that are decoded and outputted act as usual.

- When D is word device, the valid range of n is $0<n \leq 4$. If $n=0$ or $n>4$, the fault occurs.
- When $\mathrm{n}=4$, the maximum decoding will be $2^{4}=16$ points.
- When M200 switches from OFF to ON, the content of D10 (b2-b0) is decoded to D20 (b7-b0). The unused digits (b15-b8) of D20 become 0.
- The lower 3 digits of D10 are decoded and saved in the lower 8 digits of D20, the upper 8 digits are 0 .
- When the command is executed, M200 turns to OFF. The ones that are decoded and outputted act as usual.

M200				
-1	DECOP	D10	D20	K3

API		ENCO			S	D
42	\mathbf{D}		Encoder			

		dev					ord	devic				16-bit co	mand (7 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ENCO	Continuous	ENCOP	Pulse
S	*	*	*						*	*	*		execution type		cution type
D							*	*	*	*	*	B2-bit command (13 STEP)			
n				*	*										Pulse execution type
Notes on operand usage: none												Flag signal: none			

- S: Encoding source device.

D: Device that saves the encoding result.
n : Length of encoding bit.

- Encodes the data of lower " 2 " bit length from encoding source device S, and saves the encoding result in D.
- If multiple digits of encoding source device are 1, the command will process the first digit starting from high digit.
- This command usually uses pulse execution type command (ENCOP).
- When S is the bit device, $n=1-8$, when S is the word device, $n=1-4$.

Example 1

- When S is the bit device, the valid range of n is $0<n \leq 8$. If $n=0$ or $n>8$, a fault will occur.
- When $\mathrm{n}=8$, the maximum decoding will be $2^{8}=256$ points.
- When X0 switches from OFF to ON, the content of 2^{3} digit (M0-M7) is encoded and saved in the lower 3 digits (b2-b0). The unused digits (b15-b3) in D0 become 0.
- When the command is executed, X0 turns to OFF. The data in D is unchanged.

M7	M6	M5	M4	M3	M2		M1
0	0	0	0	1	0	0	0
7	6	5	4	3	2	1	0

- When S is word device, the valid range of n is $0<n \leq 4$. If $n=0$ or $n>4$, the fault occurs.
- When $n=4$, the maximum decoding will be $2^{4}=16$ points.
- When X0 switches from OFF to ON, 2^{3} digit data of D10 (b0-b7) is encoded and saved in the lower 3 digits (b2-b0) of D20. The unused digits (b15-b3) of D20 become 0. (b8-b15 in D10 are invalid data)
- When the command is executed, XO turns to OFF. The data in D is unchanged.

API	D	SUM	P	(S D	ON bit number

		dev					Vord	devic				16-bit co	mand (5 STEP)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	SUM	Continuous	SUMP	Pulse
S				*	*	*	*	*	*	*	*		execution type		execution type
D									*	*	*	32-bit command (9 STEP)			
Notes on operand usage: none												DSUM : Continuousexecution type			Pulse execution type
												Flag signal: M1020			

Explanation

- S: Source device.

D: Destination of saving counter values.

- The total amount of all digits that is "1" in S will be saved in D.
- D will use 2 registers when use the 32-bit command.
- Arithmetic elements S and D use F device, and can only use 16-bit command.
- If there is no bit is ON, the flag signal M1020 will be ON.

Example

- When M200 = ON, the total amount of content "1" digit in D0's 16-bit command will be saved in D2.

M200	SUM	D0	D2

API	D	BON	P	(S D n	ON bit judgement

		dev					Vord	devic				16-bit co	mand (7 STEP)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	BON	Continuous	BONP	Pulse
S				*	*	*	*	*	*	*	*		execution type		execution type
D		*	*						*	*	*	32-bit command (9 STEP)			
n				*	*							DBON	Continuous execution type	DBONP	Pulse execution type
Notes on operand usage: none												Flag signal: none			

Explanation

- S: Source device.

D: Destination of saving judging result.
n : assign judged digit (numbering from 0)

- The status of specific digit from source device is shown on target position.
- Arithmetic element S uses F device, and can only use the 16-bit command.
- The valid range of arithmetic element n : $n=0-15$ (16-bit), $n=0-31$ (32-bit).

Example

- When $\mathrm{XO}=\mathrm{ON}$, if the $15^{\text {th }}$ digit of DO is " 1 ", M 0 is ON . If it is " 0 ", M0 is OFF.
- When X0 turns to OFF, M0 remains previous status.

API	D	FLT	\mathbf{P}	(S D	BIN whole number \rightarrow binary decimal transformation

		dev					Vord	evic				16-bit	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FLT	Continuous	FLTP	Pulse
S		*	*						*	*	*		execution type		execution type
D		*	*						*	*	*	32-bit command (9steps)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage The operand D will occupy 2 consecutive points												DFLT Flag sig	Continuous execution type : none	DFLTP	Pulse execution type

- S: Transformation source device.

D: Device storing transformation results.

- Transforms BIN whole number into a binary decimal value.

Example

- When X 11 is ON , converts the whole number of values corresponding to D0 and D1 into floating point numbers, which are placed in D20 and D21.

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*				
S2				*	*						*	32-bit com	mand (13 STE		
D											*	DECMP ContinuousDECMP execution type			Pulse execution type
Notes on operand usage: The operand D occupies three consecutive points Please refer to the function specifications table for each device in series for the scope of device usage												Flag signal: none			

Explanation - $\quad \mathrm{S}_{1}$: Comparison of binary floating point numbers value 1. S_{2} : Comparison of binary floating point numbers value 2. D: Results of comparison, occupies 3 consecutive points.

- When binary floating point number 1 is compared with comparative binary floating point number 2 , the result of comparison ($>,=,<$) will be expressed in D .
- If the source operand S_{1} or S_{2} designates a constant K or H , the command will transform the constant to a binary floating-point number for the purpose of comparison.

Example

- When the designated device is M10, it will automatically occupy M10-M12.
- When $\mathrm{XO}=\mathrm{ON}$, the DECMP command executes, and one of M10-M12 will be ON. When X0 $=$ OFF, the DECMP command will not execute, and M10-M12 will remain in the $\mathrm{XO}=\mathrm{OFF}$ state.
- If results in the form of \geq, \leq, or \neq are needed, they can be obtained by series and parallel connection of M10-M12.
- Please use the RST or ZRST command to clear the result.

	Bit device			Word device								16-bit command	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		
S1				*	*						*		
S2				*	*						*		
S				*	*						*	DFZCP Continuous DEZCP	Pulse
D		*	*										execution type
Not The Ple seri	on ope se sf	nd		ies	e	onsec cifica age	utive tions	points able f				Flag signal: none	

- S_{1} : Lower limit of binary floating point number in range comparison. S_{2} : Upper limit of binary floating point number in range comparison.
S: Comparison of binary floating point numerical values.
D: Results of comparison, occupies 3 consecutive points.
- Comparison of binary floating point numerical value S with binary floating point number lower limit value S_{1} and binary floating point number upper limit value S_{2}; the results of comparison are expressed in D.
- If the source operand S_{1} or S_{2} designates a constant K or H , the command will transform the constant to a binary floating-point number for the purpose of comparison.
- When the lower limit binary floating point number S_{1} is greater than the upper limit binary floating point number S_{2}, a command will be issued to perform comparison with the upper and lower limits using the binary floating point number lower limit value S_{1}.

Example

- When the designated device is M0, it will automatically occupy M0-M2.
- When $\mathrm{XO}=\mathrm{ON}$, the DEZCP command will be executed, and one of M0-M2 will be ON. When X0 = OFF, the EZCP command will not execute, and M0-M2 will continue in the $\mathrm{XO}=\mathrm{OFF}$ state.
- Please use the RST or ZRST command to clear the result.

API	R	RAD		P	S	D
116	D		Angle \rightarrow Radian			

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		-		
S				*	*						*				
D											*	32-bit co	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DRAD:Continuous execution type		DRADP	Pulse execution type

Explanation
S: data source (angle).
D: result of transformation (radian).

- Uses the following formula to convert angles to radians.
- \quad Radian $=$ Angle $\times(\pi / 180)$

Example

- When $\mathrm{X} 0=\mathrm{ON}$, the angle of the designated binary floating point number (D1, D0) will be converted to radians and stored in (D11, D10), with the content consisting of a binary floating point number.

(D) \square

Angle in degrees Binary floating point

Angle in radians $=$ degrees $\mathrm{X}(\pi / 180)$
Binary floating point

API	D	DEG		P	S
117	D		Radian \rightarrow Angle		

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				兂
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DDEG : Continuous DDEGP			Pulse execution type

Explanation
S: data source (radian).
D: results of transformation (angle).

- Uses the following formula to convert radians to an angle.
- Angle $=$ Radian $\times(180 / \pi)$
- When $\mathrm{X0}=\mathrm{ON}$, angle of the designated binary floating point number (D1, D0) in radians will be converted to an angle and stored in (D11, D10), with the content consisting of a binary floating point number.

(S)

(D) \square
Angle in radians
Binary floating point
Angle in degrees $=$ radians $\mathrm{X}(180 / \pi)$ Binary floating point

API	D	EADD	P	(S1) \mathbf{S}_{2}	Adding binary floating point numbers

	Bit device				Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S 1				$*$	$*$						$*$	
S 2				$*$	$*$						$*$	
D											$*$	

Notes on operand usage:
Please refer to the function specifications table for each device in series for the scope of device usage

16-bit command		
-	- - -	-
32-bit command (9 STEP)		
DEADD	Continuous :DEADDP execution type	Pulse execution type
Flag signal: none		

- S_{1} : augend. S_{2} : addend. D: sum.
- When the content of the register designated by S_{2} is added to the content of the register designated by S_{1}, and the result is stored in the register designated by D. Addition is performed entirely using binary floating-point numbers.
- If the source operand S_{1} or S_{2} designates a constant K or H , the command will transform that constant into a binary floating point number for use in addition.
- In the situation when S_{1} and S_{2} designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is ON, the register will perform addition once during each scan. Pulse execution type commands (DEADDP) are generally used under ordinary circumstances.
- When $\mathrm{X0}=\mathrm{ON}$, a binary floating point number (D1, D0) will be added to a binary floating point number (D3, D2), and the results stored in (D11, D10).

$\mathrm{X0}$	DEADD	D0	D2	D10

■ When $\mathrm{X} 2=\mathrm{ON}$, a binary floating point number (D11, D10) will be added to K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D21, D20).

X 2				
H	DEADD	D 10	K1234	D 20

API					
121	D	ESUB	P	(S1 S ${ }^{\text {d }}$	Subtraction of binary floating point numbers

		ev					rd	evic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-			-
S1				*	*						*	32-bit command (13 STEP)			
S2				*	*						*	DESUB: Continuous :DESUBP:cPulse execution type			
D											*				
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												Flag signa:	execution typ none		execution type

- When $\mathrm{X0}=\mathrm{ON}$, a binary floating point number (D1, D0) will be subtracted to a binary floating point number (D3, D2), and the results stored in (D11, D10).

- When $\mathrm{X} 2=\mathrm{ON}$, the binary floating point number (D1, D0) will be subtracted from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

	Bit device				Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S 1				$*$	$*$						$*$	
S 2				$*$	$*$						$*$	
D											$*$	

Notes on operand usage:
Please refer to the function specifications table for each device in series for the scope of device usage

16-bit command		
-	- : -	-
32-bit command (13 STEP)		
DEMUL	Continuous execution type	Pulse execution type
Flag signal: none		

- S_{1} : multiplicand. S_{2} : multiplier. D : product.
- When the content of the register designated by S_{1} is multiplied by the content of the register designated by S_{2}, the product will be stored in the register designated by D; multiplication is performed entirely using binary floating-point numbers.
- If the source operand S_{1} or S_{2} designates a constant K or H , the command will transform that constant into a binary floating point number for use in multiplication.
- In the situation when S_{1} and S_{2} designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is ON, the register will perform multiplication once during each scan. Pulse execution type commands (DEMULP) are generally used under ordinary circumstances.

Example

- When $\mathrm{X} 1=\mathrm{ON}$, the binary floating point number (D1, D0) will be multiplied by the binary floating point number (D11, D10), and the product will be stored in the register designated by (D21, D20).

- When $\mathrm{X} 2=\mathrm{ON}$, the binary floating point number (D1, D0) will be multiplied from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

API	D	EDIV	P	$S_{1} S_{2}$ D	Division of binary floating point numbers

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*	32-bit command (13STEP)			
S2				*	*						*				
D											*	DEDIV: Continuous		DEDIVP	Pulse execution type
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												Flag signal: none			

Explanation $\quad \begin{aligned} & \mathrm{S}_{1}: \text { dividend. } \\ & \mathrm{S}_{2} \text { : divisor. }\end{aligned}$
D: quotient and remainder.

- When the content of the register designated by S_{1} is divided by the content of the register designated by S_{2}, the quotient will be stored in the register designated by D ; division is performed entirely using binary floating-point numbers.
- If the source operand S_{1} or S_{2} designates a constant K or H , the command will transform that constant into a binary floating point number for use in division.

Example

- When $\mathrm{X} 1=\mathrm{ON}$, the binary floating point number (D1, D0) will be divided by the binary floating point number (D11, D10), and the quotient stored in the register designated by (D21, D20).

- When $\mathrm{X} 2=\mathrm{ON}$, the binary floating point number (D1, D0) will be divided by K1,234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

API	$\boxed{~ E X P}$			S	D	Binary floating point number obtain exponent
124	D	EXP	\mathbf{P}	S		

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*				
D											*	32-bit co	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DEXP : Continuous		DEXPP	Pulse execution type

Explanation

- S: operation source device.

D: operation results device.

- Taking e $=2.71828$ as a base, S is the exponent in the EXP operation.
- $[\mathrm{D}+1, \mathrm{D}]=\operatorname{EXP}{ }^{[\mathrm{s}+1, \mathrm{~s}]}$
- Valid regardless of whether the content of S has a positive or negative value. The designated register D must have a 32-bit data format. This operation is performed using floating-point numbers, and S must therefore be converted to a floating point number.
- Content of operand $D=e^{s} ; e=2.71828, S$ is the designated source data

Example

- When M0 is ON, the value of (D1, D0) will be converted to a binary floating point number, which will be stored in register (D11, D10).
- When M1 is ON, the EXP operation is performed on the exponent of (D11, D10); its value is a binary floating point number stored in register (D21, D20).

API	-		LN		S	D
125	D		Binary floating point number obtain logarithm			

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DLN Flag sign	Continuous execution type al: none	DLNP	Pulse execution type

Explanation
S: operation source device.
D: operation results device.

- Taking e $=2.71828$ as a base, S is the exponent in the EXP operation.
- [D $+1, \mathrm{D}]=\operatorname{EXP}{ }^{[s+1, s]}$
- Valid regardless of whether the content of S has a positive or negative value. The designated register D must have a 32-bit data format. This operation is performed using floating-point numbers, and S must therefore be converted to a floating point number.
- Content of operand $D=e^{s} ; e=2.71828, S$ is the designated source data

Example

- When M0 is ON, the value of (D1, D0) will be converted to a binary floating point number, which will be stored in register (D11, D10).
- When M1 is ON, the EXP operation is performed on the exponent of (D11, D10); its value is a binary floating point number stored in register (D21, D20).

API		ESQR			S	D
127	D	Binary floating point number find square root				

	Bit device			Word device								16-bit command				
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			-		
S				*	*						*					
D											*	32-bit	mand (9 STEP)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DESQR: Continuous \quad DESQR:Pulse execution type Flag signal: none				

Explanation

- S: source device for which square root is desired D: result of finding square root.
- When the square root is taken of the content of the register designated by S, the result is temporarily stored in the register designated by D. Taking square roots is performed entirely using binary floating-point numbers.
- If the source operand S refers to a constant K or H , the command will transform that constant into a binary floating point number for use in the operation.

Example

- When $\mathrm{XO}=\mathrm{ON}$, the square root is taken of the binary floating point number (D1, DO), and the result is stored in the register designated by (D11, D10).

$$
\sqrt{(D 1 \cdot D 0)} \rightarrow(D 11 \cdot D 10)
$$

Binary floating point Binary floating point

- When $\mathrm{X} 2=\mathrm{ON}$, the square root is taken of $\mathrm{K} 1,234$ (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

API	D	INT	\mathbf{P}	D	Binary floating point number \rightarrow BIN whole number transformation

	Bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S											$*$
D											$*$

Notes on operand usage:
Please refer to the function specifications table for each device in series for the scope of device usage

16-bit command
INT : Continuous : INTP : Pulse execution type : \quad execution type

32-bit command (9 STEP)

| DINTContinuous
 execution type | DINTPPulse
 execution type |
| :---: | :---: | :---: |
| | |

Flag signal: none

Explanation

- S: the source device to be transformed.
- D: results of transformation.
- The content of the register designated by S is transformed from a binary floating point number format into a BIN whole number, and is temporarily stored in D. The BIN whole number floating point number will be discarded.
- The action of this command is the opposite of that of command API 49 (FLT).

Example

- When $\mathrm{X0} 0=\mathrm{ON}$, the binary floating point number (D1, D0) is transformed into a BIN whole number, and the result is stored in (D10); the BIN whole number floating point number will be discarded.

API			SIN		S	D
130	\mathbf{D}	Binary floating point number SIN operation				

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*				
D											*	32-bit	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DSIN : Continuous		DSINP	Pulse execution type

Explanation \quad S: the designated source value.

- S is the designated source in radians.
- The value in radians (RAD) is equal to (angle $\times \pi / 180$).
- The SIN obtained from the source value designated by S is stored in D .
- The following figure displays the relationship between the arc and SIN results:

Example

- When $\mathrm{X} 0=\mathrm{ON}$, the SIN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.

RAD value (angle $\times \pi /$ 180)
Binary floating point

SIN value
Binary floating point

| API | | \cos | | S | (D) |
| :--- | :--- | :--- | :--- | :--- | :--- | Binary floating point number COS operation

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit co	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DCOS : Continuous		DCOSP	Pulse execution type

Explanation

- \quad S: the designated source value.
D: the COS value result.
- The source designated by S can be given as radians or an angle; this is decided by flag M1018.
- When M1018 = OFF, the operation is in radians mode, where the radians (RAD) value is equal to (angle $\times \pi / 180$).
- When M1018 = ON, the operation is in the angle mode, where the angular range is $0^{\circ} \leq$ angle $<360^{\circ}$.
- When calculation results yield $0, \mathrm{M} 1020=\mathrm{ON}$.
- The COS obtained from the source value designated by S is stored in D.

The following figure displays the relationship between the arc and SIN results:

Example - When $\mathrm{X0}=\mathrm{ON}$, the COS value of the designated binary floating point number (D1, D0) in radians will be stored in (D11, D10), with the content consisting of a binary floating point number.

API		TAN		S ©	Binary floating point number TAN operation
132	D	P	(S		

	Bit device			Word device								
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S				$*$	$*$						$*$	
D											$*$	

Notes on operand usage:
Please refer to the function specifications table for each device in series for the scope of device usage

Flag signal: none

- S : the designated source value.

D: the TAN value result.

- The source designated by S can be given as radians or an angle; this is decided by flag M1018.
- When M1018 = OFF, the operation is in radians mode, where the radians (RAD) value is equal to (angle $\times \pi / 180$).
- When M1018 = ON, the operation is in the angle mode, where the angular range is $0^{\circ} \leq$ angle $<360^{\circ}$.
- When calculation results yield $0, \mathrm{M} 1020=\mathrm{ON}$.
- The TAN obtained from the source value designated by S is stored in D.

The following figure displays the relationship between the arc and SIN results:

S: Radian
R: Result (TAN value)

- When $\mathrm{XO}=\mathrm{ON}$, the TAN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.

API					
133	D	ASIN	P	(S) D	Binary floating point number ASIN operation

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DASIN $\begin{gathered}\text { Continuous } \\ \text { execution type }\end{gathered}$		DASINP	Pulse execution type

Explanation

- S: the designated source (binary floating point number).
D: the ASIN value result.
- \quad ASIN value $=\sin ^{-1}$
- The figure below shows the relationship between input data and result:

Example - When $\mathrm{XO}=\mathrm{ON}$, the ASIN value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

| API | \square | ACOS | | S | (S) |
| :--- | :--- | :--- | :--- | :--- | :--- | Binary floating point number ACOS operation

Explanation
S: the designated source (binary floating point number).
D: the ACOS value result.

- \quad ACOS value $=\cos ^{-1}$

The figure below shows the relationship between input data and result:

Example - When $\mathrm{X0} 0=\mathrm{ON}$, the ACOS value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

API		ATAN		©	D	Binary floating point number ATAN operation
135	D	D	P	(

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		-	-	-
S				*	*						*				
D											*	32-bit command (9 STE			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DATAN Flag sign	Continuous execution typ : none	DATANP:	Pulse execution type

Explanation

- S: the designated source (binary floating point number).
D: the ATAN value result.
- \quad ATAN value $=\tan ^{-1}$

The figure below shows the relationship between input data and result:

Example - When $\mathrm{XO}=\mathrm{ON}$, the TAN value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

X0	DATAN	D0	D10

| API | | SINH | | S | (D) |
| :--- | :--- | :--- | :--- | :--- | :--- | Binary floating point number SINH operation

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*				
D											*	32 -bit	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DSINH: Continuous		$\overline{\mathrm{DSINHP}}$	Pulse execution type

Explanation
S: the designated source (binary floating point number).
D: the SINH value result.

SINH value $=\left(e^{s}-e^{-s}\right) / 2$

Example - When XO = ON, the SINH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

X0	DSINH	D0	D10
Hト			

| API | | COSH | | S | (D) |
| :--- | :--- | :--- | :--- | :--- | :--- | Binary floating point number COSH operation

	Bit device			Word device								16-bit command		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command (9 STEP)		
D											*			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage														

- COSH value $=\left(\mathrm{e}^{\mathrm{s}}+\mathrm{e}^{-\mathrm{s}}\right) / 2$

Example

- When $\mathrm{XO}=\mathrm{ON}$, the COSH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

API		TANH		S	(D)	Binary floating point number TANH operation
138	D		P	P		

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DTANH: ContinuousDTANH execution type P			$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$

Explanation

- S: the designated source (binary floating point number).
D: the TANH value result.
- \quad tanh value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$

Example

- When $\mathrm{XO}=\mathrm{ON}$, the TANH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

API	SWAP		S	Exchange the up/down 8 bits	
147	D	SWA	\mathbf{P}	S	

	Bit device			Word device								$\begin{aligned} & 16 \text {-bit command (3 STEP) } \\ & \text { SWAP } \begin{array}{c} \text { Continuous } \\ \text { execution type } \end{array} \\ & \text { SWAPP Pulse execution } \\ & \text { type } \end{aligned}$			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S						*	*	*	*	*	*				
Notes on operand usage: none												32-bit command (5 STEP)			
DSWAP $\begin{gathered}\text { Continuous DSWAPP } \\ \text { execution type }\end{gathered} \begin{gathered}\text { Pulse execution } \\ \text { type }\end{gathered}$															
												Flag signal: none			

Explanation

S: The device that going to exchange its up / down 8 bits.

- When using 16-bit command, the upper 8-bit and lower 8-bit exchange.
- When using 32-bit command, the contents of upper 8-bit and lower 8-bit of the 2 registers exchange.
- This command usually uses pulse execution type (SWAPP, DSWAPP)

	Bit device			Word device								
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S 1				$*$	$*$						$*$	
S 2				$*$	$*$						$*$	
S3				$*$	$*$						$*$	
S											$*$	
n				$*$	$*$						$*$	

MODRW	Continuous MODRW	e
	execution type	execution ty

32-bit command execution type
 Flag signal: M1077 M1078 M1079

- S1: online device address.

S2: communications function code.
S3: address of data to read / write.

- S: register for data to be read/written is stored.
- N : length of data to be read / written.
- COM1 must be defined as controlled by the PLC (set Pr.09-31 = -12) before using this command, and the corresponding communications speed and format must also be set (set Pr.09-01 and Pr.09-04). S2: communications function code. Currently only supports the following function code; the remaining function code cannot be executed.

Function	Description
H 02	Input read
H 03	Read word
H 06	Write single word
H 0F	Write multiple coils
H10	Write single word

- After executing this command, M1077, M1078 and M1079 will be immediately changed to 0 .
- As an example, when CFP2000 must control another converter and PLC, if the converter has a station number of 10 and the PLC has a station number of 20 , see the following example:
Control slave device converter

Serial No.	Example	MODRW command				
		S1	S2	S3	S4	n
		Node ID	Function code	Address	Register	Length
1	Reads 4 sets of data comprising the converter slave device Pr.01-00 to Pr.01-03, and saves the read data in D0 to D3	K10	H3	H100	D0	K4
2	Reads 3 sets of data comprising the converter slave device addresses H2100 to H2102, and saves the read data in D5 to D7	K10	H3	H2100	D5	K3
3	Reads 3 sets of data comprising the converter slave device Pr.05-00 to Pr.05-03, and writes the values as D10 to D12	K10	H10	H500	D10	K3
4	Writes 2 sets of data comprising the converter slave device addresses H2000 to H2001, and writes the values as D15 to D16	K10	H10	H2000	D15	K2

PLC controlling slave device

Serial No.	Example	MODRW command				
		S1	S2	S3	S4	n
		Node ID	Function code	Address	Register	Length
1	Reads 4 sets of data comprising the PLC slave device's X0 to X3 state, and saves the read data in bits 0 to 3 of DO	K20	H2	H400	D0	K4
2	Reads 4 sets of data comprising the PLC slave device's Y0 to Y3 state, and saves the read data in bits 0 to 3 of D1	K20	H2	H500	D1	K4
3	Reads 4 sets of data comprising the PLC slave device's M0 to M3 state, and saves the read data in bits 0 to 3 of D2	K20	H2	H800	D2	K4
4	Reads 4 sets of data comprising the PLC slave device's T0 to T3 state, and saves the read data in bits 0 to 3 of D3	K20	H2	H600	D3	K4
5	Reads 4 sets of data comprising the PLC slave device's C0 to C3 state, and saves the read data in bits 0 to 3 of D4	K20	H2	HEOO	D4	K4
6	Reads 4 sets of data comprising the PLC slave device's T0 to T3 count value, and saves the read data of D10 to D13	K20	H3	H600	D10	K4
7	Reads 4 sets of data comprising the PLC slave device's C0 to C3 count value, and saves the read data of D20 to D23	K20	H3	HEOO	D20	K4
8	Reads 4 sets of data comprising the PLC slave device's D0 to D3 count value, and saves the read data of D30 to D33	K20	H3	H1000	D30	K4
9	Writes 4 sets of the PLC slave device's Y0 to Y 3 state, and writes the values as bits 0 to 3 of D1	K20	HF	H500	D1	K4
10	Writes 4 sets of the PLC slave device's M0 to M3 state, and writes the values as bits 0 to 3 of D2	K20	HF	H800	D2	K4
11	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values as bits 0 to 3 of D3	K20	HF	H600	D3	K4
12	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values as bits 0 to 3 of D4	K20	HF	HEOO	D4	K4
13	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values of D10 to D13	K20	H10	H600	D10	K4
14	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values of D20 to D23	K20	H10	HEOO	D20	K4
15	Writes 4 sets of the PLC slave device's D0 to D3 state, and writes the values of D30 to D33	K20	H10	H1000	D30	K4

Example

Will trigger MO ON when the PLC begins to operate, and sends instruction to execute one MODRW command.

- After receiving the slave device's response, if the command is correct, it will execute one ROL command, which will cause M1 to be ON.
- After receiving the slave device's response, will trigger M50 = 1 after a delay of 10 PLC scanning cycles, and then execute one MODRW command.
- After again receiving the slave device's response, if the command is correct, it will execute one ROL command, and M2 will change to ON at this time (and M2 can be defined as a repeat of M); $K 4 M 0$ will change to $K 1$, and only $M 0$ will remain 1 . Transmission can proceed in a continuous cycle. If you wish to add a command, merely add the desired command in the empty frame, and change repeat M to $\mathrm{Mn}+1$.

	Bit device			evice												
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	$\underline{\text { 16-bit command (11 STEP) }}$				
S1				*	*	*	*	*	*	*	*				$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$	
S2				*	*	*	*	*	*	*	*		e			
S3				*	*	*	*	*	*	*	*	32-bit command				
S									*	*	*	,	,		-	
D		*	*									Flag signal: none				
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage																

- S_{1} : Sets the hours of the comparison time, setting range is "K0-K23."
S_{2} : Sets the minutes of the comparison time, setting range is "K0-K59."
S_{3} : Sets the seconds of the comparison time, setting range is "K0-K59."
S: current calendar time.
D: Results of comparison.
- Compares the time in hours, minutes, and seconds set in $\mathrm{S}_{1}-\mathrm{S}_{3}$ with the current calendar time in hours, minutes, and seconds, with the results of comparison expressed in D .
- S The hour content of the current calendar time is "K0-K23." S +1 comprises the minutes of the current calendar time, and consists of "K0-K59." S +2 comprises the seconds of the current calendar time, and consists of "K0-K59."
- The current calendar time designated by S is usually compared using the TCMP command after using the TRD command to read the current calendar time. If the content value of S exceeds the range, this is considered an operating error, the command will not execute, and M1068 $=$ ON.

Example - When X10 $=\mathrm{ON}$, the command will execute, and the current calendar time in D20-D22 will be compared with the preset value of 12:20:45; the results will be displayed in M10-M12. When X10 ON \rightarrow OFF, the command will not be executed, but the ON/OFF status prior to M10-M12 will be maintained.

- If results in the form of \geq, \leq, or \neq are needed, they can be obtained by series and parallel connection of M10-M12.

TCMP	K12	K20	K45	D20
M10				

	Bit device			Word device								16-bit command (9 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1									*	*	*		execution type		execution type
S2									*	*	*				
S									*	*	*	32-bit co	mand		
D		*	*									-	-	-	-
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												Flag signal: none			

- $\quad \mathrm{S}_{1}$: Sets the lower limit of the comparison time.
S_{2} : Sets the upper limit of the comparison time.
S: current calendar time.
D: Results of comparison.
- Performs range comparison by comparing the hours, minutes, and seconds of the current calendar time designated by S with the lower limit of the comparison time set as S_{1} and the upper limit of the comparison time set as S_{2}, and expresses the results of comparison in D.
- $\quad S_{1}, S_{1}+1, S_{1}+2$: Sets the hours, minutes, and seconds of the lower limit of the comparison time.
- $\quad S_{2}, S_{2}+1, S_{2}+2$: Sets the hours, minutes, and seconds of the upper limit of the comparison time.
- $\quad S, S+1, S+2$: The hours, minutes, and seconds of the current calendar time
- The D0 designated by the S listed in this program is usually obtained by comparison using the TZCP command after using the TRD command in advance to read the current calendar time. If the value of S_{1}, S_{2}, or S exceeds the range, this is considered an operating error, the command will not execute, and M1068 $=\mathrm{ON}$.
- When the current time S is less than the lower limit value S_{1} and S is less than the upper limit value S_{2}, D will be $O N$. When the current time S is greater than the lower limit value S_{1} and S is greater than the upper limit value $S_{2}, D+2$ will be $O n ; D+1$ will be ON under other conditions.
- When $\mathrm{X} 10=\mathrm{ON}$, the TZCP command executes, and one of M10-M12 will be ON. When $\mathrm{X} 10=$ OFF, the TZCP command will not execute, and M10-M12 will remain in the $\mathrm{X} 10=$ OFF state.

API				
162	TADD	\mathbf{P}	(S1) \mathbf{S}_{2} D	Calendar data addition

Explanation

- S_{1} : time addend. S_{2} : time augend. D: time sum.
- The calendar data in hours, minutes, and seconds designated by S_{2} is added to the calendar data in hours, minutes, and seconds designated by S_{1}, and the result is stored as hours, minutes, and seconds in the register designated by D .
- If the value of S_{1} or S_{2} exceeds the range, this is considered an operating error, the command will not execute, M1067, M1068 $=$ ON, and D1067 will record the error code 0E1A (HEX).
- If the results of addition are greater than or equal to 24 hours, carry flag M1022 = ON, and D will display the results of addition minus 24 hours.
- If the results of addition are equal to 0 (0 hours, 0 minutes, 0 seconds), zero flag M1020 = ON.

Example

- When $\mathrm{X} 10=\mathrm{ON}$, the TADD command will be executed, and the calendar data in hours, minutes, and seconds designated by D0 to D2 will be added to the calendar data in hours, minutes, and seconds designated by D10 to D12, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22.

$8: 10: 20$
$6: 40: 6$
14:50:26

	Bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S 1									$*$	$*$	$*$
S 2									$*$	$*$	$*$
D									$*$	$*$	$*$

Notes on operand usage:
Please refer to the function specifications table for each device in series for the scope of device usage
16-bit command (7 STEP)

32-bit command

- Flag signal: M1020 Zero flag M1022 Carry flag M1068 Calendar error

Explanation
 - $\quad S_{1}$: time minuend.
 S_{2} : time augend.

D: time sum.

- Subtracts the calendar data in hours, minutes, and seconds designated by S_{2} from the calendar data in hours, minutes, and seconds designated by S_{1}, and the result is temporarily stored as hours, minutes, and seconds in the register designated by D.
- If the value of S_{1} or S_{2} exceeds the range, this is considered an operating error, the command will not execute, M1067, M1068 $=$ ON, and D1067 will record the error code 0E1A (HEX).
- If subtraction results in a negative number, borrow flag M1021 $=\mathrm{ON}$, and the result of that negative number plus 24 hours will be displayed in the register designated by D.
- If the results of subtraction are equal to 0 (0 hours, 0 minutes, 0 seconds), zero flag M1020 = ON.
- When X10 = ON, the TADD command will be executed, and the calendar data in hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22.

D0 20(hr)		D10 14(hr)	\rightarrow	D20 5(hr)	
D1 20(min)		D11 30(min)		D21 4	49(min)
D2 $5(\mathrm{sec})$		D12 8(sec)		D22 5	57(sec)
20:20:5		14:30:8		$5: 49$	9:57

API	\square	TRD		D	Calendar data read
166	\square	\mathbf{D}			

Explanation

- $\quad S_{1}$: time minuend.
S_{2} : time augend.
D: time sum.
- D: device used to store the current calendar time after reading.
- The EH / EH2 / SV / EH3 / SV2 / SA / SX / SC main units have a built-in calendar clock, and the clock provides seven sets of data comprising year, week, month, day, hour, minute, and second stored in D1063 to D1069. The TRD command function allows program designers to directly read the current calendar time into the designated seven registers.
- D1063 only reads the two right digits of the Western calendar year.

Example

- When $\mathrm{XO}=\mathrm{ON}$, the current calendar time is read into the designated registers DO to D6.
- In D1064, 1 indicates Monday, 2 indicates Tuesday, and so on, with and 7 indicating Sunday.

Special D	Item	Content		General D	Item
D1063	Year (Western)	$00-99$	\rightarrow	D0	Year (Western)
D1064	Weeks	$1-7$	\rightarrow	D1	Weeks
D1065	Month	$1-12$	\rightarrow	D2	Month
D1066	Day	$1-31$	\rightarrow	D3	Day
D1067	Hour	$0-23$	\rightarrow	D4	Hour
D1068	Minute	$0-59$	\rightarrow	D5	Minute
D1069	Second	$0-59$	\rightarrow	D6	Second

API	D	GRY		P	S ©
170	D	DIN	GRAY code transformation		

	Bit device				Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
D							$*$	$*$	$*$	$*$	$*$	

Notes on operand usage:
Please refer to the function specifications table for each device in series for the scope of device usage
16-bit command (5 STEP)

32-bit command (9 STEP)

| DGRYContinuousDGRYPPulse
 execution type |
| :--- | :--- |

- Flag signal: none

Explanation

- S: source device.

D: device storing GRAY code.

- Transforms the content value (BIN value) of the device designated by S to GRAY code, which is stored in the device designated by D.
- The valid range of S is as shown below; if this range is exceeded, it will be considered an error, and the command will not execute.
16-bit command: 0-32,767
- 32-bit command: 0-2,147,483,647

Example

- When $\mathrm{XO}=\mathrm{ON}$, the constant K6513 will be transformed to GRAY code and stored in DO.

DO

API		GBIN			(S) D

	Bit device			Word device								16 -bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	GBIN : Continuous		GBINP	Pulse execution type
S				*	*	*	*	*	*	*	*				
D							*	*	*	*					
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DGBIN - Flag sig	Continuous execution type al: none	DGBINP	Pulse execution type

- S: source device used to store GRAY code.

D: device used to store BIN value after transformation.

- The GRAY code corresponding to the value of the device designated by S is transformed into a BIN value, which is stored in the device designated by D .
- This command will transform the value of the absolute position encoder connected with the PLC's input and (this encoder usually has an output value in the form of GRAY code) into a BIN value, which is stored in the designated register.
- The valid range of S is as shown below; if this range is exceeded, it will be considered an error, and the command will not execute.
- 16-bit command: 0-32,767
- 32-bit command: 0-2,147,483,647
- When X20 = ON, the GRAY code of the absolute position encoder connected with input points X0 to X17 will be transformed into BIN value and stored in D10.

| API
 $215-$
 217 | D LD\# | (S1) | S2 | Contact form logical operation LD\# |
| :---: | :--- | :--- | :--- | :--- | :--- |

		dev					Jord	evic				16 -bit c	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	LD\#	Continuous	-	
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \#: \&, \|, ^ Please refer to the function specifications table for each device in series for the range of device usage												D-bit\# Flag sign	Continuous execution type none	-	

Explanation - S1: data source device 1.
S2: data source device 2.

- This command performs comparison of the content of S1 and S2; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The LD\#This command can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	Conditions for activation				Conditions for inactivation			
215	LD\&	DLD\&	S1	$\&$	S2	$\neq 0$	S1	$\&$	S2	
0	$=0$									
216	LD	DLD	S1	\|	S2	$\neq 0$	S1	\|	S2	
=										
217	LD $^{\wedge}$	DLD $^{\wedge}$	S1	\wedge	S2	$\neq 0$	S1	\wedge	S2	

- \&: logical AND operation.
- I: logical OR operation.
- \quad : logical XOR operation.

Example

- When the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to $0, \mathrm{Y} 10=\mathrm{ON}$.
- When the content of D200 and D300 is subjected to the logical OR operation, and the result is not equal to 0 , and $\mathrm{X} 1=\mathrm{ON}, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.

$\begin{array}{\|l\|} \hline \text { API } \\ 218- \\ \hline \end{array}$		AND\#	(S1) (S2)	Contact form logical operation AND\#
$\begin{gathered} 218- \\ 220 \\ \hline \end{gathered}$	D	AND\#	(1)	

		devis					ord	devic				16-bit co	mand (5 STEP)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	AND\#	Continuous		-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: $\#: \&, \mid, \wedge$ Please refer to the function specifications table for each device in series for the scope of device usage												DAND\# Flag sign	Continuous execution type l: none		-

Explanation - S1: data source device 1.
S2: data source device 2 .

- This command performs comparison of the content of S1 and S2; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The AND\# command is an operation command in series with the contact.

API No.	16 -bit commands	32-bit commands	Conditions for activation			Conditions for inactivation				
218	AND\&	DAND\&	S1	$\&$	S2	$\neq 0$	S1	$\&$	S2	$=0$
219	AND	DAND	S1	l	S2	$\neq 0$	S1	।	S2	$=0$
220	AND $^{\wedge}$	DAND $^{\wedge}$	S1	\wedge	S2	$\neq 0$	S1	\wedge	S2	$=0$

- \&: logical AND operation.
- |: logical OR operation.
- $\quad \wedge$: logical XOR operation.

Example

- When $\mathrm{X0}=\mathrm{ON}$ and the content of CO and C 10 is subjected to the logical AND operation, and the result is not equal to $0, \mathrm{Y} 10=\mathrm{ON}$.
- When X1 = OFF and D10 and D0 is subjected to the logical OR operation, and the result is not equal to $0, \mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When X2 = ON and the content of the 32-bit register D200 (D201) and 32-bit register D100 (D101) is subjected to the logical XOR operation, and the result is not equal to 0 or M3 $=\mathrm{ON}, \mathrm{M} 50=\mathrm{ON}$.

		de					/ord	evic				16-bit	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	OR\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \#: \& \|, ^ Please refer to the function specifications table for each device in series for the scope of device usage												DOR\# Flag sig	Continuous execution type l: none	-	

Explanation
S1: data source device 1.
S2: data source device 2 .

- This command performs comparison of the content of S1 and S2; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The OR\# command is an operation command in series with the contact.

API No.	$\begin{gathered} 16 \text {-bit } \\ \text { commands } \\ \hline \end{gathered}$	$\begin{gathered} \text { 32-bit } \\ \text { commands } \end{gathered}$	Conditions for activation			Conditions for inactivation			
221	OR\&	DOR\&	S1 \&	S2	\# 0	S1	\&	S2	$=0$
222	OR1	DOR	S1	S2	\# 0	S1		S2	$=0$
223	OR^{\wedge}	DOR^	S1	S2	\# 0	S1	\wedge	S2	$=0$

- \&: logical AND operation.
- |: logical OR operation.
- \quad : logical XOR operation.

Example

- When $\mathrm{X} 1=\mathrm{ON}$ or the content of C 0 and C10 is subjected to the logical AND operation, and the result is not equal to $0, Y 0=O N$.
- When X2 and M30 are both equal to ON, or the content of 32-bit register D10 (D11) and 32-bit register D20 (D21) is subjected to the logical OR operation, and the result is not equal to 0 , or the content of the 32-bit counter C235 and the 32-bit register D200 (D201) is subjected to the logical XOR operation, and the result is not equal to $0, \mathrm{M} 60=\mathrm{ON}$.

		devis					Jord	devic				16-bit	mmand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	LD※	Continuous		
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: $\quad ※:=,>,<,<>, \leq, \geq$ Refer to the function specifications table for each device in series for the scope of device usage												DLD\% Flag sign	Continuous execution type l: none	-	-

> Sxplanation data source device 1. S2: data source device 2.

- This command compares the content of S1 and S2. Taking API 224 (LD=) as an example, this command will be activated when the result of comparison is "equal," and will not be activated when the result is "unequal."
- The LD* can be used while directly connected with the busbar

API No.	$16-$-bit commands	32 -bit commands	Conditions for activation	Conditions for inactivation
224	LD $=$	DLD $=$	S1 = S2	$\mathrm{S} 1 \neq \mathrm{S} 2$
225	$\mathrm{LD}>$	$\mathrm{DLD}>$	$\mathrm{S} 1>\mathrm{S} 2$	$\mathrm{~S} 1 \leq \mathrm{S} 2$
226	$\mathrm{LD}<$	$\mathrm{DLD}<$	$\mathrm{S} 1<\mathrm{S} 2$	$\mathrm{~S} 1 \geq \mathrm{S} 2$
228	$\mathrm{LD}<>$	$\mathrm{DLD}<>$	$\mathrm{S} 1 \neq \mathrm{S} 2$	$\mathrm{~S} 1=\mathrm{S} 2$
229	$\mathrm{LD}<=$	$\mathrm{DLD}<=$	$\mathrm{S} 1 \leq \mathrm{S} 2$	$\mathrm{~S} 1>\mathrm{S} 2$
230	$\mathrm{LD}>=$	$\mathrm{DLD}>=$	$\mathrm{S} 1 \geq \mathrm{S} 2$	$\mathrm{~S} 1<\mathrm{S} 2$

Example

- When the content of C 10 is equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{ON}$.
- When the content of D200 is greater than K-30, and $\mathrm{X} 1=\mathrm{ON}, \mathrm{Y} 11=\mathrm{ON}$ and remains in that state.

API $232-$ 238	\square	AND	D	S1 S2	Contact form compare AND*

		de					/ord	evic				16-bit con	mand (5 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	AND※	Continuous		-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: $\quad:=,>,<,<>, \leq, \geq$ Please refer to the function specifications table for each device in series for the scope of device usage												DAND ※ Flag sign	Continuous execution type l: none	-	-

Explanation

- S1: data source device 1.

S2: data source device 2.

- This command compares the content of S1 and S2. Taking API 232 (AND=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The AND* command is a comparison command in series with a contact.

API No.	16 -bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND $=$	DAND $=$	$\mathrm{S} 1=\mathrm{S} 2$	$\mathrm{~S} 1 \neq \mathrm{S} 2$
233	AND $>$	DAND $>$	$\mathrm{S} 1>\mathrm{S} 2$	$\mathrm{~S} 1 \leq \mathrm{S} 2$
234	AND $<$	DAND $<$	$\mathrm{S} 1<\mathrm{S} 2$	$\mathrm{~S} 1 \geq \mathrm{S} 2$
236	AND $<>$	DAND $<>$	$\mathrm{S} 1 \neq \mathrm{S} 2$	$\mathrm{~S} 1=\mathrm{S} 2$
237	AND $<=$	DAND $<=$	$\mathrm{S} 1 \leq \mathrm{S} 2$	$\mathrm{~S} 1>\mathrm{S} 2$
238	AND $>=$	DAND $>=$	$\mathrm{S} 1 \geq \mathrm{S} 2$	$\mathrm{~S} 1<\mathrm{S} 2$

Example

- When $\mathrm{X0}=\mathrm{ON}$ and the current value of C 10 is also equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{ON}$.
- When $\mathrm{X} 1=\mathrm{OFF}$ and the content of register D0 is not equal to $\mathrm{K}-10, \mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When X2 = ON and the content of the 32-bit register D0 (D11) is less than 678,493 , or M3 $=\mathrm{ON}, \mathrm{M} 50=\mathrm{ON}$.

		,					ord	evic				16-bit com	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	OR\%	Continuous		-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: $\quad ※:=,>,<,<>, \leq, \geq$ Please refer to the function specifications table for each device in series for the scope of device usage												DOR\% Flag sign	Continuous execution type: l: none	-	-

Explanation \quad S1: data source device 1.

- This command compares the content of S1 and S2. Taking API 240 (OR=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The OR* command is a compare command in parallel with a contact.

API No.	16 -bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	OR $=$	DOR $=$	S1 = S2	$\mathrm{S} 1 \neq \mathrm{S} 2$
241	$\mathrm{OR}>$	$\mathrm{DOR}>$	$\mathrm{S} 1>\mathrm{S} 2$	$\mathrm{~S} 1 \leq \mathrm{S} 2$
242	$\mathrm{OR}<$	$\mathrm{DOR}<$	$\mathrm{S} 1<\mathrm{S} 2$	$\mathrm{~S} 1 \geq \mathrm{S} 2$
244	$\mathrm{OR}<>$	$\mathrm{DOR}<>$	$\mathrm{S} 1 \neq \mathrm{S} 2$	$\mathrm{~S} 1=\mathrm{S} 2$
245	$\mathrm{OR}<=$	$\mathrm{DOR}<=$	$\mathrm{S} 1 \leq \mathrm{S} 2$	$\mathrm{~S} 1>\mathrm{S} 2$
246	$\mathrm{OR}>=$	$\mathrm{DOR}>=$	$\mathrm{S} 1 \geq \mathrm{S} 2$	$\mathrm{~S} 1<\mathrm{S} 2$

Example

- When $\mathrm{X} 0=\mathrm{ON}$ and the current value of C 10 is also equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{ON}$.
- When X1 = OFF and the content of register D0 is not equal to $\mathrm{K}-10, \mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When X2 = ON and the content of the 32-bit register D0 (D11) is less than 678,493 , or M3 $=\mathrm{ON}, \mathrm{M} 50=\mathrm{ON}$.

API $275-$ 280	\square	FLD $※$	$-\quad$ S1 S2	Floating point number contact form compare LD*

Explanation - S1: data source device 1.

S2: data source device 2.

- This command compares the content of S1 and S2. Taking "FLD=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FLD* command can directly input floating point numerical values (for instance: F1.2) to the S1, S2 operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	$32-$-bit commands	Conditions for activation	Conditions for inactivation
275	FLD $=$	S1 = S2	$\mathrm{S} 1 \neq \mathrm{S} 2$
276	FLD $>$	$\mathrm{S} 1>\mathrm{S} 2$	$\mathrm{~S} 1 \leq \mathrm{S} 2$
277	FLD $<$	$\mathrm{S} 1<\mathrm{S} 2$	$\mathrm{~S} 1 \geq \mathrm{S} 2$
278	FLD < >	$\mathrm{S} 1 \neq \mathrm{S} 2$	$\mathrm{~S} 1=\mathrm{S} 2$
279	FLD < $=$	$\mathrm{S} 1 \leq \mathrm{S} 2$	$\mathrm{~S} 1>\mathrm{S} 2$
280	FLD $>=$	$\mathrm{S} 1 \geq \mathrm{S} 2$	$\mathrm{~S} 1<\mathrm{S} 2$

Example

- When the floating point number of register D200 (D201) is less than or equal to F 1.2 , and X 1 activated, contact Y 21 will be activated and remain in that state.

API	FAND※	(S1) (S2)	Floating point number contact form compare AND*
286			

		de					/ord	devic				16-bit command	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		
S1									*	*	*	32-bit command (9 STEP)	
S2									*	*	*		
Notes on operand usage: \#: \& \|, ^ Please refer to the function specifications table for each device in series for the scope of device usage												FAND※: Continuous execution type Flag signal: none	

Explanation

- S1: data source device 1.

S2: data source device 2 .

- This command compares the content of S1 and S2. Taking "FAND=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FAND* command can directly input floating point numerical values (for instance: F1.2) to the S1, S2 operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND $=$	S1 $=$ S2	S1 $1 \neq \mathrm{S} 2$
282	FAND $>$	$\mathrm{S} 1>\mathrm{S} 2$	$\mathrm{~S} 1 \leq \mathrm{S} 2$
283	FAND $<$	$\mathrm{S} 1<\mathrm{S} 2$	$\mathrm{~S} 1 \geq \mathrm{S} 2$
284	FAND $<>$	$\mathrm{S} 1 \neq \mathrm{S} 2$	$\mathrm{~S} 1=\mathrm{S} 2$
285	FAND $<=$	$\mathrm{S} 1 \leq \mathrm{S} 2$	$\mathrm{~S} 1>\mathrm{S} 2$
286	FAND $>=$	$\mathrm{S} 1 \geq \mathrm{S} 2$	$\mathrm{~S} 1<\mathrm{S} 2$

- When $\mathrm{X} 1=$ OFF, and the floating point number in register D100 (D101) is not equal to F1.2, Y21 $=\mathrm{ON}$ and remains in that state.

Explanation - S1: data source device 1.

S2: data source device 2.

- This command compares the content of S1 and S2. Taking "FOR=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FOR* command can directly input floating point numerical values (for instance: F1.2) to the S1, S2 operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32 -bit commands	Conditions for activation	Conditions for inactivation
287	FOR $=$	$\mathrm{S} 1=\mathrm{S} 2$	$\mathrm{~S} 1 \neq \mathrm{S} 2$
288	FOR $>$	$\mathrm{S} 1>\mathrm{S} 2$	$\mathrm{~S} 1 \leq \mathrm{S} 2$
289	FOR $<$	$\mathrm{S} 1<\mathrm{S} 2$	$\mathrm{~S} 1 \geq \mathrm{S} 2$
290	FOR $<>$	$\mathrm{S} 1 \neq \mathrm{S} 2$	$\mathrm{~S} 1=\mathrm{S} 2$
291	FOR < $=$	$\mathrm{S} 1 \leq \mathrm{S} 2$	$\mathrm{~S} 1>\mathrm{S} 2$
292	FOR $>=$	$\mathrm{S} 1 \geq \mathrm{S} 2$	$\mathrm{~S} 1<\mathrm{S} 2$

Example

- When X2 and M30 are both equal to "ON," or the floating point number in register D 100 (D101) is greater than or equal to $\mathrm{F} 1.234, \mathrm{M} 60=\mathrm{ON}$.

16-6-5 Detailed explanation of driver special applications commands

API	-	RPR		S1 S2	Read servo parameter
10	S	S2			

Explanation - $\begin{aligned} & \text { S1: Parameter address of data to be read. } \\ & \text { S2: Register where data to be read is stored. }\end{aligned}$

API	\square	WPR		P
140	S1	S2	Write servo parameter	

	Bit device			Word device								16-bit command (5TEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	WPR	Continuous	WPRP	Pulse
S1				*	*						*		execution type		execution type
S2				*	*						*	32-bit command			
Notes on operand usage: none															
												-	-	-	-
												Flag sign	l: none		

Example

- When the data in the CFP2000 driver's parameter H01.00 is read and written to D0, data from H 01.01 will be read and written to D1.
- When M0 = ON, the content of D10 will be written to the CFP2000 driver parameter 04-00 (first speed of multiple speed levels).
- When the parameter has been written successfully, M1017 = ON.
- The CFP2000's WPR command does not support writing to the 20XX address, but the RPR command supports reading of 21XX, 22XX.

Recommendation Take care when using the WPR command. When writing parameters, because most parameters are recorded as they are written, these parameters may only be revised 109 times; a memory write error may occur if parameters are written more than 10^{9} times.

Because the following commonly-used parameters have special processing, there are no restrictions on the number of times they may be written.

Pr.00-11: Speed mode selection
Pr.00-27: User-defined value
Pr.01-12: Acceleration time 1
Pr.01-13: Deceleration time 1

Pr.01-14: Acceleration time 2
Pr.01-15: Deceleration time 2
Pr.01-16: Acceleration time 3
Pr.01-17: Deceleration time 3
Pr.01-18: Acceleration time 4
Pr.01-19: Deceleration time 4

Pr.02-12: Select MI Conversion Time mode:
Pr.02-18: Select MO Conversion Time mode:

Pr.04-50-Pr.04-69: PLC register parameter 0-19

Pr.08-04: Upper limit of integral
Pr.08-05: PID output upper limit

Pr.10-17: Electronic gear A
Pr.10-18: Electronic gear B
Calculation of the number of times written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.
When writing a PLC program, if unsure of usage of the WPR command, we recommend that you use the WPRP command.

API				
141	FPID	P	(S1) (S2) (S3)	Driver PID control mode

		dev					ord	devic				16-bit co	mand (9 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FPID	Continuous	FPIDP	Pulse
S1				*	*						*		execution type		execution type
S2				*	*						*	32-bit command			
S3				*	*						*				
S4				*	*						*	Flag signal: none			
Notes on operand usage: none															

- S1: PID reference target value input terminal selection.

S2: PID function proportional gain P.
S3: PID function integral time I.
S4: PID function differential time D.

- The FPID command can directly control the driver's feedback control of PID parameter, PID reference target value input terminal selection (Pr.08-00), proposal gain P (Pr.08-01), integral time I (Pr.08-02), and differential time D (Pr.08-03).

Example

- When $\mathrm{MO}=\mathrm{ON}$, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain P is 0 , the PID function integral time I is 1 (units: 0.01 sec .), and the PID function differential time D is 1 (units: 0.01 sec .).
- When M1 $=\mathrm{ON}$, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain P is 1 (units: 0.01), the PID function integral time I is 0 , and the PID function differential time D is 0 .
- When M2 $=\mathrm{ON}$, the set PID reference target value input terminal selection is 1 (target frequency input is controlled from the digital keypad), the PID function proportional gain P is 1 (units: 0.01), the PID function integral time I is 0 , and the PID function differential time D is 0 .
- D1027: Frequency command after PID operation.

| API | - FREQ | | (S1) S2 S3 | Driver speed control mode |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 142 | S | S3 | | |

		dev					ord	devic				16-bit co	mand (7 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FREQ	Continuous	FREQP	Pulse
S1				*	*						*		execution type		execution type
S2				*	*						*	32-bit command			
S3				*	*						*				
Notes on operand usage: none															

Explanation $\quad \begin{aligned} & \text { S1: Frequency command. } \\ & \text { S2: Acceleration time. } \\ & \text { S3: Deceleration time }\end{aligned}$

- S2, S3: In acceleration / deceleration time settings, the number of decimal places is determined by the definitions of Pr.01-45.
Example
When Pr.01-45 $=0$: units of 0.01 sec .
The setting of 50 for S 2 (acceleration time) in the ladder diagram below implies 0.5 sec .,
and the S3 (deceleration time) setting of 60 implies 0.6 sec
- The FREQ command can control driver frequency commands, and acceleration and deceleration time; it also uses special register control actions, such as:
M1025: Control driver RUN (ON) / STOP (OFF) [RUN requires Servo On (M1040 ON) to be effective)
M1026: Control driver operating direction FWD (OFF) / REV (ON)
M1040: Control Servo ON / Servo OFF.
M1042: Trigger quick stop (ON) / does not trigger quick stop (OFF).
M1044: Pause (ON) / release pause (OFF)
M1052: Lock frequency (ON) / release lock frequency (OFF)

Example

- M1025: Driver RUN (ON) / STOP (OFF), M1026: driver operating direction FWD (OFF) / REV (ON). M1015: frequency reached.
- When M10 $=$ ON, sets the driver frequency command K300 $(3.00 \mathrm{~Hz})$, with an acceleration / deceleration time of 0 .
When M11 = ON, sets the driver frequency command K3000 $(30.00 \mathrm{~Hz})$, with an acceleration time of $50(0.5 \mathrm{sec}$.) and deceleration time of 60 (0.6 sec .). (When Pr.01-45 = 0)
- When M11 = OFF, the drive frequency command will now change to 0

- Pr.09-33 are defined based on whether the reference commands have been cleared before PLC operation.
bit0: Prior to PLC scanning procedures, whether the target frequency has been cleared is 0 . (This will be written to the FREQ command when the PLC is ON).

Example: When using r to write a program

If we force M 0 to be 1 , the frequency command will be 20.00 Hz ; but when M 0 is set as 0 , there will be a different situation.

Case 1: When the bit0 of $\operatorname{Pr} .09-33$ is 0 , and MO is set as 0 , the frequency command remains at 20.00 Hz .

Case 2: When the bit0 of Pr.09-33 is 1, and M0 is set as 0 , the frequency command changes to 0.00 Hz .

The reason is that when the Pr.09-33 bit0 is 1 prior to the PLC scanning procedures, the frequency will firstly revert to 0 .
When the Pr.09-33 bit0 is 0 , the frequency will not revert to 0 .

| API | - CANRX | P | S1 S2 S3 (S3 | (D) | Read CANopen slave station data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 261 | | | | | |

		dev					Vord	devic				16-bit com	mand (9 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	CANRX	Continuous	CANRX	Pulse
S1				*	*								execution type	P	execution type
S2				*	*							32-bit command			
S3				*	*										
D									*	*	*				
Notes on operand usage: none												Flag signa			

Explanation

- S1: Slave station number.

S2: Main index.
S3: Subindex + bit length.
D: Preset address.

- The CANRX command can read the index of the corresponding slave station. When it is executed, it will send the SDO message format to the slave station. M1066 and M1067 will both be 0 at that time, and M1066 will be set as 1 after reading. If the slave station gives the correct response, it will write the value to the preset register, and set M1067 as 1 . If the slave station has a response error, M1067 will be set as 0, and an error message will be recorded to D1076 to D1079.

Example
M1002: When the PLC runs, the command will be triggered once and will set K4M400 = K1
Afterwards, each time M1066 is 1 , it will switch to a different message.

| API | - CANTX | \mathbf{P} | (S1) (S2) S3) (S4) | Write CANopen slave station data |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 264 | | | | |

	Bit device			Word device								16-bit command (9 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*								execution type		execution type
S2				*	*				*	*	*				
S3				*	*							32-bit com	mand		
S4				*	*										
Notes on operand usage: none												Flag signa			

Explanation - S1: Slave station number.
S2: Address to be written.
S3: Main index.
S4: Subindex + bit length.

- The CANTX command can write a value to the index of the corresponding slave station. When it is executed, it will send the SDO message format to the slave station. M1066 and M1067 will both be 0 at that time, and M1066 will be set as 1 after reading. If the slave station gives the correct response, it will write the value to the preset register, and set M1067 as 1 . If the slave station has a response error, M1067 will be set as 0 , and an error message will be recorded to D1076 to D1079.

API	CANFLS	P	D
265	Refresh special D corresponding to CANopen		

	Bit device			Word device								16-bit command (3STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	CANFLS	Continuous	CANFLSP	Pulse
D				*	*								execution typ		execution type
Notes on operand usage: none \quad - ${ }^{\text {a-bit command }}$															
												Flag signa	$=$	$-$	$-$

Explanation

- D: Special D to be refreshed.
- The CANFLS command can refresh special D commands. When is a read only attribute, executing this command will send a message equivalent to that of CANRX to the slave station, and the number of the slave station will be transmitted back and refreshed to this special D. When there is a read / write attribute, executing this command will send a message equivalent to that of CANTX to the slave station, and the value of this special D will be written to the corresponding slave station.
- When M1066 and M1067 are both 0, and M1066 is set as 1 after reading, if the slave station gives a correct response, the value will be written to the designated register, and M1067 will be set as 1 . If the slave station's response contains an error, then M 1067 will be set as 0 , and an error message will be recorded to D1076-D1079.

		dev					ord	devic				16-bit co	mmand (9	EP)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ICOMR	Continuous	ICOMRP	Pulse
S1				*	*						*		execution typ		execution type
S2				*	*						*	:32-bit command (17 STEP)			
S3				*	*						*	DICOMR: Continuous DICOMRP:			Pulse execution type
D				*	*						*				
Note															

S1: Selection of slave device.
S2: Device selection (0: converter, 1: internal PLC).
S3: Read address.
D: Saving target.

- The ICOMR command can obtain the slave station's converter and the internal PLC's register value.

$A P I$		ICOMW	\mathbf{P}	$(\mathrm{S} 1$	$(\mathrm{S2})(\mathrm{S3})$
321	D		Internal communications write		

		de					/ord	devic				16-bit com	mand 19 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ICOMW	Continuous	ICOMW	Pulse
S1				*	*						*		execution type	P	execution type
S2				*	*						*	32	mand (17 ST		
S3				*	*						*	DICOM	Continuous DICOMexecution type		Pulse execution type
D				*	*						*	W			
Notes on operand usage: none												Flag signal: M1077 M1078 M1079			

Explanation

- S1: Selection of slave device.

S2: Device selection (0: converter, 1: internal PLC).
S3: Read address.
D: Saving target.

- The ICOMW command write a value to the slave station's converter and the internal PLC's register.

Chapter 16 PLC Function Applications | CFP2000

Example

Please refer to the following example:

API	- WPRA		P	S1 S2

	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	WORA	Continuous	WORAP	Pulse
S1				*	*						*		execution type		execution type
S2				*	*						*	32-bit co	mand		
Notes on operand usage: none															
												Flag signal: none			

Explanation
S1: Data that is going to write in
S2: Parameter address of the write-in data

Example

- Read the data of CFP2000 drive's parameter H01.00 and write into D0, read data of H01.01 and write into D1.
- When M0 is ON, write the content of D10 into CFP2000 drive's Pr.04-00 (1st step speed frequency).
- When parameter writes-in successfully, M1017 is ON.
- The WPR command does not support the write-in of 20XX address, but the RPR command supports the read-out of 21XX and 22XX.

Recommendation

- When WPRA executes, the data is only written into the RAM area, and will get back to previous record when the power is off.

16-7 Error Display and Handling

Code	ID	Description	Recommended handling approach
PLrA	47	RTC time check	Turn power on and off when resetting the keypad time
PLrt	49	incorrect RTC mode	Turn power on and off after making sure that the keypad is securely connected
PLod	50	Data writing memory error	Check whether the program has an error and download the program again
PLSv	51	Data write memory error during program execution	Restart power and download the program again
PLdA	52	Program transmission error	Try uploading again; if the error persists, sent to the manufacturer for service
PLFn	53	Command error while downloading program	Check whether the program has an error and download the program again
PLor	54	Program exceeds memory capacity or no program	Restart power and download the program again
PLFF	55	Command error during program execution	Check whether the program has an error and download the program again
PLSn	56	Check code error Check whether the program has an error and download the program again	
PLEd	57	Program has no END stop command	Check whether the program has an error and download the program again
PLCr	58	MC command has been used continuously more than nine times	Check whether the program has an error and download the program again
PLdF	59	Download program error	Check whether the program has an error and download again
PLSF	60	PLC scan time excessively long	Check whether the program code has a writing error and download again

16-8 CANopen Master Control Applications

Control of a simple multi-axis application is required in certain situations. If the device supports the CANopen protocol, a CFP2000 can serve as the master in implementing simple control (speed control). The setting method comprises the following seven steps:

Step 1: Activating CANopen Master functions

1. Pr.09-45 = 1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
2. Pr.00-02 $=6$ reset PLC (please note that this action will reset the program and PLC registers to the default values)
3. Turn power off and on again.
4. Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if a newly-introduced driver is used, the blank internal PLC program will cause a PLFF warning code to be issued).
Step 2: Master memory settings
5. After connecting the 485 communications cable, use WPL Soft to set the PLC status as Stop (if the PLC mode has been switched to the "PLC Stop" mode, the PLC status should already be Stop)
6. Set the address and corresponding station number of the slave station to be controlled. For instance, if it is wished to control two slave stations (a maximum of 8 stations can be controlled simultaneously), and the station numbers are 21 and 22 , it is only necessary to set D2000 and D2100 as 20 and 21, and then set D2200, D2300, D2400, D2500, D2600, and D2700 as 0 . The setting method involves use of the PLC's WPL editing software WPL as follows:

- Open WPL and implement communications > register edit (TCD) function

- After leaving the PLC register window, the register setting screen will appear, as shown below:

If there is a new PLC program and no settings have yet been made, you can read default data from the converter, and merely edit it to suit the current application. If settings have already been made, however, the special D in the CANopen area will display the saved status (the CANopen D area is located at D1090 to D1099 and D2000 to D2799). Assuming it is a new program, we will first read the default data from the converter; check the communications format if there is no communications link (the default PLC station number is 2, 9600, 7N2, ASCII).
Perform the following steps: 1. Switch the PLC to Stop status; 2. Press the transmit button; 3. click on read memory after exiting the window; 4. Ignore D0-D399; and 5. click on the confirm button.)

After reading the data, it is necessary to perform some special D settings. Before proceeding, we will first introduce the special D implications and setting range. The CANopen Master's special D range is currently D1070 to D1099 and D2000 to D2799; this range is divided into 3 blocks:

- The first block is used to display CANopen's current status, and has a range of D1070 to D1089
- The second block is used for CANopen's basic settings, and has a range of D1090 to D1099
- The third block is the slave station mapping and control area, and has a range of D2000 to D2799

These areas are therefore introduced as follows:

- The first area displays the current CANopen status

When the master initializes a slave station, we can find out from D1070 whether configuration of the slave device has been completed; we can find out whether an error occurred in the configuration process from D1071 and whether the configuration is inappropriate from D1074.

After entering normal control, we can find out whether the slave device is offline from D1073. In addition, we can check the slave device's read/write information using the CANRX, CANTX, and CANFLS commands; error information can be obtained from D1076 to D1079 if there has been a read / write failure.

Special D	Description of Function	R / W
D1070	Channel opened by CANopen initialization (bit0 = Machine code0)	R
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0)	R
D1072	Reserved	R
D1073	CANopen break channel (bit0=Machine code0)	R
D1074	Error code of master error 0: No error 1: Slave station setting error 2: Synchronizing cycle setting error (too small)	R
D1075	Reserved	R
D1076	SDO error message (main index value)	R
D1077	SDO error message (secondary index value)	R
D1078	SDO error message (error code L)	R
D1079	SDO error message (error code H)	

- The second area is for basic CANopen settings: (the PLC must have stopped when this area is used to make settings)

We must set the information exchange time for the master and slave station,

Special D	Description of Function	Default	R / W
D1090	Synchronizing cycle setting	4	RW

Use D1090 to perform settings; setting time relationships include:
Sync time $\geqslant \frac{1 \mathrm{M}}{\text { Rate }} * \frac{\mathrm{~N}}{4}$
N: TXPDO + RXPDO
For instance, when communications speed is 500 Kbps , TXPDO + RXPDO have 8 sets, and synchronizing time will require more than 4 ms .

We must also define how many slave stations will be open. D1091 is the channel for defining station opening, and D2000 $+100 \times n$ is the station number defining this channel. See the detailed explanation below.

Slave station number $\mathbf{n}=0-7$

Special D	Description of Function	R / W
D1091	Sets slave station ON or OFF (bit0-bit 7 correspond to slave stations number 0-7)	RW
D2000+100*n	Slave station number	RW

If slave devices have a slow start-up, the master can delay for a short time before performing slave station configuration; this time delay can be set via D1092.

Special D	Description of Function	Default	R / W
D1092	Delay before start of initialization	0	RW

With regard to slave device initialization, a delay time can be set to judge whether failure has occurred. If the communications speed is relatively slow, the delay time can be adjusted to judge whether initialization has been completed, which will ensure that there is time to perform slave device initialization.

Special D	Description of Function	Default	R / W
D1099	Initialization completion delay time Setting range: 1 to 60000 sec.	15 sec.	RW

After communication is successful, the system must detect whether there is a break in communications with the slave station. D1093 is used to set detection time, and D1094 sets the number of consecutive errors that will trigger a break error.

Special D	Description of Function	Default	R / W
D1093	Break time detection	1000 ms	RW
D1094	Break number detection	3	RW

The packet type transmitted by PDO is set before establishing normal communications and generally does not require adjustment.

Special D	Description of Function	Default:	R/W
D1097	Corresponding real-time transmission type (PDO) Setting range: 1-240	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1-240	1	RW

- The third area is the slave station mapping and control area.

CANopen provides a PDO method to perform mapping of the master and slave station memory, and enables the master to directly access read/write data in a certain memory area. The master will automatically perform data exchange with the corresponding slave device, and the read/write values can be seen directly from the special D area after real-time exchange (M1034 = 1 time) has been established. The CFP2000 currently supports real-time mapping of four PDOs, and there are two types of PDO RXPDO (reads slave device information) and TXPDO (writes to slave device). In addition, in order to facilitate control, the CFP2000 cannot perform mapping of commonly used registers; the following is an overview of the current PDO mapping situation:

TX PDO			
PDO2 (Remote I/O)		PDO1 (Speed)	
Description	Special D	Description	Special D
Slave device DO	D2027+100×n	Controller word	D2008+100×n
Slave device AO1	D2031+100×n	Target speed	D2012+100×n
Slave device AO2	D2032+100×n		
Slave device AO3	D2033+100 $\times \mathrm{n}$		

RXPDO			
PDO2 (Remote I/O)		PDO1 (Speed)	
Description	Special D	Description	Special D
Slave device DI	D2026+100×n	Mode word	D2009+100 $\times \mathrm{n}$
Slave device AI1	D2028+100×n	Actual frequency	D2013+100×n
Slave device AI2	D2029+100×n		
Slave device AI3	D2030+100×n		

Because usage requires only simple to open the corresponding PDO, where TXPDO employs D2034+100*n settings and RXPDO employs D2067+100×n settings.
These two special D areas are defined as follows:

	PDO2		PDO1	
Default definition	Remote I/O		Speed	
bit	7	$6-4$	3	$2-0$
Definition	En	Length	En	Length

NOTE:

En: indicates whether PDO is used
Length: indicates mapping of several variables
In a simple example, if we wish to control a CFP2000 slave device and cause it to operate in speed mode, we only have to make the following settings:
D2034+100×n =000Ah

Length	TX PDO			
	PDO2		Special D	Description
	Description	Ppecial D		
1	Slave device DO	D2027+100 $\times \mathrm{n}$	Controller word	D2008+100×n
2	Slave device AO1	D2031 $+100 \times \mathrm{n}$	Target speed	D2012+100×n
3	Slave device AO2	D2032+100 $\times \mathrm{n}$		
4	Slave device AO3	D2033+100×n		

	PDO2		PDO1	
Definition	Remote I/O		Speed	
bit	7	$6-4$	3	$2-0$
Definition	0	0	1	2

D2067+100*n =000Ah

Length	TX PDO			
	PDO2		PDO1	
	Description	Special D	Description	Special D
1	Slave device DI	D2026+100×n	Controller word	D2009+100*n
2	Slave device Al1	D2028+100×n	Actual frequency	D2013+100*n
3	Slave device Al2	D2029+100×n		
4	Slave device Al3	D2030+100×n		

	PDO2		PDO1		
Definition	7	$6-4$	3	Speed	
bit	7	0	1	$2-0$	
Definition	0		2		

Switch the PLC to Run after completing settings. Now wait for successful initialization of CANopen ($\mathrm{M} 1059=1$ and $\mathrm{M} 1061=0$), and then initiate CANopen memory mapping ($\mathrm{M} 1034=1$). The control word and frequency command will now automatically refresh to the corresponding slave device (D2008+n×100 and D2012+n×100), and the slave device's status word and currently frequency will also be automatically sent back to the master station (D2009+n $\times 100$ and D2013+n*100). This also illustrates how the master can handle these tasks through read/write operations in the special D area.

Furthermore, it should be noted that the remote I/O of PDO2 can obtain the slave device's current DI and AI status, and can also control the slave device's DO and AO status. Nevertheless, after introducing a fully automatic mapping special D, the CFP2000 CANopen master also provides additional information refreshes. For instance, while in speed mode, acceleration/deceleration settings may have been refreshed. The special D therefore also stores some seldom-used real-time information, and these commands can be refreshed using the CANFLS command. The following is the CFP2000's current CANopen master data conversion area, which has a range of D2001+100*n - D2033+100*n, as shown below:

1. The range of n is $0-7$
2. •Indicates PDOTX, Δ Indicates PDORX; unmarked special D can be refreshed using the

CANFLS command

Special D	Description of Function	Default	PDO Default		R / W
			1	2	
D2000+100*n	Station number n of slave station Setting range: 0-127 0 : No CANopen function	0			RW
D2002+100*n	Manufacturer code of slave station number n (L)	0			R
D2003+100*n	Manufacturer code of slave station number $\mathrm{n}(\mathrm{H})$	0			R

Special D	Description of Function	Default	PDO Default		R / W
			0		
D2005+100*n	Manufacturer's product code of slave station number n (H)	0		R	

Basic definitions

Special D	Description of Function	Default	PDO Default		R / W
			1	2	
D2006+100*n	Communications break handling method of slave station number n	0			RW
D2007+100*n	Error code of slave station number n error	0			R
D2008+100*n	Control word of slave station number n	0	\bullet		RW
D2009+100*n	Status word of slave station number n	0	4		R
D2010+100*n	Control mode of slave station number n	2			RW
D2011+100*n	Actual mode of slave station number n	2			R

Velocity Control

Special D	Description of Function	Default	PDO Default		R / W
			1	2	
D2001+100*n	Torque restriction on slave station number n	0			RW
D2012+100*n	Target speed of slave station number n (rpm)	0	\bullet		RW
D2013+100*n	Actual speed of slave station number n (rpm)	0	A		R
D2014+100*n	Error speed of slave station number n (rpm)	0			R
D2015+100*n	Acceleration time of slave station number n (ms)	1000			RW
D2016+100*n	Deceleration time of slave station number n (ms)	1000			RW

Remote I/O

Special D	Description of Function	Default	PDO Default		R / W
			1	2	
D2026+100*n	Ml status of slave station number n	0		A	R
D2027+100*n	MO setting of slave station number n	0		\bullet	RW
D2028+100*n	Al1 status of slave station number n	0		\triangle	R
D2029+100*n	Al2 status of slave station number n	0		-	R
D2030+100*n	Al3 status of slave station number n	0		Δ	R
D2031+100*n	AO1 setting of slave station number n	0		\bullet	RW
D2032+100*n	AO2 setting of slave station number n	0		\bullet	RW
D2033+100*n	AO3 setting of slave station number n	0		\bullet	RW

After gaining an understanding of special D definitions, we return to setting steps. After entering the values corresponding to D1090 to D1099, D2000+100×n, D2034+100×n and D2067+100*n, we cannot begin to perform downloading, which is performed in accordance with the following steps: (1. D2000 and D2100 are set as 20 and 21, and D2200, D2300, D2400, D2500, D2600, and D2700 are set as 0 ; if a setting of 0 causes problems, D1091 can be set as 3, and slave stations 2 to 7 can be closed. 2. Switch PLC to Stop status. 3. Press the transmit button. 4. Click on write memory after exiting the window. 5. Ignore D0-D399. 6. Change the second range to D1090-D1099. 7. Click on Confirm.)

- Another method can be used to set D1091: Determine which of slave stations 0 to 7 will not be needed, and set the corresponding bits to 0 . For instance, if it is not necessary to control slave stations 2,6 and 7 , merely set D1091 $=003 \mathrm{~B}$, and the setting method is the same as described above: Use WPL to initiate communications > use register edit (T C D) function to perform settings.

Step 3: Set the master's communications station number and communications speed

- When setting the master's station number (Pr.09-46, default is set as 100), make sure not to use the same number as a slave station.
- Set the CANopen communications speed (Pr.09-37); regardless of whether the driver is defined as a master or slave station, the communications speed is set via this parameter

Step 4: Write program code
Real-time access: Can directly read / write to or from the corresponding D area.
Non real-time access:

- Read command:

Use the CANRX command for reading. M1066 will be 1 when reading is complete; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.

- Write command:

Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.

- Refresh command:

Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

NOTE: When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.

Afterwards, download program to the driver (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2 . The WPL must therefore be modified, and the WPL setting pathway is settings > communications settings)

Step 5: Set the slave stations' station numbers, communications speed, control source, and command source

Delta's CFP2000 and EC series devices currently support the CANopen communications interface driver, and the corresponding slave station numbers and communications speed parameters are as follows:

	Corresponding device parameters		Value	Definition
	CFP2000	E-C		
Slave station address	Pr.09-36	Pr.09-20	0	Disable CANopen hardware interface
			1-127	CANopen Communication address
Communication speed	Pr.09-37	Pr.09-21	0	1 Mbps
			1	500 Kbps
			2	250 Kbps
			3	125 Kbps
			4	100 Kbps
			5	50 Kbps

Delta's A2 Servo currently supports the CANopen communications interface, and the corresponding slave station numbers and communications speed parameters are as follows:

	Corresponding device parameters A2	Value	Definition
Slave station address	Pr.03-00	1-127	CANopen Communication address
Communication speed	Pr.03-01 bit8-11 XRXX	$\mathrm{R}=0$	125 Kbps
		$\mathrm{R}=1$	250 Kbps
		$\mathrm{R}=2$	500 Kbps
		$\mathrm{R}=3$	750 Kbps
		$\mathrm{R}=4$	1 Mbps
Control/ command source	Pr.01-01	B	

Step 6: Connect hardware wiring
When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

Max $=8$

Step 7: Initiate control
After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.
Refer to CANMasterTest 1 vs. 2 driver.dvp
Example: CFP2000 driver one-to-two control
Step 1: Activating CANopen Master functions

- Pr.09-45 = 1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
- Pr.00-02 $=6$ reset PLC (please note that this action will reset the program and PLC registers to the default values)
- Turn power off and on again.
- Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if a newly-introduced driver is used, the blank internal PLC program will cause a PLFF warning code to be issued).

Step 2: Master memory correspondences

- Enable WPL
- Use keypad set PLC mode as Stop (PLC 2)
- WPL read D1070 to D1099, D2000 to D2799
- Set D2000=10 D2100 = 11
- Set D2100 $220023002400250026002700=0$
- Download D2000 to D2799 settings

Step 3: Set the master's communications station number and communications speed

- When setting the master's station number (Pr.09-46, default is set as 100), make sure not to use the same number as a slave station.
- Set the CANopen communications speed as 1 M (Pr.09-37 $=0$); regardless of whether the driver is defined as a master or slave station, the communications speed is set via this parameter.

Step 4: Write program code

Real-time access: Can directly read / write to or from the corresponding D area.
Non real-time access:

- Read command:

Use the CANRX command for reading. M1066 will be 1 when reading is complete; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.

- Write command:

Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M 1067 will be 0 if an error has occurred.

- Refresh command:

Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

NOTE: When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.

Afterwards, download program to the driver (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2 . The WPL must therefore be modified, and the WPL setting pathway is settings > communications settings)

Step 5: Set the slave stations' station numbers and communications speed
Slave station no. 1: Pr.09-37 = 0 (Speed 1M) Pr.09-36=10 (Node ID 10)
Slave station no. 2: Pr.09-37 = 0 (Speed 1M) Pr.09-36=10 (Node ID 11)
Step 6: Connect hardware wiring
When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

Step 7: Initiate control

After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.
Refer to CANMasterTest 1 vs. 2 driver.dvp

16-9 Explanation of Various PLC Speed Mode Controls

Speed mode supports SVC control. Under the speed mode of SVC control, it cannot be performed successfully unless finish motor parameter auto tuning ahead of time.

Control methods and settings are explained as follows:
Speed control
Register table for speed mode:
Control special M

Special M	Description of Function	Attributes
M1025	Driver frequency = set frequency (ON) / driver frequency =0 (OFF)	RW
M1026	Driver operating direction FWD (OFF) / REV (ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special M	Description of Function	Attributes
M1015	Frequency attained (when used together with M1025)	RO
M1056	Servo On Ready	RO
M1058	On Quick Stopping	RO

Control special D

Special D	Description of Function	Attributes
D1060	Mode setting (speed mode is 0)	RW

Status special D

Special D	Description of Function	Attributes
D1037	Converter output frequency (0.00-600.00)	RO
D1050	Actual operating mode (speed mode is 0)	RO

Speed mode control commands:
FREQ (P)
S1
S2
The first acceleration time setting

S3 The first deceleration time setting

Example:

Before performing speed control, if the SVC control method is used, setting of electromechanical parameters must first be completed.

1. Setting D1060 $=0$ will shift the converter to the speed mode (default).
2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
3. Set $\mathrm{M} 1040=1$, the driver will now be excited, but the frequency will be 0 .
4. Set $\mathrm{M} 1025=1$, the driver frequency command will now jump to the frequency designated by FREQ, and acceleration/deceleration will be controlled based on the acceleration time and deceleration time specified by FREQ.
5. M1052 can be used to lock the current operating frequency.
6. M1044 can be used to temporarily pause operation, and the deceleration method will comply with deceleration settings.
7. M1042 can be used to perform quick stop, and deceleration will be as quick as possible without giving rise to an error. (There may still be a jump error if the load is too large.)
8. Control user rights: M1040 (Servo ON) > M1042 (Quick Stop) > M1044(Halt) >M1052 (LOCK)

16-10 Internal Communications Main Node Control

The protocol has been developed in order to facilitate the use of 485 instead of CANopen in certain application situations. The 485 protocol offers similar real-time characteristics as CANopen. The maximum number of slave devices is 8 .

Internal communications have a master-slave structure. The initiation method is very simple:

- Slave device:

Set Pr.09-31 = -1 to -8 in order to access 8 nodes, and set Pr.00-20 $=1$ to define the control source as 485 and access the reference sources that must be controlled, namely speed command (Pr.00-21 = 2). This will complete slave device settings. (PLC functions do not need to be activated)

- System:

Setting the master is even simpler; it is only necessary to set Pr.09-31 = -10, and enable the PLC.

- Hardware wiring:

The master and slave stations are connected via the 485 serial port. The CFP2000 provide two types of 485 serial port interfaces, see the figure below: (please refer to Section 06 Control terminals concerning detailed terminal connections)

Removable Terminal Block
Pin 1~2, 7~8: Reserved
Pin 3, 6:SGND
Pin 4:SG-
Pin 5:SG+

Master programming: In a program, D1110 can be used to define a slave station to be controlled ($1-8$, if set as 0 , can jump between 8 stations). Afterwards, M1035 is set as 1, and the memory positions of the master and slave stations will correspond. At this time, it is only necessary to send commands to the correlation slave station address to control that station. The following is a register table connected with internal communications:

Control special M

Special M	Description of Function	Attributes
M1035	Initiates internal communications control	RW

Control special D

Special D	Description of Function	Attributes
D1110	Internal node communications number 1-8 (set the station number of the slave station to be controlled)	RW

Special D	Description of Function				Attributes
	Definition	bit	User rights	Speed mode	
D1120+10×N	Internal node N control command	0	4	Command functions	RW
		1	4	Reverse rotation requirements	
		2	4	-	
		3	3	Temporary pause	
		4	4	Frequency locking	
		5	4	JOG	
		6	2	Quick Stop	
		7	1	Servo ON	
		11-8	4	Speed interval switching	
		13-12	4	Deceleration time change	
		14	4	Enable bit13-8	
		15	4	Clear error code	
D1121+10×N	Internal node N control mode			0	RW
D1122+10×N	Internal node N reference command L			Speed command (no number)	RW
D1123+10×N	Internal node N reference command H			-	RW

※ $\mathrm{N}=0-7$
Status special D

Special D	Description of Function	Attributes
D1115	Internal node synchronizing cycle (ms)	RO
D1116	Internal node error (bit0 = slave device 1, bit1 = slave device 2, ...bit7 = slave device 8)	RO
D1117	Internal node online correspondence (bit0 = slave device 1, bit1 = slave device $2, \ldots$ bit7 = slave device 8)	RO

Special D		Description of Function	Attributes
	bit	Speed mode	
D1126+10×N	0	Frequency command arrival	RO
	1	Clockwise	
		Counterclockwise:	
	2	Warning	
	3	Error	
	5	JOG	
	6	Quick Stop	
	7	Servo ON	
D1127+10×N		Actual frequency	RO
D1128+10×N		-	

※ $\mathrm{N}=0-7$
Example: Assume it is desired to control slave station 1 operation at frequencies of 30.00 Hz and 60.00 Hz , status, and online node correspondences:

When it is judged that slave station 1 is online, delay 3 sec . and begin control

It is required slave station 1 maintain forward rotation at 30.00 Hz for 1 sec ., and maintain reverse rotation at 60.00 Hz for 1 sec ., and repeat this cycle continuously.

16-11 Modbus Remote IO Control Applications (use MODRW)

The CFP2000's internal PLC supports 485 read/write functions, which can be realized using the MODRW command. However, the 485 serial port must be defined as available for the PLC's 485 use before writing a program, and the Pr.09-31 must be set as -12 . After completing settings, the standard functions defined by 485 can be used to implement read / write commands at other stations. Communications speed is defined by Pr.09-01, the communications format is defined by Pr.09-04, and the PLC's current station number is defined by Pr.09-35. The CFP2000 currently supports the functions read coil (0×01), read input (0×02), read register (0×03), write to single register (0×06), write to several coils ($0 \times 0 \mathrm{~F}$), and write to several registers (0×10). Explanations and the usage of these functions are provided as follows:

MODRW command					General meaning	Slave device is Delta's PLC meaning	Slave device is Delta's converter meaning
S1	S2	S3	S4	S5			
$\begin{array}{\|c} \hline \text { Node } \\ \text { ID } \\ \hline \end{array}$	Command	Address	Return: D area	Length:			
K3	H01	H500	D0	K18	Read coil (Bit)	Read 18 bits of data corresponding to slave station 3 PLC Y0 to Y21. This data is stored by bit 0 to 15 of this station's D0 and bit 0 to bit 3 of D1.	Does not support this function
K3	H02	H400	D10	K10	Read input (Bit)	Read 10 bits of data corresponding to slave station 3 PLC X0 to X11. This data is stored by bit 0 to 9 of this station's D10.	Does not support this function
K3	H03	H600	D20	K3	Read register (word)	Read 3 words of data corresponding to slave station 3 PLC T0 to T2. This data is stored by D20 to D22.	Read 3 words of data corresponding to slave station 3 converter parameters 06-00 to 06-02. This data is stored by D20 to D22
K3	H06	H610	D30	XX	Write to single register (word)	Write slave station 3 PLC's T16 to this station's D30 value	Write slave station 3 converter 06 to 16 parameter to this station's D30 value
K3	H0F	H509	D40	K10	Write to multiple coils (Bit)	Write slave station 3 PLC's Y11 to Y22 to bit 0 to 9 of D40.	Does not support this function
K3	H10	H602	D50	K4	Write to multiple registers (word)	Write slave station 3 PLC's T2 to T5 to D50 to D53	Write slave station 3 converter 06-02 to 06-05 parameters to this station's D50 to D53

NTOE: XX indicates doesn't matter
After implementing MODRW, the status will be displayed in M1077 (485 read / write complete), M1078 ($485 \mathrm{read} / \mathrm{write}$ error), and M1079 (485 read / write time out). M1077 is defined so as to immediately revert to 0 after the MODRW command has been implemented. However, any of three situations-a report of no error, a data error report, or time out with no report-will cause the status of M1077 to change to ON.

Example program: Testing of various functions
At the start, will cause the transmitted time sequence to switch to the first data unit.

When the reported message indicates no error, it will switch to the next transmitted command

If time out occurs or an error is reported, the M1077 will change to ON. At this time, after a delay of 30 scanning cycles, it will re-issue the original command once

It will repeat after sending all commands

Practical applications:
Actual use to control the RTU-485 module.
Step 1: Set the communications format. Assume that the communications format is $115200,8, \mathrm{~N}, 2$,
RTU
CFP2000 : The default PLC station number is set as 2 (Pr.09-35)
Pr.09-31 = - 12 (COM1 is controlled by the PLC), Pr.09-01 = 115.2 (The communications speed is 115200)

Pr.09-04 = 13 (The format is $8, \mathrm{~N}, 2, \mathrm{RTU}$)

RTU485: The station number $=8$ (give example)

PA3	PA2	PA1	PA0	DR2	DR1	DR0	A/R
1	0	0	0	1	1	1	0

Communication station \#:
IDO~ ID7 are defined as $2^{0}, 2^{1}, 2^{2} \ldots 2^{6}, 2^{7}$

Communication protocol

PA3	PA. 2	PA1	PAO	A/R	Communication ${ }^{2}$ Protocol
OFF	OFF	OFF	OFF	ON	7,E,1 , ASCII
OFF	OFF	OFF	ON	ON	7,0,1, ASCII
OFF	OFF	ON	OFF	ON	7,E,2, ASCII
OFF	OFF	ON	ON	ON	7,0,2, ASCII
OFF	ON	OFF	OFF	ON	7,N,2, ASCII
OFF	ON	OFF	ON	ON	8,E,1 , ASCII
OFF	ON	ON	OFF	ON	8,0,1, ASCII
OFF	ON	ON	ON	ON	8,N,1, ASCII
ON	OFF	OFF	OFF	ON	8,N,2 , ASCII
OFF	ON	OFF	ON	OFF	8,E,1 , RTU
OFF	ON	ON	OFF	OFF	8,0,1, RTU
OFF	ON	ON	ON	OFF	8,N,1, RTU
ON	OFF	OFF	OFF	OFF	8,N,2, RTU

DR2	DR1	DR0	Communicaton Speed
OFF	OFF	OFF	$1,200 \mathrm{bps}$
OFF	OFF	ON	$2,400 \mathrm{bps}$
OFF	ON	OFF	$4,800 \mathrm{bps}$
OFF	ON	ON	$9,600 \mathrm{bps}$
ON	OFF	OFF	$19,200 \mathrm{bps}$
ON	OFF	ON	$38,400 \mathrm{bps}$
ON	ON	OFF	$57,600 \mathrm{bps}$
ON	ON	ON	$115,200 \mathrm{bps}$

Step 2: Install control equipment. We sequentially connect a DVP16-SP (8 IN 8 OUT), DVP-04AD (4 channels AD), DVP02DA (2 channels DA), and DVP-08ST (8 switches) to the RTU485.
The following corresponding locations can be obtained from the RTU485's configuration definitions:

Module	Terminals	485 Address
DVP16-SP	X0-X7	$0400 \mathrm{H}-0407 \mathrm{H}$
	Y0-Y7	$0500 \mathrm{H}-0507 \mathrm{H}$
DVP-04AD	AD0-AD3	$1600 \mathrm{H}-1603 \mathrm{H}$
DVP02DA	DA0-DA1	$1640 \mathrm{H}-1641 \mathrm{H}$
DVP-08ST	Switch $0-7$	$0408 \mathrm{H}-040 \mathrm{FH}$

Step 3: Physical configuration

Step 4: Write to PLC program

Chapter 16 PLC Function Applications | CFP2000

Step 5: Actual testing situation:
I/O testing: When the switch is activated, it can be discovered that the display corresponds to M115M108. Furthermore, it can be seen that one output point light is added every 1 sec . (the display uses a binary format)

84

90

AD DA testing: It can be discovered that D200 and D201 are roughly twice of the D300, and continue to increase progressively. For their part, the D202 and D203 are roughly twice of the D301, and continue to decrease progressively.

Chapter 16 PLC Function Applications | CFP2000

Monitor ADO ~ AD3 (0 ~ 8000)

Control Out Y

1s clock p
ulse, 0.5s

Control DA Value ($0 \sim 4000$)

16-12 Calendar Functions

Keypad (KPC-CC01) should be connected, or the CFP2000 cannot be used. Currently-support commands include TCMP (comparison of calendar data), TZCP (calendar data range comparison), TADD (calendar data addition), TSUB (calendar data subtraction), and TRD (calendar reading). Refer to the explanation of relevant commands and functions for the usage of these commands.

In real applications, the internal PLC can judge whether calendar function have been activated; if they have been activated, calendar warning codes may be displayed in some situations. The basis for whether a calendar function has been activated is whether the program has written the calendar time (D1063 to D1069) in connection with the foregoing calendar commands or programs.

The calendar's time display is currently assigned to D1063 to D1069, and is defined as follows:

Special D	Item	Content	Attributes
D1063	Year (Western)	20xx (2000-2099)	RO
D1064	Weeks	$1-7$	RO
D1065	Month	$1-12$	RO
D1066	Day	$1-31$	RO
D1067	Hour	$0-23$	RO
D1068	Minute	$0-59$	RO
D1069	Second	$0-59$	RO

Calendar-related special M items are defined as follows:

Special D	Item	Attributes
M1068	Calendar time error	RO
M1076	Calendar time error or refresh time out	RO
M1036	lgnore calendar warning	RW

- When a program writes to the commands TCMP, TZCP, TADD, or TSUB, if it is discovered that a value exceeds the reasonable range, M1026 will be 1.
- When the keypad display is PLra (RTC correction warning) or PLrt (RTC time out warning), M1076 will be ON.
- When M1036 is 1 , the PLC will ignore the calendar warning.

Calendar trigger warning code is defined as follows:

Warning	Description	Reset approach	Affects PLC operation
PLra	Calendar time correction	Restart power	No
PLrt	Calendar time refresh time out	Restart power	No

- When the PLC's calendar functions are operating, if the keypad is replaced with another keypad, it will jump to PLra.
- When it is discovered at startup that the keypad has not been powered for more than 7 days, or the time is wrong, PLra will be triggered.
- When it is discovered that the CFP2000 has no keypad in 10 sec . after start up, PLrt will be triggered.
- If the keypad is suddenly pulled out while the calendar is operating normally, and is not reconnected in 1 minute, PLrt will be triggered.

Practical applications:
We will perform a demo of simple applications.
We first correct the keypad time. After pressing Menu on the keypad, select the 9th time setting option. After selection, set the current time.

We set converter on during the period of 8:00-17:20, which allows us to write the following example

Chapter 17 Introduction to BACnet

17-1 About BACnet

17-2 CFP2000 BACnet-Object and Property
17-3 Steps to setup the Parameters about BACnet in CFP2000

17-1 About BACnet

BACnet is an ASHRAE communication protocol for building automation and control networks.
(ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.).
CFP2000's BACnet is based on version 2004.
BACnet's regulations are related to several kinds of physical layers' interfaces. The physical layer built inside CFP2000 is achieved via MS/TP interface.

The BACnet of CFP2000 supports a device type called B-ASC. B-ASC supports six types of services such as DS-RP-B, DS-RPM-B, DS-WP-B, DM-DDB-B, DM-DOB-B and DM-DCC-B.

17-2 CFP2000 BACnet-Object and Property

In CFP2000, BACnet supports 3 object types: Device, AnalogValue (AV) and BinaryValue (BV). In each object type, we have the following table to show the Properties list:

Property ID		Object Type		
		Device	Analog Value	Binary Value
\#4	ACTIVE TEXT			V
\#11	APDU_TIMEOUT	V		
\#12	APPLICATION_SOFTWARE_VERSION	V		
\#28	DESCRIPTION	V	V	V
\#30	DEVICE ADDRESS BINDING	V	V	
\#36	EVENT STATE		V	V
\#44	FIRMWARE_REVISION	V		
\#46	INACTIVE TEXT			V
\#62	MAX_APDU_LENGTH_ACCEPTED	V		
\#63	MAX_INFO_FRAMES	V		
\#64	MAX_MASTER	V		
\#70	MODEL_NAME	V		
\#73	NUMBER_OF_APDU_RETRIES	V		
\#75	OBJECT_IDENTIFIER	V *1	V	V
\#76	OBJECT_LIST	V		
\#77	OBJECT_NAME	V *1	V	V
\#79	OBJECT_TYPE	V	V	V
\#81	OUT OF SERVICE		V	V
\#85	PRESENT VALUE		V *2	V *2
\#87	PRIORITY ARRAY		V *3	V *3
\#96	PROTOCOL_OBJECT_TYPES_SUPPORTED	V		
\#97	PROTOCOL_SERVICES_SUPPORTED	V		
\#98	PROTOCOL_VERSION	V		
\#104	RELINQUISH DEFAULT		V *3	V *3
\#107	SEGMENTATION_SUPPORTED	V		

Property ID		Object Type		
			Device	Analog Value
Binary Value				
$\# 111$	STATUS FLAGS		V	V
$\# 112$	SYSTEM_STATUS	V		
$\# 117$	UNITS		V	
$\# 120$	VENDOR_IDENTIFIER	V		
$\# 121$	VENDOR_NAME	V		
$\# 139$	PROTOCOL_REVISION	V		
$\# 155$	DATABASE_REVISION	V		

*1. The Object_ID and Object_Name Properties of Device are writeable.
*2. The Present_Value Property of some AV and BV objects is commandable.
*3. Only Commandable objects support Priority_Array and Relinquish_Default.
The AV objects, we have commandable and readonly cases.

- Commendable case: We can use Write_Service to access the Present_Value property of commandable AV objects. Thus, the commandable AV objects are linking to the Control_Word and Pr_Word in CFP2000.
- Readonly case: We can use Read_Service to access the Present_Value property of readonly AV objects. Thus, these readonly AV objects are linking to the Status_Word in CFP2000.

The BV objects, we also have commandable and readonly cases.

- Commandable case: We can use Write_Service to access the Present_Value property of commendable BV objects. Thus, the commandable BV objects are linking to the Control_Bit in CFP2000.
- Readonly case: We can use Read_Service to access the Present_Value property of readonly BV objects. Thus, these readonly BV objects are linking to the Status_Bit in CFP2000.

17-2-1 Commandable Analog Value Object

In CFP2000, we have AV_000-AV_026 supporting commandable Present_Value property. For these AV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name		Ubject Description
AV 000	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 001	RW	FreqRefValue	Frequency Reference Value	UNITS_HERTZ
AV 002	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 003	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 004	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 005	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 006	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 007	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 008	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 009	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 010	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 011	RW	(P9-11 map set)	AV11 will modify data which is P9-11 mapping to	Depends

Object Number	R/W	Object Name AV 012		RW
(P9-12 map set)	AV12 will modify data which is P9-12 mapping to	Depends		
AV 013	RW	(P9-13 map set)	AV13 will modify data which is P9-13 mapping to	Depends
AV 014	RW	(P9-14 map set)	AV14 will modify data which is P9-14 mapping to	Depends
AV 015	RW	(P9-15 map set)	AV15 will modify data which is P9-15 mapping to	Depends
AV 016	RW	(P9-16 map set)	AV16 will modify data which is P9-16 mapping to	Depends
AV 017	RW	(P9-17 map set)	AV17 will modify data which is P9-17 mapping to	Depends
AV 018	RW	(P9-18 map set)	AV18 will modify data which is P9-18 mapping to	Depends
AV 019	RW	(P9-19 map set)	AV19 will modify data which is P9-19 mapping to	Depends
AV 020	RW	(P9-20 map set)	AV20 will modify data which is P9-20 mapping to	Depends
AV 021	RW	(P9-21 map set)	AV21 will modify data which is P9-21 mapping to	Depends
AV 022	RW	(P9-22 map set)	AV22 will modify data which is P9-22 mapping to	Depends
AV 023	RW	(P9-23 map set)	AV23 will modify data which is P9-23 mapping to	Depends
AV 024	RW	(P9-24 map set)	AV24 will modify data which is P9-24 mapping to	Depends
AV 025	RW	(P9-25 map set)	AV25 will modify data which is P9-25 mapping to	Depends
AV 026	RW	(P9-26 map set)	AV26 will modify data which is P9-26 mapping to	Depends

17-2-2 Status (Readonly) Analog Value Object

In CFP2000, we have AV_027-AV_068 with readonly Present_Value property. For these AV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name		Ubject Description
AV 027	R	Reserved	Reserved	UNITS_NO_UNITS
AV 028	R	Reserved	Reserved	UNITS_NO_UNITS
AV 029	R	Reserved	Reserved	UNITS_NO_UNITS
AV 030	R	Reserved	Reserved	UNITS_NO_UNITS
AV 031	R	Output frequency	Display output frequency (Hz)	UNITS_HERTZ
AV 032	R	Reserved	Reserved	UNITS_NO_UNITS
AV 033	R	Reserved	Reserved	UNITS_NO_UNITS
AV 034	R	Reserved	Reserved	UNITS_NO_UNITS
AV 035	R	Output torque (\%)	Display output torque (\%)	UNITS_PERCENT
AV 036	R	Reserved	Reserved	UNITS_NO_UNITS
AV 037	R	Reserved	Reserved	UNITS_NO_UNITS
AV 038	R	Reserved	Reserved	UNITS_NO_UNITS
AV 039	R	Status word	Display status word,made from BV16-BV31	UNITS_NO_UNITS
AV 040	R	Reserved	Reserved	UNITS_NO_UNITS
AV 041	R	Driver type code	Driver type code	UNITS_NO_UNITS
AV 042	R	Warn code	Warn code	UNITS_NO_UNITS
AV 043	R	Error code	Error code	UNITS_NO_UNITS
AV 044	R	Output current	Display output current (Amp)	

Object Number	R/W	Object Name	Object Description	Unit
AV 045	R	DC-bus voltage	Display DC bus voltage (Volt)	UNITS_VOLTS
AV 046	R	Output Voltage	Display output voltage of U, V, W (Volt)	UNITS_VOLTS
AV 047	R	Count Value	Display counter value of TRG terminal	UNITS_NO_UNITS
AV 048	R	Power Angle	Display output power angle of U, V, W	UNITS_POWER_FA CTOR
AV 049	R	Output Power	Display actual output power of U, V, W (kW)	UNITS_KILOWATTS
AV 050	R	IGBT temperature	Display the IGBT temperature	UNITS_DEGREES_ CELSIUS
AV 051	R	Temperature of driver	Display the temperature of capacitance	UNITS_DEGREES_ CELSIUS
AV 052	R	Real carry frequency	Display real carrier frequency of the drive (kHz)	UNITS_KILOHERTZ
AV 053	R	PID feedback value	Display PID feedback value (\%)	UNITS_PERCENT
AV 054	R	Overload rate	Display overload condition (\%)	UNITS_PERCENT
AV 055	R	Ground fail detect level	Display GND fail detect level (\%)	UNITS_PERCENT
AV 056	R	DC bus ripple	Display DC bus voltage ripples (Volt)	UNITS_VOLTS
AV 057	R	Fan Speed	Fan speed of the drive (\%)	UNITS_PERCENT
AV 058	R	Output speed(rpm)	Output speed(rpm)	UNITS_REVOLUTIO NS_PER_MINUTE
AV 059	R	KW per Hour	kW per Hour	UNITS_KILOWATTS
AV 060	R	Multi-speed switch	Real multi-speed switch	UNITS_NO_UNITS
AV 061	R	AVI1 input value	0-10 V corresponds to 0-100\%	UNITS_PERCENT
AV 062	R	ACI input value	4-20 mA / 0-10 V corresponds to 0-100\%	UNITS_PERCENT
AV 063	R	AVI2 input value	$0 \mathrm{~V}-10 \mathrm{~V}$ corresponds to 0-100\%	UNITS_PERCENT
AV 064	R	Digital input status	Refer to Pr.02-12	UNITS_NO_UNITS
AV 065	R	Digital output status	Refer to Pr.02-18	UNITS_NO_UNITS
AV 066	R	CPU pin status of DI	Corresponding CPU pin status of digital input	UNITS_NO_UNITS
AV 067	R	CPU pin status of DO	Corresponding CPU pin status of digital output	UNITS_NO_UNITS
AV 068	R	PLC D1043 value	PLC D1043 value	UNITS_NO_UNITS

17-2-3 Commandable Binary Value Object

In CFP2000, we have BV_000-BV_015 supporting commandable Present_Value property. For these BV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 000	RW	ACTIVE CMD	(0)FreqCmd=0;(1)FreqCmd=FreqRefValue
BV 001	RW	FWD/REV CMD	(0)Forward; (1)Reverse
BV 002	RW	Reserved	Reserved
BV 003	RW	HALT CMD	(0)None;(1)RampDown to 0 Hz.
BV 004	RW	LOCK CMD	(0)None;(1)OutputFreq stays at current frequency
BV 005	RW	Reserved	Reserved
BV 006	RW	QSTOP CMD	(0)None;(1)Force driver quick stop
BV 007	RW	ServoPower CMD	(0)PowerOff(free run to stop);(1)PowerOn
BV 008	RW	Reserved	Reserved
BV 009	RW	Reserved	Reserved
BV 010	RW	Reserved	Reserved
BV 011	RW	Reserved	Reserved
BV 012	RW	Reserved	Reserved
BV 013	RW	Reserved	RESET:(0)Do nothing;(1)Reset fault
BV 014	RW	Reserved	
BV 015	RW	RESET	

17-2-4 Status (Readonly) Binary Value Object

In CFP2000, we have BV_016-BV_031 with readonly Present_Value property. For these BV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 016	R	ARRIVE STATE	(0)Not yet;(1)Arrive (OutputFreq=FreqCmd)
BV 017	R	FWD/REV STATE	(0)Forward;(1)Reverse
BV 018	R	WARN STATE	(0)No Warn;(1)Occur Warn
BV 019	R	ERROR STATE	(0)No Error;(1)Occur Error
BV 020	R	Reserved	Reserved
BV 021	R	Reserved	Reserved
BV 022	R	QSTOP STATE	(0)No QSTOP;(1)Occur QSTOP
BV 023	R	ServoPower STATE	(0)PowerOff(free run to stop);(1)PowerOn
BV 024	R	Reserved	Reserved
BV 025	R	Reserved	Reserved
BV 026	R	Reserved	Reserved
BV 027	R	Reserved	Reserved
BV 028	R	Reserved	Reserved

Object Number	R/W	Object Name	Object Description
BV 029	R	Reserved	Reserved
BV 030	R	Reserved	Reserved
BV 031	R	Reserved	Reserved

17-3 Steps to setup the Parameters about BACnet in CFP2000

Related to BACnet function in CFP2000, We have to configure 2 parts of parameters
Part1. Setup parameters related to Communication at Pr_Group9.
Part2. Setup parameters related to System_Parameter at Pr_Group0.

Part1. Pr_Group9, Communication.

1-1. Set Pr.09-31 = 1, BACnet is enabled, then the COM1_Port will be accessed by BACnet. When this is set, the COM1_Port communication format will be changed to RTU 8, N, 1.
(NOTE: The HW Pins of COM1_Port are shared by RJ45 and RS-485. When BACnet is enabled, BACnet will access the COM1_Port, that also means we can NOT have Modbus, PLC connections, VFDSoft and VFD Explorer by COM1_Port).
1-2. Set Pr.09-50, Default = 10, BACnet's MS/TP station number 0-127
1-3. Set Pr.09-51, Default = 38400, BACnet communication baud rate, 9600, 19200, 38400 or 76800 bps .
1-4. Set Pr.09-52 and Pr.09-53, the default setting of Device Object_Identifier is 0x000A (Pr.09-52 = 10, Pr.09-53 = 00). Device Object_Identifier is the combination of Pr.09-52 and Pr.09-53, thus the setting range can be 0-4194303.

For example, Pr.09-53 = 12(0x0C) and Pr.09-52 = 3456(0x0D80), then the device Identifier's value $=$ $12 \times 65536+3456=789888$ (0×0 C0D80).
1-5. Set Pr.09-55, Default $=127$, the highest allowable address for master nodes on the same MS/TP network. CFP2000 base on this setting to know the Max search range.
1-6. Set Pr.09-56, setup the BACnet password. If setup is successful, the keypad will display 8888.

Part2. Pr_Group0, System Parameter.

2-1. Set Pr.00-20 = 1, that means the source of the Frequency command is from RS-485 Interface (accessed by BACnet).
2-2. Set Pr.00-21 = 2, that means the source of the Operation command is from RS-485 Interface (accessed by BACnet).

Here is a simple example:

After setting up the 2 parts of Pr, we can enable the BACnet function in CFP2000. Thus, we can access some BACnet objects to make the CFP2000 driving motor Run or Stop.
Step1. Write_Service on AV_001, Present_Value $=60.0 \rightarrow$ Setup Frequency Reference Value.
Step2. Write_Service on BV_007, Present_Value =Active. \rightarrow Setup Servo Power CMD.
Step3. Write_Service on BV_000, Present_Value =Active. \rightarrow Setup Active CMD.
Step4. Read_Service on AV_031, Present_Value \rightarrow User can know the Output frequency.

PS. In CFP2000, based on different Pr setting or IO setting, we can make FreqCmd with different source of Reference Value. Please check the usage of Keypad, Pr and IO setting for more detail information.

- Connection of the communication cable as shown in the below diagram.

Please note that HW Pins of COM1_Port are shared by RJ45 and RS-485. That means user can use RJ45_cable or RS-485_lines to access the COM1_Port.
When BACnet is enabled, COM1_Port will be dominated by BACnet function. Under this condition, user will not be able to have Modbus VFD Soft, VFD Explorer or PLC function on COM1_Port.

BACnet Protocol Implementation Conformance Statement

Date : July 24, 2014
Vendor Name: Delta Electronics, Inc.
Product Name: CFP2000
Product Model Number: CFP2000
Applications Software Version: Ver 01.04- yyyymm Firmware Revision: Ver 01.04 BACnet Protocol
Revision: 7

Product Description:

Delta CFP2000 is a Variable Frequency AC motor Drive with BACnet embedded.
In CFP2000, the BACnet connection is by MS/TP, RS-485-based. CFP2000 provides a BACnet communication function that permits it as a server and supports BIBBs defined by the BACnet B-ASC.

CFP2000 BACnet provides the capability to control and monitor the CFP2000 machine.

BACnet Standardized Device Profile (Annex L):

\square BACnet Operator Workstation (B-OWS)_
\square BACnet Building Controller (B-BC)
\square BACnet Advanced Application Controller (B-AAC)
■ BACnet Application Specific Controller (B-ASC)
\square BACnet Smart Sensor (B-SS)
\square BACnet Smart Actuator (B-SA)

List all BACnet Interoperability Building Blocks Supported (Annex K):

Data Sharing BIBBs

Data Sharing-ReadProperty-B (DS-RP-B)
Data Sharing-WriteProperty-B (DS-WP-B)
Data Sharing-ReadPropertyMultiple-B (DS-RPM-B)

Device and Network Management BIBBs

Device Management-Dynamic Device Binding-B (DM-DDB-B)
Device Management-Dynamic Object Binding-B (DM-DOB-B)
Device Management-DeviceCommunicationControl-B (DM-DCC-B)

Segmentation Capability:

\square Segmented requests supported Window Size \qquadSegmented responses supported Window Size \qquad

Standard Object Types Supported:
Analog Value
Binary Value
Device

Object instantiation is static. Refer to table at end of this document for object details.

Data Link Layer Options:

\square BACnet IP, (Annex J)
\square BACnet IP, (Annex J), Foreign Device

- ISO 8802-3, Ethernet (Clause 7)
\square ANSI/ATA 878.1, 2.5 Mb. ARCNET (Clause 8)
\square ANSI/ATA 878.1, RS-485 ARCNET (Clause 8), baud rate(s) \qquad
■ MS/TP master (Clause 9), baud rate(s): 9600, 19200, 38400, 76800
\square MS/TP slave (Clause 9), baud rate(s): \qquad
\square Point-To-Point, EIA 232 (Clause 10), baud rate(s): \qquad
\square Point-To-Point, modem, (Clause 10), baud rate(s): \qquad
\square LonTalk, (Clause 11), medium: \qquad
\square Other: \qquad

Device Address Binding:

Is static device binding supported? (This is currently necessary for two-way communication with MS/TP slaves and certain other devices.) \square Yes \quad No

Networking Options:

\square Router, Clause 6 - List all routing configurations, e.g., ARCNET-Ethernet, Ethernet-MS/TP, etc.
\square Annex H, BACnet Tunneling Router over IP
\square BACnet/IP Broadcast Management Device (BBMD)
Does the BBMD support registrations by Foreign Devices? \square Yes \square No

Character Sets Supported:

Indicating support for multiple character sets does not imply that they can all be supported simultaneously.
■ ANSI X3.4
$\square \mathrm{IBM}^{\text {TM }} /$ Microsoft $^{\text {TM }}$ DBCS
\square ISO 8859-1
\square ISO 10646 (UCS-2)

- ISO 10646 (UCS-4)
\square JIS C 6226

If this product is a communication gateway, describe the types of non-BACnet equipment/networks(s) that the gateway supports:

The Properties of Objects

Property ID		Object Type		
		Device	Analog Value	Binary Value
\#4	ACTIVE TEXT			V
\#11	APDU_TIMEOUT	V		
\#12	APPLICATION_SOFTWARE_VERSION	V		
\#28	DESCRIPTION	V	V	V
\#30	DEVICE ADDRESS BINDING	V	V	
\#36	EVENT STATE		V	V
\#44	FIRMWARE_REVISION	V		
\#46	INACTIVE TEXT			V
\#62	MAX_APDU_LENGTH_ACCEPTED	V		
\#63	MAX_INFO_FRAMES	V		
\#64	MAX_MASTER	V		
\#70	MODEL_NAME	V		
\#73	NUMBER_OF_APDU_RETRIES	V		
\#75	OBJECT_IDENTIFIER	V *1	V	V
\#76	OBJECT_LIST	V		
\#77	OBJECT_NAME	V *1	V	V
\#79	OBJECT_TYPE	V	V	V
\#81	OUT OF SERVICE		V	V
\#85	PRESENT VALUE		V *2	V *2
\#87	PRIORITY ARRAY		V *3	V *3
\#96	PROTOCOL_OBJECT_TYPES_SUPPORTED	V		
\#97	PROTOCOL_SERVICES_SUPPORTED	V		
\#98	PROTOCOL_VERSION	V		
\#104	RELINQUISH DEFAULT		V *3	V *3
\#107	SEGMENTATION_SUPPORTED	V		
\#111	STATUS FLAGS		V	V
\#112	SYSTEM_STATUS	V		
\#117	UNITS		V	
\#120	VENDOR_IDENTIFIER	V		
\#121	VENDOR_NAME	V		
\#139	PROTOCOL_REVISION	V		
\#155	DATABASE_REVISION	V		

*1. The Object_ID and Object_Name Properties of Device are writeable.
*2. The Present_Value Property of some AV and BV objects are commandable.
*3. Only Commandable objects support Priority_Array and Relinquish_Default.

- Commandable Analog Value Object

In CFP2000, we have AV_000-AV_026 supporting commandable Present_Value property. In these AV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description	Unit
AV 000	RW	AV_000_Reserved	Reserved	UNITS_NO_UNITS
AV 001	RW	AV_001_FreqRefValue	Frequency Reference Value	UNITS_HERTZ
AV 002	RW	AV_002_Reserved	Reserved	UNITS_NO_UNITS
AV 003	RW	AV_003_Reserved	Reserved	UNITS_NO_UNITS
AV 004	RW	AV_004_Reserved	Reserved	UNITS_NO_UNITS
AV 005	RW	AV_005_Reserved	Reserved	UNITS_NO_UNITS
AV 006	RW	AV_006_Reserved	Reserved	UNITS_NO_UNITS
AV 007	RW	AV_007_Reserved	Reserved	UNITS_NO_UNITS
AV 008	RW	AV_008_Reserved	Reserved	UNITS_NO_UNITS
AV 009	RW	AV_009_Reserved	Reserved	UNITS_NO_UNITS
AV 010	RW	AV_010_Reserved	Reserved	UNITS_NO_UNITS
AV 011	RW	AV_011_P9-11 map set= -----	AV11 will modify data which is P9-11 mapping to	Depends
AV 012	RW	AV_012_P9-12 map set= -----	AV12 will modify data which is P9-12 mapping to	Depends
AV 013	RW	AV_013_P9-13 map set= -----	AV13 will modify data which is P9-13 mapping to	Depends
AV 014	RW	AV_014_P9-14 map set= -----	AV14 will modify data which is P9-14 mapping to	Depends
AV 015	RW	AV_015_P9-15 map set= -----	AV15 will modify data which is P9-15 mapping to	Depends
AV 016	RW	AV_016_P9-16 map set= -----	AV16 will modify data which is P9-16 mapping to	Depends
AV 017	RW	AV_017_P9-17 map set= -----	AV17 will modify data which is P9-17 mapping to	Depends
AV 018	RW	AV_018_P9-18 map set= -----	AV18 will modify data which is P9-18 mapping to	Depends
AV 019	RW	AV_019_P9-19 map set= -----	AV19 will modify data which is P9-19 mapping to	Depends
AV 020	RW	AV_020_P9-20 map set= -----	AV20 will modify data which is P9-20 mapping to	Depends
AV 021	RW	AV_021_P9-21 map set= -----	AV21 will modify data which is P9-21 mapping to	Depends
AV 022	RW	AV_022_P9-22 map set= -----	AV22 will modify data which is P9-22 mapping to	Depends
AV 023	RW	AV_023_P9-23 map set= -----	AV23 will modify data which is P9-23 mapping to	Depends
AV 024	RW	AV_024_P9-24 map set= -----	AV24 will modify data which is P9-24 mapping to	Depends
AV 025	RW	AV_025_P9-25 map set= -----	AV25 will modify data which is P9-25 mapping to	Depends
AV 026	RW	AV_026_P9-26 map set= -----	AV26 will modify data which is P9-26 mapping to	Depends

- Status (Readonly) Analog Value Object

In CFP2000, we have AV_027-AV_068 with readonly Present_Value property. In these AV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description	Unit
AV 027	R	AV_027_Reserved	Reserved	UNITS_NO_UNITS
AV 028	R	AV_028_Reserved	Reserved	UNITS_NO_UNITS
AV 029	R	AV_029_Reserved	Reserved	UNITS_NO_UNITS
AV 030	R	AV_030_Reserved	Reserved	UNITS_NO_UNITS
AV 031	R	AV_031_Output frequency	Display output frequency (Hz)	UNITS_HERTZ
AV 032	R	AV_032_Reserved	Reserved	UNITS_NO_UNITS
AV 033	R	AV_033_Reserved	Reserved	UNITS_NO_UNITS
AV 034	R	AV_034_Reserved	Reserved	UNITS_NO_UNITS
AV 035	R	AV_035_Output torque (\%)	Display output torque (\%)	UNITS_PERCENT
AV 036	R	AV_036_Reserved	Reserved	UNITS_NO_UNITS
AV 037	R	AV_037_Reserved	Reserved	UNITS_NO_UNITS
AV 038	R	AV_038_Reserved	Reserved	UNITS_NO_UNITS
AV 039	R	AV_039_Status word	Display status word,made from BV16-BV31	UNITS_NO_UNITS
AV 040	R	AV_040_Reserved	Reserved	UNITS_NO_UNITS
AV 041	R	AV_041_Driver type code	Driver type code	UNITS_NO_UNITS
AV 042	R	AV_042_Warn code	Warn code	UNITS_NO_UNITS
AV 043	R	AV_043_Error code	Error code	UNITS_NO_UNITS
AV 044	R	AV_044_Output current	Display output current (Amp)	UNITS_AMPERES
AV 045	R	AV_045_DC bus voltage	Display DC bus voltage (Volt)	UNITS_VOLTS
AV 046	R	AV_046_Output Voltage	Display output voltage of U, V, W (Volt)	UNITS_VOLTS
AV 047	R	AV_047_Count Value	Display counter value of TRG terminal	UNITS_NO_UNITS
AV 048	R	AV_048_Power Angle	Display output power angle of U, V, W	UNITS_POWER_FACT OR
AV 049	R	AV_049_Output Power	Display actual output power of U, V, W (kW)	UNITS_KILOWATTS
AV 050	R	AV_050_IGBT temperature	Display the IGBT temperature	UNITS_DEGREES_CE LSIUS
AV 051	R	AV_051_Temperature of driver	Display the temperature of capacitance	UNITS_DEGREES_CE LSIUS
AV 052	R	AV_052_Real carry frequency	Display real carrier frequency of the drive (kHz)	UNITS_KILOHERTZ
AV 053	R	AV_053_PID feedback value	Display PID feedback value (\%)	UNITS_PERCENT
AV 054	R	AV_054_Overload rate	Display overload condition (\%)	UNITS_PERCENT
AV 055	R	AV_055_Ground fail detect level	Display GND fail detect level (\%)	UNITS_PERCENT
AV 056	R	AV_056_DC bus ripple	Display DC bus voltage ripples (Volt)	UNITS_VOLTS
AV 057	R	AV_057_Fan Speed	Fan speed of the drive (\%)	UNITS_PERCENT
AV 058	R	AV_058_Output speed (rpm)	Output speed (rpm)	UNITS_REVOLUTION S_PER_MINUTE

Object Number	R/W	Object Name	Object Description	Unit
AV 059	R	AV_059_kW per Hour	kW per Hour	UNITS_KILOWATTS
AV 060	R	AV_060_Multi-speed switch	Real multi-speed switch	UNITS_NO_UNITS
AV 061	R	AV_061_AVI1 input value	0-10 V corresponds to 0-100\%	UNITS_PERCENT
AV 062	R	AV_062_ACI input value	$4-20 \mathrm{~mA} / 0-10 \mathrm{~V}$ corresponds to 0-100\%	UNITS_PERCENT
AV 063	R	AV_063_AVI2 input value	$0 \mathrm{~V}-10 \mathrm{~V}$ corresponds to 0-100\%	UNITS_PERCENT
AV 064	R	AV_064_Digital input status	Refer to Pr.02-12	UNITS_NO_UNITS
AV 065	R	AV_065_Digital output status	Refer to Pr.02-18	UNITS_NO_UNITS
AV 066	R	AV_066_CPU pin status of DI	Corresponding CPU pin status of digital input	UNITS_NO_UNITS
AV 067	R	AV_067_CPU pin status of DO	Corresponding CPU pin status of digital output	UNITS_NO_UNITS
AV 068	R	AV_068_PLC D1043 value	PLC D1043 value	UNITS_NO_UNITS

- Commandable Binary Value Object

In CFP2000, we have BV_000-BV_015 supporting commandable Present_Value property. In these BV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 000	RW	BV_000_ACTIVE CMD	(0)FreqCmd=0;(1)FreqCmd=FreqRefValue
BV 001	RW	BV_001_FWD/REV CMD	(0)Forward; (1)Reverse
BV 002	RW	BV_002_Reserved	Reserved
BV 003	RW	BV_003_HALT CMD	(0)None;(1)RampDown to 0Hz.
BV 004	RW	BV_004_LOCK CMD	(0)None;(1)OutputFreq stays at current frequency
BV 005	RW	BV_005_Reserved	(0)None;(1)Force driver quick stop
BV 006	RW	BV_006_QSTOP CMD	(0)PowerOff(free run to stop);(1)PowerOn
BV 007	RW	BV_007_ServoPower CMD	Reserved
BV 008	RW	BV_008_Reserved	Reserved
BV 009	RW	BV_009_Reserved	Reserved
BV 010	RW	BV_010_Reserved	Reserved
BV 011	RW	BV_011_Reserved	Reserved
BV 012	RW	BV_012_Reserved	Reserved
BV 013	RW	BV_013_Reserved	RESET:(0)Do nothing;(1)Reset fault
BV 014	RW	BV_014_Reserved	
BV 015	RW	BV_015_RESET	

- Status (Readonly) Binary Value Object

In CFP2000, we have BV_016-BV_031 with readonly Present_Value property. In these BV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 016	R	BV_016_ARRIVE STATE	(0)Not yet;(1)Arrive (OutputFreq=FreqCmd)
BV 017	R	BV_017_FWD/REV STATE	(0)Forward;(1)Reverse
BV 018	R	BV_018_WARN STATE	(0)No Warn;(1)Occur Warn
BV 019	R	BV_019_ERROR STATE	(0)No Error;(1)Occur Error
BV 020	R	BV_020_Reserved	Reserved
BV 021	R	BV_021_Reserved	Reserved
BV 022	R	BV_022_QSTOP STATE	(0)No QSTOP;(1)Occur QSTOP
BV 023	R	BV_023_ServoPower STATE	(0)PowerOff(free run to stop);(1)PowerOn
BV 024	R	BV_024_Reserved	Reserved
BV 025	R	BV_025_Reserved	Reserved
BV 026	R	BV_026_Reserved	Reserved
BV 027	R	BV_027_Reserved	Reserved
BV 028	R	BV_028_Reserved	Reserved
BV 029	R	BV_029_Reserved	Reserved
BV 030	R	BV_030_Reserved	RV_031_Reserved
BV 031	R	BVed	

Chapter 18 Safe Torque Off Function

18-1 The Drive Safety Function Failure Rate
18-2 Safe Torque Off Terminal Function Description
18-3 Wiring Diagram
18-4 Parameter
18-5 Operating Sequence Description
18-6 New Error Code for STO Function

18-1 The Drive Safety Function Failure Rate

Item	Definition	Standard	Performance
STO	Safe Torque Off	IEC61508	Channel 1: 80.08\% Channel 2: 68.91\%
HFT (Type A subsystem)	Hardware Fault Tolerance	IEC61508	1
SIL	Safety Integrity Level	IEC61508	SIL 2
	IEC62061	SILCL 2	
PFH	Average frequency of dangerous failure $[$ [-1]	IEC61508	9.56×10^{-10}
PFD $_{\text {av }}$	Probability of Dangerous Failure on Demand	IEC61508	4.18×10^{-6}
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

18-2 Safe Torque Off Terminal Function Description

The Safe Torque Off function is to cut off the power supply to motor through the hardware, thereby the motor could not produce torque.
The STO function controls the motor current driving signal through two hardware circuits respectively, and thus cut off the inverter power module output in order to achieve the status of safety stop.

Operation Principle Description as following table 1:
Table 1: Terminal operation description

Signal	Channel	Photo-coupler status			
STO signal	STO1-SCM1	ON (High)	ON (High)	OFF (Low)	OFF (Low)
	STO2-SCM2	ON (High)	OFF (Low)	ON (High)	OFF (Low)
Driver Output status	Ready	STL2 mode (Torque output off)	STL1 mode (Torque output off)	STO mode (Torque output off)	

- STO means Safe Torque Off
- STL1-STL3 means Safe Torque Off hardware abnormal.
- STL3 means STO1-SCM1 and STO2-SCM2 internal circuit detected abnormal.
- STO1-SCM1 ON (High): means STO1 - SCM1has connected to a $+24 \mathrm{~V}_{\mathrm{DC}}$ power supply.
- STO2-SCM2 ON (High): means STO2-SCM2 has connected to a $+24 \mathrm{~V}_{\mathrm{DC}}$ power supply.
- STO1-SCM1 OFF (Low): means STO1-SCM1hasn't connected to a $+24 \mathrm{~V}_{\mathrm{DC}}$ power supply.
- STO2-SCM2 OFF (Low): means STO2-SCM2hasn't connected to a $+24 \mathrm{~V}_{\mathrm{Dc}}$ power supply.

18-3 Wiring diagram

18-3-1 Internal STO circuit as below:

18-3-2 In the figure below, the default setting for $+24 \mathrm{~V}-\mathrm{STO} 1-\mathrm{STO} 2$ and SCM1-SCM2-DCM is short circuit:

18-3-3 The control loop wiring diagram

1. Remove the shot-circuit of $+24 \mathrm{~V}-\mathrm{STO} 1-\mathrm{STO} 2$ and DCM-SCM1-SCM2.
2. The wiring as below diagram. The ESTOP switch must at Close status in normal situation and drive will be able to Run.
3. STO mode, switch ESTOP open. Drive output stop and keypad display STO.

■ №TE

*1: Factory short-circuit of DCM-SCM1-SCM2. Remove the short-circuit to use the Safety function.
*2: Factory short-circuit of $+24 \mathrm{~V}-\mathrm{STO} 1-\mathrm{STO} 2$. Remove the short-circuit to use the Safety function.

18-4 Parameter

06-44 STO Latch Selection

Default: 0
Settings 0: STO Latch
1: STO No Latch
[1] Pr.06-44 = 0: STO Latch. After you clear the cause of the STO Alarm, use a Reset command to clear the STO Alarm.
1 Pr.06-44 = 1: STO Alarm no Latch. After you clear the cause of the STO Alarm, the STO Alarm clears automatically.
1 All of the STL1-STL3 error are Alarm Latch mode (in STL1-STL3 mode, the Pr.06-44 function is not available).
N 02-13 Multi-function Output 1 (Relay1)
Default: 11

02-14 Multi-function Output 2 (Relay2)

Default: 1

02-15 Multi-function Output 3 (Relay3)

Default: 66
Settings
66: SO output logic A
68: SO output logic B

Settings	Functions	Descriptions
66	SO output logic A	Safety Output Normal Open
68	SO output logic B	Safety Output Normal Close

[a] CFP2000 default Pr.02-15 (Relay3) = 66 (N.O.) and Multi-function Output setting item adds two new functions: 66 and 68.

Drive status	Safety Output status	
	N.O. $(\mathrm{MOx}=66)$	N.C. $(\mathrm{MOx}=68)$
Normal run	Open	Close
STO	Close	Open
STL1~STL3	Close	Open

00-04 Content of Multi-function Display

Default: 3
Settings 45: Hardware version

18-5 Operating Sequence Description

18-5-1 Normal operation status

As shown in Figure 1: When the STO1-SCM1 and STO2-SCM2 $=\mathrm{ON}$ (no STO function is needed), the drive executes "Operating" or "Output Stop" according to the RUN/STOP command.

Figure 1

18-5-2 STO, STO Alarm Latch

18-5-2-1 STO, Pr.06-44 = 0, Pr.02-35 = 0
As shown in Figure 4: When both of STO1-SCM1 and STO2-SCM2 channel have turned off during operating, the STO function enables and the drive stops output regardless of Run command is ON or OFF status.

Figure 2
18-5-2-2 STO, Pr.06-44 = 0, Pr.02-35 = 1
As shown in Figure 3: the same as figure 2. However, due to the setting for Pr.02-35 is 1, if the operating command still exists after the Reset command, the drive immediately executes the RUN command again.

Figure 3

18-5-3 STO, Pr.06-44 = 1 STO Alarm no latch

Figure 4

18-5-4 STL1

Figure 5
18-5-5 STL2

Figure 6

18-6 New Error Code for STO Function

06-17 Fault Record 1
 06-18 Fault Record 2
 06-19 Fault Record 3
 06-20 Fault Record 4
 06-21 Fault Record 5
 06-22 Fault Record 6

Settings
72: STO loss 1 (STL1)
76: Safety Torque Off (STO)
77: STO loss 2 (STL2)
78: STO loss 3 (STL3)

Error code	Name	Description
76	STO	Safe Torque Off function active
72	STL1 (STO1-SCM1)	STO1-SCM1 internal hardware detect error
77	STL2 (STO2-SCM2)	STO2-SCM2 internal hardware detect error
78	STL3	STO1-SCM1 and STO2-SCM2 internal hardware detect error

The Old/New control board and Old/New I/O card:

CFP2000	v1.20 firmware	v1.21 firmware
v1.20 control board + old I/O card (no STO function)	OK	OK
v1.20 control board + new I/O card (with STO function)	Error	Error
v1.21 control board + old I/O card (no STO function)	Error	Error
v1.21 control board + new I/O card (with STO function)	Error	OK

[This page intentionally left blank]

Appendix A. Revision History

New information	Rescription
Add Summary of Warning Codes	Chapter 13
Add Summary of Fault Codes	Chapter 14

Updated information	Related part
Update RFI Jumper switch and sketch	Chapter 01
Correct model names of Frame D0 and D	Chapter 05
Correct description "external EMC filter" to "built-in EMC filter"	Chapter 07
Adjust table format of 575V models AC reactors	Chapter 07
Correct Braking chopper of 575V from "Optional" to "Built-in in frame A, B, C"	Chapter 09
Update parameter settings and descriptions: \bullet $\bullet ~ P a r a m e t e r ~ g r o u p ~ 02: ~ 02-09, ~ 02-10 ~$$\quad$ Parameter group 09: 09-60, 09-75-09-92	
- Parameter group 10: 10-08-10-15, 10-32, 10-42	Chapter 11
- Parameter group 11: 11-11	Section 12-1
Delete D1023 Setting 4: Modbus-TCP Slave	

[^0]: *1: AWG: Refer to the following tables for the wire size specification for models in each frame.
 *2: $F(M A X)=15.5$
 *3: $F(M A X)=16-5$

[^1]: Key
 A Without filters for motors up to
 B Without filters for motors up to 500 V a.c.

 690 V a.c.

 * Examples of measured results at 415 V supply, for different lengths of steel armoured cable

